SECTION 00 01 10

TABLE OF CONTENTS

A. Specifications for this project are arranged in accordance with the Construction Specification Institute numbering system and format. Section numbering is discontinuous and all numbers not appearing in the Table of Contents are not used for this Project.

B. DOCUMENTS BOUND HEREWITH

DIVISION 00 – PROCUREMENT AND CONTRACTING REQUIREMENTS

DIVISION 01 - GENERAL REQUIREMENTS

DIVISION 02- CONCRETE

02 41 19 Selective Structure Demolition

DIVISION 04- MASONRY

04 20 00 Unit Masonry

DIVISION 05- METALS

05 50 00 Metal Fabrications

DIVISION 07- THERMAL AND MOISTURE PROTECTION

07 84 13 Penetration Firestopping
07 92 00 Joint Sealants

DIVISION 08- OPENINGS

08 16 13 Fiberglass Doors and Aluminum Frames
08 41 13 Aluminum-Framed Entrances and Storefronts
08 71 00 Door Hardware
08 80 00 Glazing
08 90 00 Louvers and Vents

DIVISION 09- FINISHES

09 21 16.23 Gypsum Board Shaft Wall Assemblies
09 96 00 High Performance Coatings

DIVISION 21 – FIRE SUPPRESSION

21 13 13 Wet-Pipe Sprinklers
DIVISION 23- HEATING, VENTILATION, AND AIR CONDITIONING

23 00 00 General Requirements Mechanical & Electrical
23 05 13 Common Motor Requirements for HVAC Equipment
23 05 19 Meter and Gages for HVAC Piping
23 05 23.12 Ball Valves for HVAC Piping
23 05 23.13 Butterfly Valves for HVAC Piping
23 05 23.14 Check Valves for HVAC Piping
23 05 29 Hangers and Supports for HVAC Piping and Equipment
23 05 53 Identification for HVAC Piping and Equipment
23 05 93 Testing, Adjusting, and Balancing for HVAC
23 07 13 Duct Insulation
23 07 19 HVAC Piping Insulation
23 09 50 Building Automation System (BAS) General
23 09 51 BAS Basic Materials, Interface Devices and Sensors
23 09 53 BAS Field Panels
23 09 54 BAS Communication Devices
23 09 55 BAS Software and Programming
23 09 58 Sequence of Operations
23 09 59 BAS System Commissioning
23 09 69 Variable Frequency Controllers
23 21 13 Hydronic Piping
23 21 16 Hydronic Piping Specialties
23 31 13 Metal Ducts
23 33 00 Air Duct Accessories
23 73 13 Modular Indoor Central-Station Air-Handling Units
23 82 39.16 Propeller Unit Heaters

DIVISION 26- ELECTRICAL

26 05 00 Common Work Results for Electrical
26 05 19 Low-Voltage Electrical Power Conductors and Cables
26 05 23 Control-Voltage Electrical Power Cables
26 05 26 Grounding and Bonding for Electrical Systems
26 05 29 Hangers and Supports for Electrical Systems
26 05 33 Raceways and Boxes for Electrical Systems
26 05 44 Sleeves and Sleeve Seals for Electrical Raceways and Cabling
26 05 53 Identification for Electrical Systems
26 05 73.13 Short-Circuit Studies
26 05 73.16 Coordination Studies
26 05 73.19 Arc-Flash Hazard Analysis
26 22 13 Low-Voltage Distribution Transformers
26 24 16 Panelboards
26 24 19 Motor-Control Centers
26 27 26 Wiring Devices
26 28 16 Enclosed Switches and Circuit Breakers
26 29 13.03 Manual and Magnetic Motor Controllers
26 29 23 Variable-Frequency Motor Controllers
DIVISION 27 - COMMUNICATIONS

27 05 28 Pathways for Communication Systems
27 13 23 Communication Optical Fiber Backbone Cabling

DIVISION 28 - ELECTRONIC SAFETY AND SECURITY

28 46 21.11 Addressable Fire-Alarm System

END OF SECTION
PAGE

INTENTIONALLY LEFT

BLANK
SECTION 02 41 19

SELECTIVE STRUCTURE DEMOLITION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Demolition and removal of selected portions of building or structure.

1.3 DEFINITIONS

A. Remove: Detach items from existing construction and legally dispose of them off-site unless indicated to be removed and salvaged or removed and reinstalled.

B. Remove and Salvage: Carefully detach from existing construction, in a manner to prevent damage, and deliver to Owner ready for reuse.

C. Remove and Reinstall: Detach items from existing construction, prepare for reuse, and reinstall where indicated.

D. Existing to Remain: Existing items of construction that are not to be permanently removed and that are not otherwise indicated to be removed, removed and salvaged, or removed and reinstalled.

1.4 MATERIALS OWNERSHIP

A. Unless otherwise indicated, demolition waste becomes property of Contractor.

B. Historic items, relics, antiques, and similar objects including, but not limited to, cornerstones and their contents, commemorative plaques and tablets, and other items of interest or value to Owner that may be uncovered during demolition remain the property of Owner.
 1. Carefully salvage in a manner to prevent damage and promptly return to Owner.

1.5 SUBMITTALS, GENERAL

A. General: Submit all informational submittals required by this Section concurrently.
1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: For refrigerant recovery technician.

B. Schedule of Selective Demolition Activities: Indicate the following:
 1. Detailed sequence of selective demolition and removal work, with starting and ending dates for each activity. Ensure Owner's on-site operations are uninterrupted.
 2. Interruption of utility services. Indicate how long utility services will be interrupted.
 3. Coordination for shutoff, capping, and continuation of utility services.

C. Inventory: Submit a list of items to be removed and salvaged and deliver to Owner prior to start of demolition.

D. Statement of Refrigerant Recovery: Signed by refrigerant recovery technician responsible for recovering refrigerant, stating that all refrigerant that was present was recovered and that recovery was performed according to EPA regulations. Include name and address of technician and date refrigerant was recovered.

1.7 QUALITY ASSURANCE

A. Refrigerant Recovery Technician Qualifications: Certified by an EPA-approved certification program.

1.8 FIELD CONDITIONS

A. Owner will occupy portions of building immediately adjacent to selective demolition area. Conduct selective demolition so Owner's operations will not be disrupted.

B. Notify Architect of discrepancies between existing conditions and Drawings before proceeding with selective demolition.

C. Hazardous Materials: It is not expected that hazardous materials will be encountered in the Work.
 1. If suspected hazardous materials are encountered, do not disturb; immediately notify Architect and Owner. Hazardous materials will be removed by Owner under a separate contract.

D. Utility Service: Maintain existing utilities indicated to remain in service and protect them against damage during selective demolition operations.
 1. Maintain fire-protection facilities in service during selective demolition operations.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Regulatory Requirements: Comply with governing EPA notification regulations before beginning selective demolition. Comply with hauling and disposal regulations of authorities having jurisdiction.

B. Standards: Comply with ANSI/ASSE A10.6 and NFPA 241.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Survey existing conditions and correlate with requirements indicated to determine extent of selective demolition required.

B. When unanticipated mechanical, electrical, or structural elements that conflict with intended function or design are encountered, investigate and measure the nature and extent of conflict. Promptly submit a written report to Architect.

C. Beginning selective demolition constitutes Contractor’s acceptance of conditions.

3.2 UTILITY SERVICES AND MECHANICAL/ELECTRICAL SYSTEMS

A. Existing Services/Systems to Remain: Maintain services/systems indicated to remain and protect them against damage.

B. Existing Services/Systems to Be Removed, Relocated, or Abandoned: Locate, identify, disconnect, and seal or cap off indicated utility services and mechanical/electrical systems serving areas to be selectively demolished.

1. If services/systems are required to be removed, relocated, or abandoned, provide temporary services/systems that bypass area of selective demolition and that maintain continuity of services/systems to other parts of building.

2. Disconnect, demolish, and remove fire-suppression systems, plumbing, and HVAC systems, equipment, and components indicated to be removed.

 a. Piping to Be Removed: Remove portion of piping indicated to be removed and cap or plug remaining piping with same or compatible piping material.

 b. Piping to Be Abandoned in Place: Drain piping and cap or plug piping with same or compatible piping material.

 c. Equipment to Be Removed: Disconnect and cap services and remove equipment.

 d. Equipment to Be Removed and Reinstalled: Disconnect and cap services and remove, clean, and store equipment; when appropriate, reinstall, reconnect, and make equipment operational.
e. Equipment to Be Removed and Salvaged: Disconnect and cap services and remove equipment and deliver to Owner.

f. Ducts to Be Removed: Remove portion of ducts indicated to be removed and plug remaining ducts with same or compatible ductwork material.

g. Ducts to Be Abandoned in Place: Cap or plug ducts with same or compatible ductwork material.

C. Refrigerant: Remove refrigerant from mechanical equipment to be selectively demolished according to 40 CFR 82 and regulations of authorities having jurisdiction.

3.3 PREPARATION

A. Site Access and Temporary Controls: Conduct selective demolition and debris-removal operations to ensure minimum interference with roads, streets, walks, walkways, and other adjacent occupied and used facilities.

B. Temporary Facilities: Provide temporary barricades and other protection required to prevent injury to people and damage to adjacent buildings and facilities to remain.

C. Temporary Shoring: Provide and maintain shoring, bracing, and structural supports as required to preserve stability and prevent movement, settlement, or collapse of construction and finishes to remain, and to prevent unexpected or uncontrolled movement or collapse of construction being demolished.

1. Strengthen or add new supports when required during progress of selective demolition.

3.4 SELECTIVE DEMOLITION, GENERAL

A. General: Demolish and remove existing construction only to the extent required by new construction and as indicated. Use methods required to complete the Work within limitations of governing regulations and as follows:

1. Proceed with selective demolition systematically, from higher to lower level. Complete selective demolition operations above each floor or tier before disturbing supporting members on the next lower level.

2. Neatly cut openings and holes plumb, square, and true to dimensions required. Use cutting methods least likely to damage construction to remain or adjoining construction. Use hand tools or small power tools designed for sawing or grinding, not hammering and chopping, to minimize disturbance of adjacent surfaces. Temporarily cover openings to remain.

3. Cut or drill from the exposed or finished side into concealed surfaces to avoid marring existing finished surfaces.

4. Do not use cutting torches until work area is cleared of flammable materials. At concealed spaces, such as duct and pipe interiors, verify condition and contents of hidden space before starting flame-cutting operations. Maintain fire watch and portable fire-suppression devices during flame-cutting operations.

5. Maintain adequate ventilation when using cutting torches.

6. Remove decayed, vermin-infested, or otherwise dangerous or unsuitable materials and promptly dispose of off-site.
7. Locate selective demolition equipment and remove debris and materials so as not to impose excessive loads on supporting walls, floors, or framing.
8. Dispose of demolished items and materials promptly.

B. Removed and Salvaged Items:

1. Clean salvaged items.
2. Pack or crate items after cleaning. Identify contents of containers.
3. Store items in a secure area until delivery to Owner.
4. Transport items to Owner's storage area designated by Owner.
5. Protect items from damage during transport and storage.

C. Removed and Reinstalled Items:

1. Clean and repair items to functional condition adequate for intended reuse.
2. Pack or crate items after cleaning and repairing. Identify contents of containers.
3. Protect items from damage during transport and storage.
4. Reinstall items in locations indicated. Comply with installation requirements for new materials and equipment. Provide connections, supports, and miscellaneous materials necessary to make item functional for use indicated.

D. Existing Items to Remain: Protect construction indicated to remain against damage and soiling during selective demolition. When permitted by Architect, items may be removed to a suitable, protected storage location during selective demolition and cleaned and reinstalled in their original locations after selective demolition operations are complete.

3.5 SELECTIVE DEMOLITION PROCEDURES FOR SPECIFIC MATERIALS

A. Concrete: Demolish in sections. Cut concrete full depth at junctures with construction to remain and at regular intervals using power-driven saw, then remove concrete between saw cuts.

B. Masonry: Demolish in small sections. Cut masonry at junctures with construction to remain, using power-driven saw, then remove masonry between saw cuts.

C. Concrete Slabs-on-Grade: Saw-cut perimeter of area to be demolished, then break up and remove.

3.6 DISPOSAL OF DEMOLISHED MATERIALS

A. General: Except for items or materials indicated to be recycled, reused, salvaged, reinstalled, or otherwise indicated to remain Owner's property, remove demolished materials from Project site and legally dispose of them in an EPA-approved landfill.

1. Do not allow demolished materials to accumulate on-site.
2. Remove and transport debris in a manner that will prevent spillage on adjacent surfaces and areas.
3. Remove debris from elevated portions of building by chute, hoist, or other device that will convey debris to grade level in a controlled descent.
B. Burning: Do not burn demolished materials.

C. Disposal: Transport demolished materials off Owner’s property and legally dispose of them.

3.7 CLEANING

A. Clean adjacent structures and improvements of dust, dirt, and debris caused by selective demolition operations. Return adjacent areas to condition existing before selective demolition operations began.

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Concrete masonry units.
2. Face brick.
3. Mortar and grout.
4. Masonry joint reinforcement.
5. Ties and anchors.
6. Embedded flashing.
7. Miscellaneous masonry accessories.

B. Products Installed but not Furnished under This Section:
1. Steel lintels in unit masonry.
2. Steel shelf angles for supporting unit masonry.
3. Cavity wall insulation.

1.3 DEFINITIONS

A. CMU(s): Concrete masonry unit(s).

B. Reinforced Masonry: Masonry containing reinforcing steel in grouted cells.

1.4 SUBMITTALS, GENERAL

A. General: Submit all action submittals (except Samples for Verification) and informational submittals required by this Section concurrently.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.
1. CMUs.
2. Face brick.
3. Hydrated lime.
5. Mortar pigments.
6. Colored cement product.
7. Aggregate for mortar.
8. Aggregate for grout.
10. Individual wire ties.
11. Anchors for CMU to existing masonry
12. Anchors for veneer to existing concrete or masonry, spiral type.
13. Adjustable anchors for connecting to concrete.
14. Wire mesh ties.
15. Adjustable masonry-veneer anchors.
16. Flexible flashing.
17. Termination bars.
18. Compressible filler.
20. Bond-breaker strips.
22. Cavity drainage material.
23. Reinforcing bar positioners.
24. Proprietary acidic cleaner.

B. Samples for Initial Selection:
1. Face brick, in the form of portable display panels.

C. Samples for Verification: For each type and color of the following:
1. Face brick, in the form of straps of five or more bricks.
2. Pigmented mortar. Make Samples using same sand and mortar ingredients to be used on Project.

1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: For testing agency.

B. Material Certificates: For each type and size of the following:
1. Masonry units.
 a. Include material test reports substantiating compliance with requirements.
 b. For brick, include size-variation data verifying that actual range of sizes falls within specified tolerances.
 c. For exposed brick, include test report for efflorescence according to ASTM C 67.
2. Cementitious materials. Include name of manufacturer, brand name, and type.
4. Preblended, dry mortar mixes. Include description of type and proportions of ingredients.
5. Grout mixes. Include description of type and proportions of ingredients.
6. Reinforcing bars.
7. Joint reinforcement.
8. Anchors, ties, and metal accessories.
C. Mix Designs: For each type of mortar and grout. Include description of type and proportions of ingredients.

1. Include test reports for mortar mixes required to comply with property specification. Test according to ASTM C 109/C 109M for compressive strength, ASTM C 1506 for water retention, and ASTM C 91/C 91M for air content.

2. Include test reports, according to ASTM C 1019, for grout mixes required to comply with compressive strength requirement.

D. Cold-Weather and Hot-Weather Procedures: Detailed description of methods, materials, and equipment to be used to comply with requirements.

1.7 QUALITY ASSURANCE

A. Testing Agency Qualifications: Qualified according to ASTM C 1093 for testing indicated.

B. Sample Panels: Build sample panels to verify selections made under Sample submittals and to demonstrate aesthetic effects. Comply with requirements in Division 01 Section "Quality Requirements".

1. Build sample panels for each type of exposed unit masonry construction in sizes approximately 48 inches long by 48 inches high.

2. Where masonry is to match existing, build panels adjacent and parallel to existing surface.

3. Clean one-half of exposed faces of panels with masonry cleaner indicated.

4. Protect approved sample panels from the elements with weather-resistant membrane.

5. Approval of sample panels is for color, texture, and blending of masonry units; relationship of mortar and sealant colors to masonry unit colors; tooling of joints; aesthetic qualities of workmanship; and other material and construction qualities specifically approved by Architect in writing.

 a. Approval of sample panels does not constitute approval of deviations from the Contract Documents contained in sample panels unless Architect specifically approves such deviations in writing.

C. Preinstallation Conference: Conduct conference at Project site to comply with requirements in Division 01 Section "Project Management and Coordination."

1.8 DELIVERY, STORAGE, AND HANDLING

A. Store masonry units on elevated platforms in a dry location. If units are not stored in an enclosed location, cover tops and sides of stacks with waterproof sheeting, securely tied. If units become wet, do not install until they are dry.

B. Store cementitious materials on elevated platforms, under cover, and in a dry location. Do not use cementitious materials that have become damp.

C. Store aggregates where grading and other required characteristics can be maintained and contamination avoided.
D. Deliver preblended, dry mortar mix in moisture-resistant containers. Store preblended, dry mortar mix in delivery containers on elevated platforms; in a dry location or in covered weatherproof dispensing silos.

E. Store masonry accessories, including metal items, to prevent corrosion and accumulation of dirt and oil.

1.9 FIELD CONDITIONS

A. Protection of Masonry: During construction, cover tops of walls, projections, and sills with waterproof sheeting at end of each day's work. Cover partially completed masonry when construction is not in progress.
 1. Extend cover a minimum of 24 inches down both sides of walls and hold cover securely in place.
 2. Where one wythe of multiwythe masonry walls is completed in advance of other wythes, secure cover a minimum of 24 inches down face next to unconstructed wythe and hold cover in place.

B. Do not apply uniform floor or roof loads for at least 12 hours and concentrated loads for at least three days after building masonry walls or columns.

C. Stain Prevention: Prevent grout, mortar, and soil from staining the face of masonry to be left exposed or painted. Immediately remove grout, mortar, and soil that come in contact with such masonry.
 1. Protect base of walls from rain-splashed mud and from mortar splatter by spreading coverings on ground and over wall surface.
 2. Protect sills, ledges, and projections from mortar droppings.
 3. Protect surfaces of window and door frames, as well as similar products with painted and integral finishes, from mortar droppings.
 4. Turn scaffold boards near the wall on edge at the end of each day to prevent rain from splashing mortar and dirt onto completed masonry.

D. Cold-Weather Requirements: Do not use frozen materials or materials mixed or coated with ice or frost. Do not build on frozen substrates. Remove and replace unit masonry damaged by frost or by freezing conditions. Comply with cold-weather construction requirements contained in TMS 602/ACI 530.1/ASCE 6.
 1. Cold-Weather Cleaning: Use liquid cleaning methods only when air temperature is 40 deg F and higher and will remain so until masonry has dried, but not less than seven days after completing cleaning.

PART 2 - PRODUCTS

2.1 UNIT MASONRY, GENERAL

A. Masonry Standard: Comply with TMS 602/ACI 530.1/ASCE 6, except as modified by requirements in the Contract Documents.

B. Defective Units: Referenced masonry unit standards may allow a certain percentage of units to contain chips, cracks, or other defects exceeding limits stated. Do not use units where such defects are exposed in the completed Work and will be within 20 feet (6 m) vertically and horizontally of a walking surface.

C. Fire-Resistance Ratings: Comply with requirements for fire-resistance-rated assembly designs indicated, units shall be listed and labeled by a qualified testing agency acceptable to authorities having jurisdiction.

2.2 CONCRETE MASONRY UNITS

A. CMUs: ASTM C 90.
 1. Density Classification: Lightweight unless otherwise indicated.
 2. Size (Width): Manufactured to dimensions 3/8 inch less than nominal dimensions.
 3. Exposed Faces: Provide fine texture units suitable for painting.

2.3 CONCRETE AND MASONRY LINTELS

A. General: Provide one of the following:

B. Concrete Lintels: ASTM C 1623, matching CMUs in color, texture, and density classification; and with reinforcing bars indicated. Provide lintels with net-area compressive strength not less than that of CMUs.

C. Concrete Lintels: Precast or formed-in-place concrete lintels complying with requirements in Division 03 Section "Cast-in-Place Concrete," and with reinforcing bars indicated.

D. Masonry Lintels: Prefabricated or built-in-place masonry lintels made from bond beam CMUs matching adjacent CMUs in color, texture, and density classification, with reinforcing bars placed as indicated and filled with coarse grout. Cure precast lintels before handling and installing. Temporarily support built-in-place lintels until cured.

2.4 BRICK

A. General: Provide shapes indicated and as follows, with exposed surfaces matching finish and color of exposed faces of adjacent units:

 1. For ends of sills and caps and for similar applications that would otherwise expose unfinished brick surfaces, provide units without cores or frogs and with exposed surfaces finished.
B. Face Brick: Facing brick complying with ASTM C 216.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

2. Grade: SW.
3. Type: FBX.
4. Initial Rate of Absorption: Less than 30 g/30 sq. in. per minute when tested per ASTM C 67.
5. Efflorescence: Provide brick that has been tested according to ASTM C 67 and is rated "not effloresced."
7. Application: Use where brick is exposed unless otherwise indicated.
8. Where shown to "match existing," provide face brick matching color range, texture, and size of existing adjacent brickwork.

2.5 MORTAR AND GROUT MATERIALS

A. Portland Cement: ASTM C 150/C 150 M, Type I or II, except Type III may be used for cold-weather construction. Provide natural color or white cement as required to produce mortar color indicated.

1. Alkali content shall not be more than 0.1 percent when tested according to ASTM C 114.

B. Hydrated Lime: ASTM C 207, Type S.

C. Portland Cement-Lime Mix: Packaged blend of portland cement and hydrated lime containing no other ingredients.

D. Mortar Pigments: Natural and synthetic iron oxides and chromium oxides, compounded for use in mortar mixes and complying with ASTM C 979/C 979M. Use only pigments with a record of satisfactory performance in masonry mortar.

E. Colored Cement Products: Packaged blend made from portland cement and hydrated lime and mortar pigments, all complying with specified requirements, and containing no other ingredients.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 c. Lehigh Cement Company; Lehigh Custom Color Portland/Lime Cement.

2. Formulate blend as required to produce color indicated or, if not indicated, as selected from manufacturer's standard colors.
3. Pigments shall not exceed 10 percent of portland cement by weight.
F. Aggregate for Mortar: ASTM C 144.
 1. For mortar that is exposed to view, use washed aggregate consisting of natural sand or crushed stone.
 2. For joints less than 1/4 inch (6 mm) thick, use aggregate graded with 100 percent passing the No. 16 (1.18-mm) sieve.
 3. White-Mortar Aggregates: Natural white sand or crushed white stone.
 4. Colored-Mortar Aggregates: Natural sand or crushed stone of color necessary to produce required mortar color.

2.6 REINFORCEMENT

A. Uncoated Steel Reinforcing Bars: ASTM A 615/A 615M or ASTM A 996/A 996M, Grade 60.

B. Low-Alloy-Steel Reinforcing Bars: ASTM A 706/A 706M, deformed.

C. Reinforcing Bar Positioners: Wire units designed to fit into mortar bed joints spanning masonry unit cells and to hold reinforcing bars in center of cells. Units are formed from 0.148-inch (3.77-mm) steel wire, hot-dip galvanized after fabrication. Provide units designed for number of bars indicated.

 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 b. Hohmann & Barnard, Inc.; #RB or #RB-Twin Rebar Positioner.
 c. Wire-Bond; O-Ring or Double O-Ring Rebar Positioner.

D. Masonry Joint Reinforcement, General: ASTM A 951/A 951M.

 1. Interior Walls: Hot-dip galvanized, carbon steel.
 2. Exterior Walls: Stainless steel.
 5. Wire Size for Veneer Ties: 0.187-inch diameter.
 6. Spacing of Cross Rods, Tabs, and Cross Ties: Not more than 16 inches o.c.
 7. Provide in lengths of not less than 10 feet, with prefabricated corner and tee units.

E. Masonry Joint Reinforcement for Single-Wythe Masonry: Truss type with single pair of side rods.

 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 a. Hohmann & Barnard, Inc.; #120 Truss-Mesh Reinforcement.
 b. Wire-Bond; Series 300 Truss 2 Wire Mesh Reinforcement.

F. Masonry Joint Reinforcement for Multiwythe Masonry:
1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Hohmann & Barnard, Inc.; #170 Lox-All Truss Adjustable Eye-Wire.
 b. Wire-Bond; Series 900 Level Eye Truss (Hook and Eye).

2. Adjustable (two-piece) type, truss design, with one side rod at each face shell of backing wythe and with separate adjustable ties with pintle-and-eye connections having a maximum horizontal play of 1/16 inch and maximum vertical adjustment of 1-1/4 inches. Size ties to extend at least halfway through facing wythe but with at least 5/8-inch cover on outside face.

G. General: Ties and anchors shall extend at least 1-1/2 inches (38 mm) into veneer but with at least a 5/8-inch (16-mm) cover on outside face.

H. Materials: Provide ties and anchors specified in this article that are made from materials that comply with the following unless otherwise indicated.
 3. Stainless-Steel Sheet: ASTM A 666, Type 304.
 4. Steel Plates, Shapes, and Bars: ASTM A 36/A 36M.
 5. Stainless-Steel Bars: ASTM A 276 or ASTM a 666, Type 304.

I. Individual Wire Ties: Rectangular units with closed ends and not less than 4 inches wide.
 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Heckmann Building Products, Inc.; #262/263 Double Eye Rod Anchor and Double Pintle Tie.
 b. Hohman & Barnard, Inc.; Adjustable Wall Tie.
 c. Wire-Bond; Adjustable Rectangular Tie 1800/1801.
 2. Where wythes do not align or are of different materials, use adjustable ties with pintle-and-eye connections having a maximum adjustment of 1-1/4 inches.

J. Anchors for CMU to Existing Masonry
 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Heckmann Building Products, Inc.; #200 Corrugated Buck Anchor.
 b. Wire-Bond; Veneer Anchor Corrugated 2501.

K. Anchors for Veneer to Existing Concrete or Masonry, Spiral Type:
1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Heckmann Building Products, Inc.; #391 Remedial Wall Tie.
 b. Hohman & Barnard, Inc.; Spira-Lok.

2. Type 304 stainless-steel spiral rods designed to anchor to backing and veneer. Anchors are flexible in plane of veneer but rigid perpendicular to it.
3. Provide driven-in anchors designed for installation in drilled holes, relying on screw effect rather than adhesive to secure them to backup and veneer.

L. Adjustable Anchors for Connecting to Structural Steel Framing: Provide anchors that allow vertical or horizontal adjustment but resist tension and compression forces perpendicular to plane of wall.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 b. Wire-Bond; Type I Weld-On Anchor with Triangular Tie 1100.

2. Anchor Section for Welding to Steel Frame: Crimped minimum 1/4-inch-diameter, hot-dip galvanized steel wire.
3. Tie Section: Triangular-shaped wire tie made from 0.187-inch-diameter, hot-dip galvanized steel wire.

M. Adjustable Anchors for Connecting to Structural Steel Columns at Isolated Pilasters: Provide anchors that allow vertical adjustment.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Heckmann Building Products Inc.; #103-C Dovetail Triangular Veneer Anchor.
 b. Hohmann & Barnard, Inc.; #345-BT Flexible Dovetail Brick Tie.
 c. Wire-Bond; Dovetail Triangular Tie 2102.

2. Anchor Section: Tab formed from 0.105-inch-thick, hot-dip galvanized steel sheet.
3. Tie Section: Triangular-shaped wire tie, sized to extend within 1 inch of masonry face, made from 0.187-inch-diameter, hot-dip galvanized steel wire.

N. Adjustable Anchors for Veneer Connecting to Concrete: Provide anchors that allow vertical or horizontal adjustment but resist tension and compression forces perpendicular to plane of wall.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Heckmann Building Products Inc.; #100 Standard Dovetail Slot with #103 Dovetail Triangular Anchor.
 b. Hohmann & Barnard, Inc.; #305 Dovetail Slot with #315 Flexible Dovetail Brick Tie.
 c. Wire-Bond; Dovetail Slot 1304 with Dovetail with Triangular Tie 2102.
2. Dovetail Slot: Dovetail slots with filler strips, 1” wide by 1” deep, fabricated from 0.034-inch, stainless steel sheet.

3. Connector Section: Dovetail tabs for inserting into dovetail slots in concrete and attached to tie section; formed from 0.109-inch-thick stainless-steel sheet.

4. Tie Section: Triangular-shaped wire tie made from 0.187-inch-diameter, stainless-steel wire.

O. Joint Stabilization Anchors: Provide anchors allowing lateral movement, made from [mill-galvanized steel][hot-dip galvanized steel][stainless-steel].

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Heckmann Building Products Inc.; #353 Debonded Shear Anchor.
 b. Hohmann & Barnard, Inc.; Slip-Set Stabilizer.
 c. Wire-Bond; #1700 Control Joint Anchor.

P. Adjustable Masonry-Veneer Anchors:

1. General: Provide anchors that allow vertical adjustment but resist a 100-lbf (445-N) load in both tension and compression perpendicular to plane of wall without deforming or developing play in excess of 1/16 inch (1.5 mm).

1. Screw-Attached, Masonry-Veneer Anchors: Wire tie and a corrosion-resistant, self-drilling, eye-screw designed to receive wire tie. Eye-screw has spacer that seats directly against framing and is same thickness as sheathing and has gasketed washer head that covers hole in sheathing.

 a. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 2) Hohmann & Barnard, Inc.; 2-Seal Thermal Wing Nut AnchorTie with Adjustable Wall Tie (pintle).

 b. Wire Ties: Triangular-, rectangular-, or T-shaped wire ties fabricated from 0.187-inch-diameter, stainless-steel wire.

2.7 EMBEDDED FLASHING MATERIALS

A. Flexible Flashing: Use the following unless otherwise indicated:

1. Copper-Laminated Flashing: 5-oz./sq. ft. copper sheet bonded between 2 layers of glass-fiber cloth. Use only where flashing is fully concealed in masonry.

 a. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
1) Advanced Building Products Inc.; Copper Sealtite 2000.
2) York Manufacturing, Inc.; Multi-Flash 500.

B. Termination Bars: Stainless steel bar 1/8-inch by minimum 1-inch, for attachment at 8-inch centers with stainless steel fasteners.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 a. Dayton Superior Corporation, Dur-O-Wal Division; DA1510 Termination Bar.
 b. Hohmann & Barnard, Inc.; #T1 Termination Bar.

C. Adhesives, Primers, and Seam Tapes for Flashings: Flashing manufacturer's standard products or products recommended by flashing manufacturer for bonding flashing sheets to each other and to substrates.

2.8 MISCELLANEOUS MASONRY ACCESSORIES

A. Compressible Filler: Premolded filler strips complying with ASTM D 1056, Grade 2A1; compressible up to 35 percent; of width and thickness indicated; formulated from neoprene.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 b. Wire-Bond; Expansion Joint 3300.

B. Preformed Control-Joint Gaskets: Made from styrene-butadiene-rubber compound, complying with ASTM D 2000, Designation M2AA-805 and designed to fit standard sash block and to maintain lateral stability in masonry wall; size and configuration as indicated.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 b. Wire-Bond; Rubber Control Joint.

A. Bond-Breaker Strips: Asphalt-saturated felt complying with ASTM D 226/D 226M, Type I (No. 15 asphalt felt).

B. Weep/Cavity Vent Products: Use the following unless otherwise indicated:

1. Cellular Plastic Weep/Vent: One-piece, flexible extrusion made from UV-resistant polypropylene copolymer, full height and width of head joint and depth 1/8 inch less than depth of outer wythe, in color selected from manufacturer's standard.

 a. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 1) Advanced Building Products Inc.; Mortar Maze Cell Vents.
C. Cavity Drainage Material: Free-draining mesh, made from polymer strands that will not degrade within the wall cavity. See the Evaluations.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Advanced Building Products Inc.; Mortar Break.
 c. Mortar Net USA, Ltd.; Mortar Net.

2. Configuration: Provide one of the following:
 a. Strips, full-depth of cavity and 10 inches high, with dovetail shaped notches 7 inches deep that prevent clogging with mortar droppings.
 b. Strips, not less than 3/4 inch thick and 10 inches high, with dimpled surface designed to catch mortar droppings and prevent weep holes from clogging with mortar.

2.9 MASONRY CLEANERS

A. Proprietary Acidic Cleaner: Manufacturer's standard-strength cleaner designed for removing mortar/grout stains, efflorescence, and other new construction stains from new masonry without discoloring or damaging masonry surfaces. Use product expressly approved for intended use by cleaner manufacturer and manufacturer of masonry units being cleaned.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Diedrich Technologies, Inc.
 b. EaCo Chem, Inc.
 c. ProSoCo, Inc.

2.10 MORTAR AND GROUT MIXES

A. General: Do not use admixtures, including pigments, air-entraining agents, accelerators, retarders, water-repellent agents, antifreeze compounds, or other admixtures unless otherwise indicated.

1. Do not use calcium chloride in mortar or grout.
2. Use portland cement-lime mortar unless otherwise indicated.

B. Preblended, Dry Mortar Mix: Furnish dry mortar ingredients in form of a preblended mix. Measure quantities by weight to ensure accurate proportions, and thoroughly blend ingredients before delivering to Project site.
C. Mortar for Unit Masonry: Comply with ASTM C 270, either the Proportion Specification or the Property Specification. Provide the following types of mortar for applications stated unless another type is indicated.

1. For concrete masonry unit backup in exterior walls, masonry bearing walls, shear walls and masonry below grade or in contact with earth, use Type S. Not for use in masonry veneer construction.
2. Use Type N mortar in all masonry veneer construction and in all masonry construction other than noted in the requirements for Type S mortar above.

D. Pigmented Mortar: Use colored cement product.

1. Pigments shall not exceed 10 percent of portland cement by weight.
2. Mix to match Architect's sample.
3. Application: Use pigmented mortar for exposed mortar joints with the following units:
 a. Clay face brick.

E. Grout for Unit Masonry: Comply with ASTM C 476.

1. Use grout of type indicated or, if not otherwise indicated, of type (fine or coarse) that will comply with Table 1.15.1 in TMS 602/ACI 530.1/ASCE 6 for dimensions of grout spaces and pour height.
2. Proportion grout in accordance with ASTM C 476, Table 1 or paragraph 4.2.2 for specified 28-day compressive strength indicated, but not less than 2000 psi.
3. Provide grout with a slump of 8 to 11 inches as measured according to ASTM C 143/C 143M.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

1. Verify that foundations are within tolerances specified.
2. Verify that reinforcing dowels are properly placed.
3. Verify that substrates are free of substances that impair mortar bond.

B. Before installation, examine rough-in and built-in construction for piping systems to verify actual locations of piping connections.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

D. Beginning installation constitutes Contractor’s acceptance of substrates and conditions.
3.2 INSTALLATION, GENERAL

A. Thickness: Build cavity and composite walls and other masonry construction to full thickness shown. Build single-wythe walls to actual widths of masonry units, using units of widths indicated.

B. Build chases and recesses to accommodate items specified in this and other Sections.

C. Leave openings for equipment to be installed before completing masonry. After installing equipment, complete masonry to match construction immediately adjacent to opening.

D. Use full-size units without cutting if possible. If cutting is required to provide a continuous pattern or to fit adjoining construction, cut units with motor-driven saws; provide clean, sharp, unchipped edges. Allow units to dry before laying unless wetting of units is specified. Install cut units with cut surfaces and, where possible, cut edges concealed.

E. Select and arrange units for exposed unit masonry to produce a uniform blend of colors and textures. Mix units from several pallets or cubes as they are placed.

F. Matching Existing Masonry: Match coursing, bonding, color, and texture of existing masonry.

G. Wetting of Brick: Wet brick before laying if initial rate of absorption exceeds 30 g/30 sq. in. per minute when tested according to ASTM C 67. Allow units to absorb water so they are damp but not wet at time of laying.

3.3 TOLERANCES

A. Dimensions and Locations of Elements:

1. For dimensions in cross section or elevation do not vary by more than plus 1/2 inch or minus 1/4 inch.
2. For location of elements in plan do not vary from that indicated by more than plus or minus 1/2 inch.
3. For location of elements in elevation do not vary from that indicated by more than plus or minus 1/4 inch in a story height or 1/2 inch total.

B. Lines and Levels:

1. For bed joints and top surfaces of bearing walls, do not vary from level by more than 1/4 inch in 10 feet, or ½-inch maximum.
2. For conspicuous horizontal lines, such as lintels, sills, parapets, and reveals, do not vary from level by more than 1/8 inch in 10 feet, 1/4 inch in 20 feet, or ½-inch maximum.
3. For vertical lines and surfaces, do not vary from plumb by more than ¼ inch in 10 feet, 3/8 inch in 20 feet, or ½-inch maximum.
4. For conspicuous vertical lines, such as external corners, door jambs, reveals, and expansion and control joints, do not vary from plumb by more than 1/8 inch in 10 feet, ¼ inch in 20 feet, or ½-inch maximum.
5. For lines and surfaces, do not vary from straight by more than ¼ inch in 10 feet, 3/8 inch in 20 feet, or ½-inch maximum.
6. For vertical alignment of exposed head joints, do not vary from plumb by more than ¼ inch in 10 feet, or ½-inch maximum.

C. Joints:

1. For bed joints, do not vary from thickness indicated by more than plus or minus 1/8 inch, with a maximum thickness limited to 1/2 inch.
2. For exposed bed joints, do not vary from bed-joint thickness of adjacent courses by more than 1/8 inch.
3. For head and collar joints, do not vary from thickness indicated by more than plus 3/8 inch or minus 1/4 inch.
4. For exposed head joints, do not vary from thickness indicated by more than plus or minus 1/8 inch. Do not vary from adjacent bed-joint and head-joint thicknesses by more than 1/8 inch.
5. For exposed bed joints and head joints of stacked bond, do not vary from a straight line by more than 1/16 inch from one masonry unit to the next.

3.4 LAYING MASONRY WALLS

A. Lay out walls in advance for accurate spacing of surface bond patterns with uniform joint thicknesses and for accurate location of openings, movement-type joints, returns, and offsets. Avoid using less-than-half-size units, particularly at corners, jambs, and, where possible, at other locations.

B. Bond Pattern for Exposed Masonry: Unless otherwise indicated, lay exposed masonry in running bond; do not use units with less-than-nominal 4-inch horizontal face dimensions at corners or jambs.

C. Lay concealed masonry with all units in a wythe in running bond or bonded by lapping not less than 2 inches. Bond and interlock each course of each wythe at corners. Do not use units with less-than-nominal 4-inch horizontal face dimensions at corners or jambs.

D. Stopping and Resuming Work: Stop work by stepping back units in each course from those in course below; do not tooth. When resuming work, clean masonry surfaces that are to receive mortar, remove loose masonry units and mortar, and wet brick if required before laying fresh masonry.

E. Built-in Work: As construction progresses, build in items specified in this and other Sections. Fill in solidly with masonry around built-in items.

F. Fill space between steel frames and masonry solidly with mortar unless otherwise indicated.

G. Where built-in items are to be embedded in cores of hollow masonry units, place a layer of metal lath, wire mesh, or plastic mesh in the joint below and rod mortar or grout into core.

H. Fill cores in hollow CMUs with grout 24 inches under bearing plates, beams, lintels, posts, and similar items unless otherwise indicated.

I. Build nonload-bearing interior partitions full height of story to underside of solid floor or roof structure above unless otherwise indicated.
1. Install compressible filler in joint between top of partition and underside of structure above.
2. Fasten top-of-wall wind clips to structure above and build wall into clips. Grout cells of CMUs solidly and space clips as indicated on Drawings.
2. At fire-rated partitions, treat joint between top of partition and underside of structure above to comply with Division 07 Section "Fire-Resistive Joint Systems."

3.5 MORTAR BEDDING AND JOINTING

A. Lay hollow CMUs as follows:
 1. Bed face shells in mortar and make head joints of depth equal to bed joints.
 2. Bed webs in mortar in all courses of piers, columns, and pilasters.
 3. Bed webs in mortar in grouted masonry, including starting course on footings.
 4. Fully bed entire units, including areas under cells, at starting course on footings where cells are not grouted.
 5. Fully bed units and fill cells with mortar at anchors and ties as needed to fully embed anchors and ties in mortar.

B. Lay solid masonry units with completely filled bed and head joints; butter ends with sufficient mortar to fill head joints and shove into place. Do not deeply furrow bed joints or slush head joints.

C. Tool exposed joints slightly concave when thumbprint hard, using a jointer larger than joint thickness unless otherwise indicated.
 1. For glazed masonry units, use a nonmetallic jointer 3/4 inch or more in width.

D. Cut joints flush for masonry walls to receive plaster or other direct-applied finishes (other than paint) unless otherwise indicated.

E. Cut joints flush where indicated to receive air barriers unless otherwise indicated.

3.6 COMPOSITE MASONRY

A. Bond wythes of composite masonry together using the following method:
 a. Use adjustable (two-piece) type reinforcement.

B. Collar Joints: Solidly fill collar joints by parging face of first wythe that is laid and shoving units of other wythe into place.

C. Corners: Provide interlocking masonry unit bond in each wythe and course at corners unless otherwise indicated.
 1. Provide continuity with masonry-joint reinforcement at corners by using prefabricated L-shaped units as well as masonry bonding.
D. Intersecting and Abutting Walls: Unless vertical expansion or control joints are shown at juncture, bond walls together as follows:

1. Provide continuity with masonry-joint reinforcement by using prefabricated T-shaped units.

3.7 CAVITY WALLS

A. Bond wythes of cavity walls together using one of the following methods:

B. Keep cavities clean of mortar droppings and other materials during construction. Bevel beds away from cavity, to minimize mortar protrusions into cavity. Do not attempt to trowel or remove mortar fins protruding into cavity.

C. Apply air barrier to face of backup wythe to comply with Division 07 Section Fluid-Applied Membrane Air Barriers."

D. Installing Cavity-Wall Insulation: Place small dabs of adhesive, spaced approximately 12 inches o.c. both ways, on inside face of insulation boards, or attach with plastic fasteners designed for this purpose. Fit courses of insulation between wall ties and other confining obstructions in cavity, with edges butted tightly both ways. Press units firmly against inside wythe of masonry or other construction as shown.

1. Fill cracks and open gaps in insulation with crack sealer compatible with insulation and masonry.

3.8 ANCHORED MASONRY VENEERS

A. Anchor masonry veneers to [wall framing] [and] [concrete and masonry backup] with masonry-veneer anchors to comply with the following requirements:

1. Fasten [screw-attached anchors [through sheathing to wall framing] [and] [to concrete and masonry backup] with metal fasteners of type indicated. Use two fasteners unless anchor design only uses one fastener.
2. Embed [tie sections] [connector sections and continuous wire] in masonry joints.
3. Locate anchor sections to allow maximum vertical differential movement of ties up and down.

1. Space anchors as indicated, but not more than 16 inches (458 mm) o.c. vertically and 16 inches (610 mm) o.c. horizontally, with not less than one anchor for each 2 sq. ft. (0.2 sq. m) of wall area. Install additional anchors within 12 inches (305 mm) of openings and at intervals, not exceeding 8 inches (203 mm), around perimeter.

B. Provide not less than 2 inches (50 mm) of airspace between back of masonry veneer and face of insulation.
1. Keep airspace clean of mortar droppings and other materials during construction. Bevel beds away from airspace, to minimize mortar protrusions into airspace. Do not attempt to trowel or remove mortar fins protruding into airspace.

3.9 MASONRY-JOINT REINFORCEMENT

A. General: Install entire length of longitudinal side rods in mortar with a minimum cover of 5/8 inch on exterior side of walls, 1/2 inch elsewhere. Lap reinforcement a minimum of 6 inches.

1. Space reinforcement not more than 16 inches o.c.
2. Space reinforcement not more than 8 inches o.c. in parapet walls.
3. Provide reinforcement not more than 8 inches above and below wall openings and extending 12 inches beyond openings in addition to continuous reinforcement.

B. Interrupt joint reinforcement at control and expansion joints unless otherwise indicated.

C. Provide continuity at wall intersections by using prefabricated T-shaped units.

D. Provide continuity at corners by using prefabricated L-shaped units.

3.10 ANCHORING MASONRY TO STRUCTURAL STEEL AND CONCRETE

A. Anchor masonry to structural steel and concrete, where masonry abuts or faces structural steel or concrete, to comply with the following:

1. Provide an open space not less than 2 inch wide between masonry and structural steel or concrete unless otherwise indicated. Keep open space free of mortar and other rigid materials.
2. Anchor masonry with anchors embedded in masonry joints and attached to structure.
3. Space anchors as indicated, but not more than 16 inches o.c. vertically and 16 inches o.c. horizontally.

3.11 CONTROL AND EXPANSION JOINTS

A. General: Install control- and expansion-joint materials in unit masonry as masonry progresses. Do not allow materials to span control and expansion joints without provision to allow for in-plane wall or partition movement.

1. Locate joints as indicated on Drawings; however, locate vertical joints not more than 30 feet o.c. for expansion joints in masonry veneer and 24 feet o.c. for control joints in concrete masonry.

B. Form control joints in concrete masonry as follows:

1. Install preformed control-joint gaskets designed to fit standard sash block.
2. At steel columns construct control-joint according to Drawings.

C. Form expansion joints in brick as follows:
1. Build in compressible joint fillers where indicated.
2. Form open joint full depth of brick wythe and of width indicated, but not less than 3/8 inch for installation of sealant and backer rod specified in Division 07 Section "Joint Sealants."

D. Provide horizontal, pressure-relieving joints by either leaving an airspace or inserting a compressible filler of width required for installing sealant and backer rod specified in Division 07 Section "Joint Sealants," but not less than 3/8 inch.

1. Locate horizontal, pressure-relieving joints beneath shelf angles supporting masonry.

3.12 LINTELS

A. Install steel lintels where indicated.

B. Provide [concrete] [or] [masonry] lintels where shown and where openings of more than 12 inches for brick-size units and 24 inches for block-size units are shown without structural steel or other supporting lintels.

C. Provide minimum bearing of 8 inches at each jamb unless otherwise indicated. Jambs below bearing to be grouted solid from base of wall to underside of lintel bearing.

3.13 FLASHING, WEEP HOLES, AND CAVITY VENTS

A. General: Install embedded flashing and weep holes in masonry at shelf angles, lintels, ledges, other obstructions to downward flow of water in wall, and where indicated. Install cavity vents at shelf angles, ledges, and other obstructions to upward flow of air in cavities, and where indicated.

B. Install flashing as follows unless otherwise indicated:

1. Prepare masonry surfaces so they are smooth and free from projections that could puncture flashing. Where flashing is within mortar joint, place through-wall flashing on sloping bed of mortar and cover with mortar. Before covering with mortar, seal penetrations in flashing with adhesive, sealant, or tape as recommended by flashing manufacturer.

2. At multiwythe masonry walls, including cavity walls, extend flashing through outer wythe, turned up a minimum of 8 inches, and at least 2 inches above top of cavity drainage material.

3. At masonry-veneer walls, extend flashing through veneer, across airspace behind veneer, and up face of sheathing at least 8 inches; and at least 2 inches above the top of cavity drainage material.

4. Secure top of flashing with metal termination bar attached to wall framing 8 inches on center. Apply a continuous bead of compatible sealant to the top of the bar.

5. At lintels and shelf angles, extend flashing a minimum of 6 inches into masonry at each end. At heads and sills, extend flashing 6 inches at ends and turn up not less than 2 inches to form end dams.

6. Cut flexible flashing off flush with face of wall after masonry wall construction is completed.
C. Install weep holes in exterior wythes and veneers in head joints of first course of masonry immediately above embedded flashing.
 1. Use specified weep/cavity vent products to form weep holes.
 2. Space weep holes 24 inches o.c. unless otherwise indicated.

D. Place cavity drainage material in airspace behind veneers to comply with configuration requirements for cavity drainage material in "Miscellaneous Masonry Accessories" Article.

E. Install cavity vents in head joints in exterior wythes at 48 inches o.c., unless otherwise indicated. Use specified weep/cavity vent products to form cavity vents.

3.14 REINFORCED UNIT MASONRY INSTALLATION

A. Temporary Formwork and Shores: Construct formwork and shores as needed to support reinforced masonry elements during construction.
 1. Construct formwork to provide shape, line, and dimensions of completed masonry as indicated. Make forms sufficiently tight to prevent leakage of mortar and grout. Brace, tie, and support forms to maintain position and shape during construction and curing of reinforced masonry.
 2. Do not remove forms and shores until reinforced masonry members have hardened sufficiently to carry their own weight and that of other loads that may be placed on them during construction.

B. Placing Reinforcement: Comply with requirements in TMS 602ACI 530.1/ASCE 6.

C. Grouting: Do not place grout until entire height of masonry to be grouted has attained enough strength to resist grout pressure.
 1. Comply with requirements in TMS 602/ACI 530.1/ASCE 6 for cleanouts and for grout placement, including minimum grout space and maximum pour height.
 2. Limit height of vertical grout pours to not more than 60 inches.

3.15 FIELD QUALITY CONTROL

A. Testing and Inspecting: Owner will engage special inspectors to perform tests and inspections and prepare reports. Allow inspectors access to scaffolding and work areas, as needed to perform tests and inspections. Retesting of materials that fail to comply with specified requirements shall be done at Contractor's expense.

B. Inspections: Level 1 special inspections according to the International Building Code.
 1. Begin masonry construction only after inspectors have verified proportions of site-prepared mortar.
 2. Place grout only after inspectors have verified compliance of grout spaces and of grades, sizes, and locations of reinforcement.
 3. Place grout only after inspectors have verified proportions of site-prepared grout.
A. Testing Prior to Construction: One set of tests.

B. Testing Frequency: One set of tests for each 5000 sq. ft. of wall area or portion thereof.

A. Mortar Aggregate Ratio Test (Proportion Specification): For each mix provided, according to ASTM C 780.

B. Mortar Test (Property Specification): For each mix provided, according to ASTM C 780. Test mortar for mortar air content and compressive strength.

C. Grout Test (Compressive Strength): For each mix provided, according to ASTM C 1019.

D. Prism Test: For each type of construction provided, according to ASTM C 1314 at 28 days. Only required if mortar or grout compressive strength testing does not meet specifications.

E. Inspect reinforcing for size and placement prior to pouring of grout.

F. Inspect grout and mortar mixing operations to ensure mix proportions and procedures comply with specified requirements.

G. Inspect ties and anchors for type, spacing, and proper installation.

H. Inspect flashing and accessories for type and proper installation.

I. Inspect all aspects of masonry construction operations for compliance with specified cold weather and/or hot weather procedures.

3.16 REPAIRING, POINTING, AND CLEANING

A. Remove and replace masonry units that are loose, chipped, broken, stained, or otherwise damaged or that do not match adjoining units. Install new units to match adjoining units; install in fresh mortar, pointed to eliminate evidence of replacement.

B. Pointing: During the tooling of joints, enlarge voids and holes, except weep holes, and completely fill with mortar. Point up joints, including corners, openings, and adjacent construction, to provide a neat, uniform appearance. Prepare joints for sealant application, where indicated.

C. In-Progress Cleaning: Clean unit masonry as work progresses by dry brushing to remove mortar fins and smears before tooling joints.

D. Final Cleaning: After mortar is thoroughly set and cured, clean exposed masonry as follows:

 1. Remove large mortar particles by hand with wooden paddles and nonmetallic scrape hoes or chisels.
 2. Test cleaning methods on sample wall panel; leave one-half of panel uncleaned for comparison purposes. Obtain Architect's approval of sample cleaning before proceeding with cleaning of masonry.
3. Protect adjacent stone and nonmasonry surfaces from contact with cleaner by covering them with liquid strippable masking agent or polyethylene film and waterproof masking tape.

4. Wet wall surfaces with water before applying cleaners; remove cleaners promptly by rinsing surfaces thoroughly with clear water.

6. Clean concrete masonry by applicable cleaning methods indicated in NCMA TEK 8-4A.

7. Clean concrete masonry by cleaning method indicated in NCMA TEK 8-2A applicable to type of stain on exposed surfaces.

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Steel framing and supports for overhead doors and grilles.
 2. Shelf angles.
 3. Miscellaneous steel trim.
 B. Products furnished, but not installed, under this Section:
 1. Loose steel lintels.

1.3 PERFORMANCE REQUIREMENTS
 A. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes acting on exterior metal fabrications by preventing buckling, opening of joints, overstressing of components, failure of connections, and other detrimental effects.

1.4 SUBMITTALS, GENERAL
 A. General: Submit all action submittals and informational submittals required by this Section concurrently.

1.5 ACTION SUBMITTALS
 A. Product Data: For the following:
 1. Slotted channel framing.
 2. Metal nosings and treads.
 3. Paint products.
 B. Shop Drawings: Show fabrication and installation details for metal fabrications.
1. Include plans, elevations, sections, and details of metal fabrications and their connections. Show anchorage and accessory items.

1.6 INFORMATIONAL SUBMITTALS
A. Qualification Data: For qualified professional engineer.
B. Welding certificates.
C. Paint Compatibility Certificates: From manufacturers of topcoats applied over shop primers certifying that shop primers are compatible with topcoats.

1.7 QUALITY ASSURANCE
A. Welding Qualifications: Qualify procedures and personnel according to the following:
 1. AWS D1.1/D1.1M, "Structural Welding Code - Steel."
 2. AWS D1.2/D1.2M, "Structural Welding Code - Aluminum."

1.8 COORDINATION
A. Coordinate selection of shop primers with topcoats to be applied over them. Comply with paint and coating manufacturers' written recommendations to ensure that shop primers and topcoats are compatible with one another.

PART 2 - PRODUCTS

2.1 METALS, GENERAL
A. Metal Surfaces, General: Provide materials with smooth, flat surfaces unless otherwise indicated. For metal fabrications exposed to view in the completed Work, provide materials without seam marks, roller marks, rolled trade names, or blemishes.

2.2 FERROUS METALS
A. Steel Plates, Shapes, and Bars: ASTM A 36/A 36M.
B. Stainless-Steel Sheet, Strip, and Plate: ASTM A 240/A 240M or ASTM A 666, Type 304.
C. Stainless-Steel Bars and Shapes: ASTM A 276, Type 304.
D. Steel Tubing: ASTM A 500, cold-formed steel tubing.
E. Steel Pipe: ASTM A 53/A 53M, standard weight (Schedule 40) unless otherwise indicated.
F. Zinc-Coated Steel Wire Rope: ASTM A 741.
2.3 NONFERROUS METALS

B. Aluminum Extrusions:
 1. ASTM B 221, Alloy 6061-T6.
 2. ASTM B 221, Alloy 6063-T5.
 3. ASTM B 221, Alloy 6063-T6.

2.4 FASTENERS

A. General: Unless otherwise indicated, provide Type 304 stainless-steel fasteners for exterior use and zinc-plated fasteners with coating complying with ASTM B 633 or ASTM F 1941, Class Fe/Zn 5, at exterior walls. Select fasteners for type, grade, and class required.

B. Postinstalled Anchors: Torque-controlled expansion anchors or chemical anchors.
 1. Material for Interior Locations: Carbon-steel components zinc plated to comply with ASTM B 633 or ASTM F 1941 (ASTM F 1941M), Class Fe/Zn 5 unless otherwise indicated.
 2. Chemical Anchor Adhesives: Heavy duty, two component injectable adhesive designed to be dispensed using double chamber gun with mixing nozzle. Adhesives in capsule form will not be accepted.
 a. Products for anchoring into concrete: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 1) Hilti, Inc.; Hit-HY 200; Hit-Ice.
 2) ITW Redhead; Epcon C6; Epcon A7.
 3) Powers Fasteners, Inc.; AC100+ Gold.
 b. Products for anchoring into masonry: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 1) Hilti, Inc.; Hit-HY 70.
 2) ITW Redhead; Epcon C6; Epcon A7.
 3) Powers Fasteners, Inc.; AC100+ Gold.

2.5 MISCELLANEOUS MATERIALS

A. Welding Rods and Bare Electrodes: Select according to AWS specifications for metal alloy welded.

B. Alkyd Primer: Modified-alkyd primer compatible with topcoat.
 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

C. Urethane Primer: Moisture-cured, aromatic urethane primer compatible with topcoat.
 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

D. Zinc-Rich Primer: Zinc-rich, aromatic urethane primer compatible with topcoat.
 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

E. Galvanizing Repair Paint: High-zinc-dust-content paint complying with SSPC-Paint 20 and compatible with paints specified to be used over it.

F. Nonshrink, Nonmetallic Grout: Factory-packaged, nonstaining, noncorrosive, nongaseous grout complying with ASTM C 1107. Provide grout specifically recommended by manufacturer for interior and exterior applications.

G. Concrete: Comply with requirements in Division 03 Section "Miscellaneous Cast-in-Place Concrete" for normal-weight, air-entrained, concrete with a minimum 28-day compressive strength of 3000 psi.

H. Isolation Barrier membrane: Self-adhering, high-temperature sheet, minimum 15 mils thick, consisting of cross-laminated polyethylene-film top surface laminated to layer of butyl adhesive, with release-liner backing; cold applied, in roll width to match or exceed width of area to be protected. Provide primer when recommended by membrane manufacturer.
 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Grace Construction Products, a unit of W. R. Grace & Co.; “Vycor Pro”.
 b. Equivalents meeting requirements of specified products.

2.6 FABRICATION, GENERAL

A. Shop Assembly: Preassemble items in the shop to greatest extent possible. Disassemble units only as necessary for shipping and handling limitations. Use connections that maintain structural value of joined pieces. Clearly mark units for reassembly and coordinated installation.

B. Cut, drill, and punch metals cleanly and accurately. Remove burrs and ease edges to a radius of approximately 1/32 inch unless otherwise indicated. Remove sharp or rough areas on exposed surfaces.

C. Form bent-metal corners to smallest radius possible without causing grain separation or otherwise impairing work.

D. Form exposed work with accurate angles and surfaces and straight edges.
E. Weld corners and seams continuously to comply with the following:

1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
2. Obtain fusion without undercut or overlap.
3. Remove welding flux immediately.
4. At exposed connections, finish exposed welds and surfaces smooth and blended so no roughness shows after finishing.

F. Form exposed connections with hairline joints, flush and smooth, using concealed fasteners or welds where possible. Where exposed fasteners are required, use Phillips flat-head (countersunk) fasteners unless otherwise indicated. Locate joints where least conspicuous.

G. Fabricate seams and other connections that will be exposed to weather in a manner to exclude water. Provide weep holes where water may accumulate.

H. Cut, reinforce, drill, and tap metal fabrications as indicated to receive finish hardware, screws, and similar items.

I. Provide for anchorage of type indicated; coordinate with supporting structure. Space anchoring devices to secure metal fabrications rigidly in place and to support indicated loads.

1. Where units are indicated to be cast into concrete or built into masonry, equip with integrally welded steel strap anchors, 1/8 by 1-1/2 inches, with a minimum 6-inch embedment and 2-inch hook, not less than 8 inches from ends and corners of units and 24 inches o.c., unless otherwise indicated.

2.7 MISCELLANEOUS FRAMING AND SUPPORTS

A. General: Provide steel framing and supports not specified in other Sections as needed to complete the Work.

B. Fabricate units from steel shapes, plates, and bars of welded construction unless otherwise indicated. Fabricate to sizes, shapes, and profiles indicated and as necessary to receive adjacent construction.

1. Fabricate units from slotted channel framing where indicated.
2. Furnish inserts for units installed after concrete is placed.

C. Fabricate supports for operable partitions from continuous steel beams of sizes indicated with attached bearing plates, anchors, and braces as recommended by partition manufacturer. Drill or punch bottom flanges of beams to receive partition track hanger rods; locate holes where indicated on operable partition Shop Drawings.

2.8 SHELF ANGLES

A. Fabricate shelf angles from steel angles of sizes indicated and for attachment to concrete framing. Provide horizontally slotted holes to receive 3/4-inch bolts, spaced not more than 6 inches from ends and 24 inches o.c., unless otherwise indicated.
1. Provide mitered and welded units at corners.
2. Provide open joints in shelf angles at expansion and control joints. Make open joint approximately 2 inches larger than expansion or control joint.

B. For cavity walls, provide vertical channel brackets to support angles from backup masonry and concrete.

C. Furnish wedge-type concrete inserts, complete with fasteners, to attach shelf angles to cast-in-place concrete.

2.9 MISCELLANEOUS STEEL TRIM

A. Unless otherwise indicated, fabricate units from steel shapes, plates, and bars of profiles shown with continuously welded joints and smooth exposed edges. Miter corners and use concealed field splices where possible.

B. Provide cutouts, fittings, and anchorages as needed to coordinate assembly and installation with other work.

1. Provide with integrally welded steel strap anchors for embedding in concrete or masonry construction.

2.10 LOOSE STEEL LINTELS

A. Fabricate loose steel lintels from steel angles and shapes of size indicated for openings and recesses in masonry walls and partitions at locations indicated. Fabricate in single lengths for each opening unless otherwise indicated. Weld adjoining members together to form a single unit where indicated.

B. Size loose lintels to provide bearing length at each side of openings equal to 1/12 of clear span but not less than 8 inches unless otherwise indicated.

2.11 FINISHES, GENERAL

A. Comply with NAAMM’s "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.

B. Finish metal fabrications after assembly.

C. Finish exposed surfaces to remove tool and die marks and stretch lines, and to blend into surrounding surface.

2.12 STEEL AND IRON FINISHES

A. Galvanizing: Hot-dip galvanize items as indicated to comply with ASTM A 153/A 153M for steel and iron hardware and with ASTM A 123/A 123M for other steel and iron products.

1. Do not quench or apply post galvanizing treatments that might interfere with paint adhesion.
B. Shop prime iron and steel items not indicated to be galvanized unless they are to be embedded in concrete, sprayed-on fireproofing, or masonry, or unless otherwise indicated.
 1. Metal Fabrications: For all iron and steel items (except those noted below), shop prime with alkyd primer.
 2. Exterior Wall Metal Fabrications: For all iron and steel items occurring in exterior walls, shop prime with urethane primer.

C. Surface Preparation: Clean surfaces to be painted. Remove loose rust and mill scale and spatter, slag, or flux deposits. Prepare surfaces according to the following specifications and standards:
 1. SSPC-SP 3, "Power Tool Cleaning," unless noted otherwise below.

D. Shop Priming: Apply shop primer to comply with SSPC-PA 1, "Paint Application Specification No. 1: Shop, Field, and Maintenance Painting of Steel," for shop painting.
 1. Stripe paint corners, crevices, bolts, welds, and sharp edges.

2.13 ALUMINUM FINISHES
A. Finish designations prefixed by AA comply with the system established by the Aluminum Association for designating aluminum finishes.
B. As-Fabricated Finish: AA-M10 (Mechanical Finish: as fabricated, unspecified).

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL
A. Beginning installation constitutes Contractor’s acceptance of substrates and conditions.
B. Cutting, Fitting, and Placement: Perform cutting, drilling, and fitting required for installing metal fabrications. Set metal fabrications accurately in location, alignment, and elevation; with edges and surfaces level, plumb, true, and free of rack; and measured from established lines and levels.
C. Fit exposed connections accurately together to form hairline joints. Weld connections that are not to be left as exposed joints but cannot be shop welded because of shipping size limitations. Do not weld, cut, or abrade surfaces of exterior units that have been hot-dip galvanized after fabrication and are for bolted or screwed field connections.
D. Field Welding: Comply with the following requirements:
1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
2. Obtain fusion without undercut or overlap.
3. Remove welding flux immediately.
4. At exposed connections, finish exposed welds and surfaces smooth and blended so no roughness shows after finishing and contour of welded surface matches that of adjacent surface.

E. Fastening to In-Place Construction: Provide anchorage devices and fasteners where metal fabrications are required to be fastened to in-place construction. Provide threaded fasteners for use with concrete and masonry inserts, toggle bolts, through bolts, lag screws, wood screws, and other connectors.

F. Provide temporary bracing or anchors in formwork for items that are to be built into concrete, masonry, or similar construction.

G. Corrosion Protection: Coat concealed surfaces of aluminum that will come into contact with grout, concrete, masonry, wood, or dissimilar metals with the following:

3.2 INSTALLING BEARING AND LEVELING PLATES

B. Set bearing and leveling plates on wedges, shims, or leveling nuts. After bearing members have been positioned and plumbed, tighten anchor bolts. Do not remove wedges or shims but, if protruding, cut off flush with edge of bearing plate before packing with grout.
 1. Use nonshrink, nonmetallic grout in exposed locations unless otherwise indicated.
 2. Pack grout solidly between bearing surfaces and plates to ensure that no voids remain.

3.3 ADJUSTING AND CLEANING

A. Touchup Painting: Immediately after erection, clean field welds, bolted connections, and abraded areas. Paint uncoated and abraded areas with the same material as used for shop painting to comply with SSPC-PA 1 for touching up shop-painted surfaces.
 1. Apply by brush or spray to provide a minimum 2.0-mil dry film thickness.

B. Galvanized Surfaces: Clean field welds, bolted connections, and abraded areas and repair galvanizing to comply with ASTM A 780.

END OF SECTION
SECTION 07 84 13

PENETRATION FIRESTOPPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Penetrations in fire-resistance-rated walls.
 2. Penetrations in horizontal assemblies.

1.3 SUBMITTALS, GENERAL

A. General: Submit all action submittals (except Samples for Verification) and informational submittals required by this Section concurrently.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Product Schedule: For each penetration firestopping system. Include location and design designation of qualified testing and inspecting agency.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified Installer.

B. Installer Certificates: From Installer indicating penetration firestopping has been installed in compliance with requirements and manufacturer’s written recommendations.

C. Product Test Reports: Based on evaluation of comprehensive tests performed by a qualified testing agency, for penetration firestopping.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: A firm experienced in installing penetration firestopping similar in material, design, and extent to that indicated for this Project, whose work has resulted in
construction with a record of successful performance. Qualifications include having the necessary experience, staff, and training to install manufacturer's products per specified requirements. Manufacturer's willingness to sell its penetration firestopping products to Contractor or to Installer engaged by Contractor does not in itself confer qualification on buyer.

B. Fire-Test-Response Characteristics: Penetration firestopping shall comply with the following requirements:

1. Penetration firestopping tests are performed by a qualified testing agency acceptable to authorities having jurisdiction.
2. Penetration firestopping is identical to those tested per testing standard referenced in "Penetration Firestopping" Article. Provide rated systems complying with the following requirements:
 a. Penetration firestopping products bear classification marking of qualified testing and inspecting agency.
 b. Classification markings on penetration firestopping correspond to designations listed by the following:
 1) UL in its "Fire Resistance Directory."

C. Preinstallation Conference: Conduct conference at Project site.

1.7 PROJECT CONDITIONS

A. Environmental Limitations: Do not install penetration firestopping when ambient or substrate temperatures are outside limits permitted by penetration firestopping manufacturers or when substrates are wet because of rain, frost, condensation, or other causes.

B. Install and cure penetration firestopping per manufacturer's written instructions using natural means of ventilations or, where this is inadequate, forced-air circulation.

1.8 COORDINATION

A. Coordinate construction of openings and penetrating items to ensure that penetration firestopping is installed according to specified requirements.

B. Coordinate sizing of sleeves, openings, core-drilled holes, or cut openings to accommodate penetration firestopping.

C. Notify Owner's testing agency at least seven days in advance of penetration firestopping installations; confirm dates and times on day preceding each series of installations.
2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

2. Grace Construction Products.
3. Hilti, Inc.
5. NUCO Inc.
6. RectorSeal Corporation.
7. Specified Technologies Inc.
8. 3M Fire Protection Products.

2.2 PENETRATION FIRESTOPPING

A. Provide penetration firestopping that is produced and installed to resist spread of fire according to requirements indicated, resist passage of smoke and other gases, and maintain original fire-resistance rating of construction penetrated. Penetration firestopping systems shall be compatible with one another, with the substrates forming openings, and with penetrating items if any.

B. Penetrations in Fire-Resistance-Rated Walls: Provide penetration firestopping with ratings determined per ASTM E 814 or UL 1479, based on testing at a positive pressure differential of 0.01-inch wg.

1. Fire-resistance-rated walls include fire walls, fire-barrier walls, smoke-barrier walls, and fire partitions, as indicated.
2. F-Rating: Not less than the fire-resistance rating of constructions penetrated.

C. Penetrations in Horizontal Assemblies: Provide penetration firestopping with ratings determined per ASTM E 814 or UL 1479, based on testing at a positive pressure differential of 0.01-inch wg.

1. Horizontal assemblies include floors, floor/ceiling assemblies, and ceiling membranes of roof/ceiling assemblies, as indicated.
2. F-Rating: At least 1 hour, but not less than the fire-resistance rating of constructions penetrated.
3. T-Rating: At least 1 hour, but not less than the fire-resistance rating of constructions penetrated except for floor penetrations within the cavity of a wall.

D. Penetrations in Smoke Barriers: Provide penetration firestopping with ratings determined per UL 1479.

1. L-Rating: Not exceeding 5.0 cfm/sq. ft. of penetration opening at 0.30-inch wg at both ambient and elevated temperatures.
E. Exposed Penetration Firestopping: Provide products with flame-spread and smoke-developed indexes of less than 25 and 450, respectively, as determined per ASTM E 84.

F. Low-Emitting Materials: Penetration firestopping sealants and sealant primers shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

G. Accessories: Provide components for each penetration firestopping system that are needed to install fill materials and to maintain ratings required. Use only those components specified by penetration firestopping manufacturer and approved by qualified testing and inspecting agency for firestopping indicated.

1. Permanent forming/damming/backing materials, including the following:
 a. Slag-wool-fiber or rock-wool-fiber insulation.
 b. Sealants used in combination with other forming/damming/backing materials to prevent leakage of fill materials in liquid state.
 c. Fire-rated form board.
 d. Fillers for sealants.

2. Temporary forming materials.
5. Steel sleeves.

2.3 FILL MATERIALS

A. Cast-in-Place Firestop Devices: Factory-assembled devices for use in cast-in-place concrete floors and consisting of an outer metallic sleeve lined with an intumescent strip, a radial extended flange attached to one end of the sleeve for fastening to concrete formwork, and a neoprene gasket.

B. Latex Sealants: Single-component latex formulations that do not re-emulsify after cure during exposure to moisture.

C. Firestop Devices: Factory-assembled collars formed from galvanized steel and lined with intumescent material sized to fit specific diameter of penetrant.

D. Intumescent Composite Sheets: Rigid panels consisting of aluminum-foil-faced elastomeric sheet bonded to galvanized-steel sheet.

E. Intumescent Putties: Nonhardening dielectric, water-resistant putties containing no solvents, inorganic fibers, or silicone compounds.

F. Intumescent Wrap Strips: Single-component intumescent elastomeric sheets with aluminum foil on one side.
G. Mortars: Prepackaged dry mixes consisting of a blend of inorganic binders, hydraulic cement, fillers, and lightweight aggregate formulated for mixing with water at Project site to form a nonshrinking, homogeneous mortar.

H. Pillows/Bags: Reusable heat-expanding pillows/bags consisting of glass-fiber cloth cases filled with a combination of mineral-fiber, water-insoluble expansion agents, and fire-retardant additives. Where exposed, cover openings with steel-reinforcing wire mesh to protect pillows/bags from being easily removed.

I. Silicone Foams: Multicomponent, silicone-based liquid elastomers that, when mixed, expand and cure in place to produce a flexible, nonshrinking foam.

J. Silicone Sealants: Single-component, silicone-based, neutral-curing elastomeric sealants of grade indicated below:

1. Grade: Pourable (self-leveling) formulation for openings in floors and other horizontal surfaces, and nonsag formulation for openings in vertical and sloped surfaces, unless indicated firestopping limits use of nonsag grade for both opening conditions.

2.4 MIXING

A. For those products requiring mixing before application, comply with penetration firestopping manufacturer's written instructions for accurate proportioning of materials, water (if required), type of mixing equipment, selection of mixer speeds, mixing containers, mixing time, and other items or procedures needed to produce products of uniform quality with optimum performance characteristics for application indicated.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions, with Installer present, for compliance with requirements for opening configurations, penetrating items, substrates, and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

C. Beginning installation constitutes Contractor’s acceptance of substrates and conditions.

3.2 PREPARATION

A. Surface Cleaning: Clean out openings immediately before installing penetration firestopping to comply with manufacturer's written instructions and with the following requirements:

1. Remove from surfaces of opening substrates and from penetrating items foreign materials that could interfere with adhesion of penetration firestopping.
2. Clean opening substrates and penetrating items to produce clean, sound surfaces capable of developing optimum bond with penetration firestopping. Remove loose particles remaining from cleaning operation.

3. Remove laitance and form-release agents from concrete.

B. Priming: Prime substrates where recommended in writing by manufacturer using that manufacturer's recommended products and methods. Confine primers to areas of bond; do not allow spillage and migration onto exposed surfaces.

C. Masking Tape: Use masking tape to prevent penetration firestopping from contacting adjoining surfaces that will remain exposed on completion of the Work and that would otherwise be permanently stained or damaged by such contact or by cleaning methods used to remove stains. Remove tape as soon as possible without disturbing firestopping's seal with substrates.

3.3 INSTALLATION

A. General: Install penetration firestopping to comply with manufacturer's written installation instructions and published drawings for products and applications indicated.

B. Install forming materials and other accessories of types required to support fill materials during their application and in the position needed to produce cross-sectional shapes and depths required to achieve fire ratings indicated.

1. After installing fill materials and allowing them to fully cure, remove combustible forming materials and other accessories not indicated as permanent components of firestopping.

C. Install fill materials for firestopping by proven techniques to produce the following results:

1. Fill voids and cavities formed by openings, forming materials, accessories, and penetrating items as required to achieve fire-resistance ratings indicated.

2. Apply materials so they contact and adhere to substrates formed by openings and penetrating items.

3. For fill materials that will remain exposed after completing the Work, finish to produce smooth, uniform surfaces that are flush with adjoining finishes.

3.4 IDENTIFICATION

A. Identify penetration firestopping with preprinted metal or plastic labels. Attach labels permanently to surfaces adjacent to and within 6 inches of firestopping edge so labels will be visible to anyone seeking to remove penetrating items or firestopping. Use mechanical fasteners or self-adhering-type labels with adhesives capable of permanently bonding labels to surfaces on which labels are placed. Include the following information on labels:

1. The words "Warning - Penetration Firestopping - Do Not Disturb. Notify Building Management of Any Damage."

2. Contractor's name, address, and phone number.

3. Designation of applicable testing and inspecting agency.

4. Date of installation.
3.5 FIELD QUALITY CONTROL

A. Owner will engage a qualified testing agency to perform tests and inspections.

B. Where deficiencies are found or penetration firestopping is damaged or removed because of testing, repair or replace penetration firestopping to comply with requirements.

C. Proceed with enclosing penetration firestopping with other construction only after inspection reports are issued and installations comply with requirements.

3.6 CLEANING AND PROTECTION

A. Clean off excess fill materials adjacent to openings as the Work progresses by methods and with cleaning materials that are approved in writing by penetration firestopping manufacturers and that do not damage materials in which openings occur.

B. Provide final protection and maintain conditions during and after installation that ensure that penetration firestopping is without damage or deterioration at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, immediately cut out and remove damaged or deteriorated penetration firestopping and install new materials to produce systems complying with specified requirements.

3.7 PENETRATION FIRESTOPPING SCHEDULE

A. Where UL-classified systems are indicated, they refer to system numbers in UL's "Fire Resistance Directory" under product Category XHEZ.

B. For each location where a fire-resistance-rated floor or wall assembly is penetrated, provide a UL-listed penetration firestopping system selected from the applicable UL number range listed in the following Schedule that complies with this Section and that is suitable for the penetration conditions indicated for the Project.
PENETRATION FIRESTOPPING SCHEDULE

FIRESTOPPING SYSTEMS ARE LISTED USING THE ALPHA-ALPHA-NUMERIC IDENTIFICATION SYSTEM PUBLISHED IN UL’S FIRE RESISTANCE DIRECTORY, VOLS. 2A - 2B

<table>
<thead>
<tr>
<th>CONSTRUCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLOOR PENETRATION SYSTEMS</td>
</tr>
<tr>
<td>(FIRST ALPHA COMPONENT = C OR F)</td>
</tr>
<tr>
<td>WALL PENETRATION SYSTEMS</td>
</tr>
<tr>
<td>(FIRST ALPHA COMPONENT = C OR W)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TYPE OF PENETRANT</th>
<th>CONCRETE FLOORS WITH A MINIMUM THICKNESS LESS THAN OR EQUAL TO 5 INCHES</th>
<th>CONCRETE FLOOR WITH A MINIMUM THICKNESS OF MORE THAN 5 INCHES</th>
<th>FLOOR-CEILING ASSEMBLIES CONSISTING OF CONCRETE WITH MEMBRANE PROTECTION</th>
<th>FRAMED FLOORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO PENETRATING ITEMS</td>
<td>C-AJ-0001-0999 or F-A-0001-0999</td>
<td>C-BJ-0001-0999 or F-B-0001-0999</td>
<td>F-C-1001-1999</td>
<td>C-AJ-0001-0999 or F-A-0001-0999</td>
</tr>
<tr>
<td>NONMETALLIC PIPE, CONDUIT, OR TUBING</td>
<td>C-AJ-2001-2999 or F-A-2001-2999</td>
<td>C-BK-2001-2999 or F-B-2001-2999</td>
<td>F-C-3001-3999</td>
<td>F-E-2001-2999</td>
</tr>
<tr>
<td>ELECTRICAL CABLES</td>
<td>C-AJ-3001-3999 or F-A-3001-3999</td>
<td>C-BK-3001-3999 or F-B-3001-3999</td>
<td>F-C-4001-4999</td>
<td>F-E-3001-3999</td>
</tr>
<tr>
<td>CABLE TRAYS WITH ELECTRICAL CABLES</td>
<td>C-AJ-4001-4999 or F-A-4001-4999</td>
<td>C-BJ-4001-4999 or F-B-4001-4999</td>
<td>F-C-5001-5999</td>
<td>F-E-4001-4999</td>
</tr>
<tr>
<td>INSULATED PIPES</td>
<td>C-AJ-5001-5999 or F-A-5001-5999</td>
<td>C-BJ-5001-5999 or F-B-5001-5999</td>
<td>F-C-6001-6999</td>
<td>F-E-5001-5999</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MISCELLANEOUS ELECRICAL PENETRANTS</th>
<th>MISCELLANEOUS MECHANICAL PENETRANTS</th>
<th>GROUPINGS OF PENETRATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-AJ-6001-6999</td>
<td>C-AJ-7001-7999</td>
<td>C-AJ-8001-8999</td>
</tr>
<tr>
<td>or</td>
<td>or</td>
<td>or</td>
</tr>
<tr>
<td>C-BJ-6001-6999</td>
<td>C-BJ-7001-7999</td>
<td>C-BJ-8001-8999</td>
</tr>
<tr>
<td>F-C-7001-7999</td>
<td>F-B-7001-7999</td>
<td>W-C-8001-8999</td>
</tr>
<tr>
<td>F-E-7001-7999</td>
<td>F-E-7001-7999</td>
<td>W-N-8001-8999</td>
</tr>
<tr>
<td>W-L-6001-6999</td>
<td>W-L-7001-7999</td>
<td>W-L-8001-8999</td>
</tr>
<tr>
<td>or</td>
<td>or</td>
<td>or</td>
</tr>
</tbody>
</table>

END OF SECTION
PAGE

INTENTIONALLY LEFT

BLANK
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Silicone joint sealants.
2. Urethane joint sealants.
3. Immersible joint sealants.
4. Latex joint sealants.
5. Preformed joint sealants.

1.3 SUBMITTALS, GENERAL

A. General: Submit all action submittals (except Samples for Verification) and informational submittals required by this Section concurrently.

1.4 ACTION SUBMITTALS

A. Product Data: For each joint-sealant product indicated.

2. Mildew-resistant, single-component, acid-curing silicone joint sealant.
5. Multicomponent, pourable, traffic grade, urethane joint sealant.
7. Immersible joint sealant.
8. Latex joint sealant.
9. Preformed foam joint sealant.
10. Cylindrical sealant backings.
12. Primer.
13. Cleaners for nonporous surfaces.
B. LEED Submittals:

1. Product Data for Credit IEQ 4.1: For sealants and sealant primers used inside the weatherproofing system, documentation including printed statement of VOC content.
2. Laboratory Test Reports for Credit IEQ 4: For sealants and sealant primers used inside the weatherproofing system, documentation indicating that products comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

C. Samples for Initial Selection: Manufacturer's color charts consisting of strips of cured sealants showing the full range of colors available for each product exposed to view.

D. Samples for Verification: For each kind and color of joint sealant required, provide Samples with joint sealants in 1/2-inch-wide joints formed between two 6-inch-long strips of material matching the appearance of exposed surfaces adjacent to joint sealants.

E. Joint-Sealant Schedule: Include the following information:

1. Joint-sealant application, joint location, and designation.
2. Joint-sealant manufacturer and product name.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified Installer.

B. Product Certificates: For each kind of joint sealant and accessory, from manufacturer.

C. Product Test Reports: Based on evaluation of comprehensive tests performed by a qualified testing agency, indicating that sealants comply with requirements.

1. Materials forming joint substrates and joint-sealant backings have been tested for compatibility and adhesion with joint sealants.
2. Interpretation of test results and written recommendations for primers and substrate preparation needed for adhesion.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: Manufacturer's authorized representative who is trained and approved for installation of units required for this Project.

B. Source Limitations: Obtain each kind of joint sealant from single source from single manufacturer.

C. Mockups: Install sealant in mockups of assemblies specified in other Sections that are indicated to receive joint sealants specified in this Section. Use materials and installation methods specified in this Section.

D. Preinstallation Conference: Conduct conference at Project site.
1.7 PROJECT CONDITIONS

A. Do not proceed with installation of joint sealants under the following conditions:

1. When ambient and substrate temperature conditions are outside limits permitted by joint-sealant manufacturer or are below 40 deg F.
2. When joint substrates are wet.
3. Where joint widths are less than those allowed by joint-sealant manufacturer for applications indicated.
4. Where contaminants capable of interfering with adhesion have not yet been removed from joint substrates.

1.8 WARRANTY

A. Special Installer's Warranty: Installer agrees to repair or replace joint sealants that do not comply with performance and other requirements specified in this Section within specified warranty period.

1. Warranty Period: [Two] <Insert number> years from date of Substantial Completion.

B. Special Manufacturer's Warranty: Manufacturer agrees to furnish joint sealants to repair or replace those joint sealants that do not comply with performance and other requirements specified in this Section within specified warranty period.

1. Warranty Period: [Five] <Insert number> years from date of Substantial Completion.

C. Special warranties specified in this article exclude deterioration or failure of joint sealants from the following:

1. Movement of the structure caused by stresses on the sealant exceeding sealant manufacturer's written specifications for sealant elongation and compression.
2. Disintegration of joint substrates from causes exceeding design specifications.
3. Mechanical damage caused by individuals, tools, or other outside agents.
4. Changes in sealant appearance caused by accumulation of dirt or other atmospheric contaminants.

PART 2 - PRODUCTS

2.1 MATERIALS, GENERAL

A. Compatibility: Provide joint sealants, backings, and other related materials that are compatible with one another and with joint substrates under conditions of service and application, as demonstrated by joint-sealant manufacturer, based on testing and field experience.

B. VOC Content of Interior Sealants: Sealants and sealant primers used inside the weatherproofing system shall comply with the following limits for VOC content when calculated according to 40 CFR 59, Subpart D (EPA Method 24):
1. Architectural Sealants: 250 g/L.
2. Sealant Primers for Nonporous Substrates: 250 g/L.
3. Sealant Primers for Porous Substrates: 775 g/L.

C. Low-Emitting Interior Sealants: Sealants and sealant primers used inside the weatherproofing system shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

D. Liquid-Applied Joint Sealants: Comply with ASTM C 920 and other requirements indicated for each liquid-applied joint sealant specified, including those referencing ASTM C 920 classifications for type, grade, class, and uses related to exposure and joint substrates.

E. Stain-Test-Response Characteristics: Where sealants are specified to be nonstaining to porous substrates, provide products that have undergone testing according to ASTM C 1248 and have not stained porous joint substrates indicated for Project.

F. Suitability for Contact with Food: Where sealants are indicated for joints that will come in repeated contact with food, provide products that comply with 21 CFR 177.2600.

G. Colors of Exposed Joint Sealants: As selected by Architect from manufacturer's full range.

2.2 SILICONE JOINT SEALANTS

A. Single-Component, Nonsag, Neutral-Curing Silicone Joint Sealant: ASTM C 920, Type S, Grade NS, Class 100/50, for Use NT.

1. **Products**: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Dow Corning Corporation; 790.
 b. GE Advanced Materials - Silicones; SilPruf LM SCS2700.
 c. Pecora Corporation; 890.
 d. Tremco Incorporated; Spectrem 1.

B. Mildew-Resistant, Single-Component, Acid-Curing Silicone Joint Sealant: ASTM C 920, Type S, Grade NS, Class 25, for Use NT.

1. **Products**: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. BASF Building Systems; Omniplus.
 b. Dow Corning Corporation; 786 Mildew Resistant.
 c. GE Advanced Materials - Silicones; Sanitary SCS1700.

2.3 URETHANE JOINT SEALANTS

A. Single-Component, Nonsag, Urethane Joint Sealant: ASTM C 920, Type S, Grade NS, Class 25, for Use NT.
1. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 a. **BASF Building Systems:** Sonolastic NP1.
 b. **Pecora Corporation:** Dynatrol I-XL.
 c. **Sika Corporation, Construction Products Division:** Sikaflex - 1a.
 d. **Tremco Incorporated:** Dymonic.

B. **Single-Component, Pourable, Traffic-Grade, Urethane Joint Sealant:** ASTM C 920, Type S, Grade P, Class 25, for Use T.

 1. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 a. **BASF Building Systems:** Sonolastic SL 1.
 b. **Bostik, Inc.:** Chem-Calk 950.
 c. **Pecora Corporation:** Urexpan NR-201.
 d. **Tremco Incorporated:** Vulkem 45.

C. **Multicomponent, Pourable, Traffic-Grade, Urethane Joint Sealant:** ASTM C 920, Type M, Grade P, Class 25, for Use T.

 1. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 a. **BASF Building Systems:** Sonolastic SL 2.
 c. **Pecora Corporation:** Dynatrol II-SG.
 d. **Tremco Incorporated:** THC-900/901.

D. **Multicomponent, Nonsag, Urethane Joint Sealant:** ASTM C 920, Type M, Grade NS, Class 25, for Use NT.

 1. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 a. **BASF Building Systems:** Sonolastic NP 2.
 b. **Pecora Corporation:** Dynatred.
 c. **Sika Corporation, Construction Products Division:** Sikaflex - 2c NS.
 d. **Tremco Incorporated:** Vulkem 227.

2.4 IMMERSIBLE JOINT SEALANTS

A. **Polysulfide, Immersible, M, NS, 25, NT, I:** Immersible, multicomponent, nonsag, plus 25 percent and minus 25 percent movement capability, nontraffic-use, polysulfide joint sealant; ASTM C 920, Type M, Grade NS, Class 25, Uses NT and I.

 1. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
2.5 LATEX JOINT SEALANTS

A. Latex Joint Sealant: Acrylic latex or siliconized acrylic latex, ASTM C 834, Type OP, Grade NF.

1. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 a. **BASF Building Systems;** Sonolac.
 b. **Bostik, Inc.;** Chem-Calk 600.
 c. **Pecora Corporation;** AC-20+.
 d. **Tremco Incorporated;** Tremflex 834.

2.6 PREFORMED JOINT SEALANTS

A. Preformed Foam Joint Sealant: Manufacturer's standard preformed, precompressed, open-cell foam sealant manufactured from urethane foam with minimum density of 10 lb/cu. ft. and impregnated with a nondrying, water-repellent agent. Factory produce in precompressed sizes in roll or stick form to fit joint widths indicated; coated on one side with a pressure-sensitive adhesive and covered with protective wrapping.

1. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 a. **Dayton Superior Specialty Chemicals;** Polytite Standard.
 b. **EMSEAL Joint Systems, Ltd;** Emseal 25V.
 c. **Sandell Manufacturing Co., Inc.;** Polyseal.

2.7 JOINT SEALANT BACKING

A. General: Provide sealant backings of material that are nonstaining; are compatible with joint substrates, sealants, primers, and other joint fillers; and are approved for applications indicated by sealant manufacturer based on field experience and laboratory testing.

B. Cylindrical Sealant Backings: ASTM C 1330, Type C (closed-cell material with a surface skin) or Type O (open-cell material), and of size and density to control sealant depth and otherwise contribute to producing optimum sealant performance.

C. Bond-Breaker Tape: Polyethylene tape or other plastic tape recommended by sealant manufacturer for preventing sealant from adhering to rigid, inflexible joint-filler materials or joint surfaces at back of joint. Provide self-adhesive tape where applicable.
2.8 MISCELLANEOUS MATERIALS

A. Primer: Material recommended by joint-sealant manufacturer where required for adhesion of sealant to joint substrates indicated, as determined from preconstruction joint-sealant-substrate tests and field tests.

B. Cleaners for Nonporous Surfaces: Chemical cleaners acceptable to manufacturers of sealants and sealant backing materials, free of oily residues or other substances capable of staining or harming joint substrates and adjacent nonporous surfaces in any way, and formulated to promote optimum adhesion of sealants to joint substrates.

C. Masking Tape: Nonstaining, nonabsorbent material compatible with joint sealants and surfaces adjacent to joints.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine joints indicated to receive joint sealants, with Installer present, for compliance with requirements for joint configuration, installation tolerances, and other conditions affecting joint-sealant performance.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

C. Beginning installation constitutes Contractor’s acceptance of substrates and conditions.

3.2 PREPARATION

A. Surface Cleaning of Joints: Clean out joints immediately before installing joint sealants to comply with joint-sealant manufacturer's written instructions and the following requirements:

1. Remove all foreign material from joint substrates that could interfere with adhesion of joint sealant, including dust, paints (except for permanent, protective coatings tested and approved for sealant adhesion and compatibility by sealant manufacturer), old joint sealants, oil, grease, waterproofing, water repellents, water, surface dirt, and frost.

2. Clean porous joint substrate surfaces by brushing, grinding, mechanical abrading, or a combination of these methods to produce a clean, sound substrate capable of developing optimum bond with joint sealants. Remove loose particles remaining after cleaning operations above by vacuuming or blowing out joints with oil-free compressed air.

3. Remove laitance and form-release agents from concrete.

4. Clean nonporous joint substrate surfaces with chemical cleaners or other means that do not stain, harm substrates, or leave residues capable of interfering with adhesion of joint sealants.

B. Joint Priming: Prime joint substrates where recommended by joint-sealant manufacturer or as indicated by preconstruction joint-sealant-substrate tests or prior experience. Apply primer to comply with joint-sealant manufacturer's written instructions. Confine primers to areas of joint-sealant bond; do not allow spillage or migration onto adjoining surfaces.
C. Masking Tape: Use masking tape where required to prevent contact of sealant or primer with adjoining surfaces that otherwise would be permanently stained or damaged by such contact or by cleaning methods required to remove sealant smears. Remove tape immediately after tooling without disturbing joint seal.

3.3 INSTALLATION OF JOINT SEALANTS

A. General: Comply with joint-sealant manufacturer's written installation instructions for products and applications indicated, unless more stringent requirements apply.

B. Sealant Installation Standard: Comply with recommendations in ASTM C 1193 for use of joint sealants as applicable to materials, applications, and conditions indicated.

C. Install sealant backings of kind indicated to support sealants during application and at position required to produce cross-sectional shapes and depths of installed sealants relative to joint widths that allow optimum sealant movement capability.

1. Do not leave gaps between ends of sealant backings.
2. Do not stretch, twist, puncture, or tear sealant backings.
3. Remove absorbent sealant backings that have become wet before sealant application and replace them with dry materials.

D. Install bond-breaker tape behind sealants where sealant backings are not used between sealants and backs of joints.

E. Install sealants using proven techniques that comply with the following and at the same time backings are installed:

1. Place sealants so they directly contact and fully wet joint substrates.
2. Completely fill recesses in each joint configuration.
3. Produce uniform, cross-sectional shapes and depths relative to joint widths that allow optimum sealant movement capability.

F. Tooling of Nonsag Sealants: Immediately after sealant application and before skinning or curing begins, tool sealants according to requirements specified in subparagraphs below to form smooth, uniform beads of configuration indicated; to eliminate air pockets; and to ensure contact and adhesion of sealant with sides of joint.

1. Remove excess sealant from surfaces adjacent to joints.
2. Use tooling agents that are approved in writing by sealant manufacturer and that do not discolor sealants or adjacent surfaces.
3. Provide concave joint profile per Figure 8A in ASTM C 1193, unless otherwise indicated.

G. Installation of Preformed Foam Sealants: Install each length of sealant immediately after removing protective wrapping. Do not pull or stretch material. Produce seal continuity at ends, turns, and intersections of joints. For applications at low ambient temperatures, apply heat to sealant in compliance with sealant manufacturer's written instructions.
3.4 CLEANING

A. Clean off excess sealant or sealant smears adjacent to joints as the Work progresses by methods and with cleaning materials approved in writing by manufacturers of joint sealants and of products in which joints occur.

3.5 PROTECTION

A. Protect joint sealants during and after curing period from contact with contaminating substances and from damage resulting from construction operations or other causes so sealants are without deterioration or damage at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, cut out and remove damaged or deteriorated joint sealants immediately so installations with repaired areas are indistinguishable from original work.

3.6 JOINT-SEALANT SCHEDULE

A. Joint-Sealant Application: Exterior joints 1 to 2 inches wide in horizontal traffic surfaces.

1. Joint Locations:
 a. Control and expansion joints in brick pavers.
 b. Isolation and contraction joints in cast-in-place concrete slabs.
 c. Joints in stone paving units, including steps.
 d. Joints between different materials listed above.
 e. Other joints as indicated.

B. Joint-Sealant Application: Exterior joints up to 1 inch wide in horizontal traffic surfaces.

1. Joint Locations:
 a. Control and expansion joints in brick pavers.
 b. Isolation and contraction joints in cast-in-place concrete slabs.
 c. Joints in stone paving units, including steps.
 d. Joints between different materials listed above.
 e. Other joints as indicated.

C. Joint-Sealant Application: Exterior joints 1 to 2 inches wide in horizontal nontraffic surfaces.

1. Joint Locations:
 a. Control and expansion joints in ceilings and other overhead surfaces.
 b. Other joints as indicated.

D. Joint-Sealant Application: Exterior joints up to 1 inch wide in horizontal nontraffic surfaces.
1. Joint Locations:
 a. Control and expansion joints in ceilings and other overhead surfaces.
 b. Other joints as indicated.

E. Joint-Sealant Application: Exterior joints in vertical surfaces.

1. Joint Locations:
 b. Joints between plant-precast architectural concrete units.
 c. Control and expansion joints in unit masonry.
 d. Joints in dimension stone cladding.
 e. Joints in glass unit masonry assemblies.
 f. Joints in exterior insulation and finish systems.
 g. Joints between metal panels.
 h. Joints between different materials listed above.
 i. Perimeter joints between materials listed above and frames of [doors] [windows] [and] [louvers].
 j. Other joints as indicated.

F. Joint-Sealant Application: Interior joints 1 to 2 inches wide in horizontal traffic surfaces.

1. Joint Locations:
 b. Control and expansion joints in stone flooring.
 c. Control and expansion joints in brick flooring.
 d. Control and expansion joints in tile flooring.
 e. Other joints as indicated.

G. Joint-Sealant Application: Interior joints up to 1 inch wide in horizontal traffic surfaces.

1. Joint Locations:
 b. Control and expansion joints in stone flooring.
 c. Control and expansion joints in brick flooring.
 d. Control and expansion joints in tile flooring.
 e. Other joints as indicated.

H. Joint-Sealant Application: Interior joints 1 to 2 inches wide in horizontal nontraffic surfaces.

1. Joint Locations:
a. Control and expansion joints in ceilings and other overhead surfaces.
b. Other joints as indicated.

2. **Joint Sealant**: Multicomponent, nonsag, urethane joint sealant.

I. Joint- SEALANT Application: Interior joints up to 1 inch wide in horizontal nontraffic surfaces.

1. **Joint Locations**:

 a. Control and expansion joints in ceilings and other overhead surfaces.
 b. Other joints as indicated.

2. **Joint Sealant**: Single component, nonsag, urethane joint sealant.

J. Joint- SEALANT Application: Interior joints in vertical surfaces.

1. **Joint Locations**:

 a. Control and expansion joints on exposed interior surfaces of exterior walls.
 b. Perimeter joints of exterior openings.
 c. Other joints as indicated.

2. **Joint Sealant**: Single component, nonsag, neutral curing, silicone joint sealant.

K. Joint- SEALANT Application: Mildew-resistant interior joints in vertical surfaces.

1. **Joint Sealant Location**:

 a. Tile control and expansion joints where indicated.
 b. Other joints as indicated.

2. **Joint Sealant**: Mildew-resistant, single component, acid curing silicone joint sealant.

L. Joint- SEALANT Application: Interior joints in vertical surfaces.

1. **Joint Locations**:

 a. Vertical joints on exposed surfaces of interior [unit masonry] [concrete] [gypsum board] [plaster] [walls] [and] [partitions].
 b. Perimeter joints between interior wall surfaces and frames of [interior doors] [windows] [and] [elevator entrances].
 c. Other joints as indicated.

2. **Joint Sealant**: Latex joint sealant.

M. Joint- SEALANT Application: Joints in horizontal and vertical surfaces subject to full water immersion.

1. **Joint Locations**:

 a. Joints in swimming pool decks.
 b. Joints between swimming pool finish and stainless steel gutter.
c. Exposed joints or exposed surface edges under swimming pool drain covers, lane marker hook rings, etc.
d. Other joints as indicated on Drawings.

N. Joint-Sealant Application: Exterior joints in vertical surfaces.

1. Joint Locations:
 a. Where indicated.

END OF SECTION
SECTION 08 16 13
FIBERGLASS REINFORCED POLYESTER (FRP) DOORS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Fiberglass reinforced polyester doors.

B. Codes and References: Comply with the version year adopted by the Authority Having Jurisdiction.
 1. ANSI/BHMA A156.115 - Hardware Preparation in Steel Doors and Frames.
 2. ASTM B 209 - Aluminum and Aluminum-Alloy Sheet and Plate.
 3. ASTM B 221 - Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes.
 7. ASTM D 2126 - Response of Rigid Cellular Plastics to Thermal and Humid Aging.
 8. ASTM D 6670-01 - Standard Practice for Full-Scale Chamber Determination of Volatile Organic Emissions from Indoor Materials/Products.
 10. UL 10C - Positive Pressure Fire Tests of Door Assemblies.

1.2 SUBMITTALS

A. Product Data: For each type of product indicated. Include construction details, material descriptions, components, hardware reinforcements, profiles, and finishes.

B. Templates: Door hardware supplier is to furnish templates, template reference number and/or physical hardware to the door and frame supplier in order to prepare the doors and frames to receive the finish hardware items.

C. Shop Drawings: Include the following:
 1. Elevations of each door design.
 2. Details of doors.
 3. Locations of reinforcement and preparations for hardware.
 4. Details of each different wall opening condition.
 5. Details of accessories.
 6. Details of preparations for power, signal, and control systems.

D. Samples for Verification:
1. Samples are only required by request of the architect.

1.3 DELIVERY, STORAGE, AND HANDLING

A. Deliver work palletized, wrapped, or crated to provide protection during transit and Project-site storage. Do not use non-vented plastic.

B. Store materials under cover at Project site in accordance with the manufacturer’s instructions. Do not store in a manner that traps excess humidity.

1. Provide minimum 1/4-inch (6-mm) space between each stacked door to permit air circulation. Door and frames to be stacked in a vertical upright position.

1.4 PROJECT CONDITIONS

A. Field Measurements: Verify actual dimensions of openings by field measurements before fabrication.

1.5 COORDINATION

A. Coordinate installation of anchorages for door frames. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors. Deliver such items to Project site in time for installation.

1.6 WARRANTY

A. Provide manufacturer's written warranty against defects in materials and workmanship upon final completion and acceptance of Work in this section. Warranty period is ten years.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. CECO Door Products.
2. Curries Company.
3. Special-Lite.

B. Substitutions: Material from alternate door and frame fabricators will not be accepted on jobsite without prior written and sample approval in accordance with requirements specified in Division 01.
2.2 MATERIALS

A. Aluminum: 6063-T6 hardened aluminum alloy.

B. Fiberglass Reinforced Plastic Sheet: Thickness of .120” with the finish color for the full thickness of the sheet.

C. Glazing: Comply with requirements in Division 08 Section, "Glazing."

2.3 FIBERGLASS REINFORCED POLYESTER DOORS

A. General: Provide 1-3/4 inch doors of type and design indicated, not less than thickness indicated; fabricated without visible joints or seams on exposed faces unless otherwise indicated.

1. Design: As indicated on the drawings.
4. Faces: Fiberglass reinforced plastic sheets of .120” thickness with a pebble texture.
5. Surface Applied Hardware Reinforcements: Fabricate according to ANSI/SDI A250.6.

2.4 FABRICATION

A. General: Fabricate work to be rigid and free of defects. Accurately form to required sizes and profiles.

B. Fiberglass Reinforced Polyester Doors:

2. Top Caps: Close tops of doors flush with aluminum top caps.

C. Surface Hardware Preparation: Factory prepare work to receive template mortised hardware; include cutouts, reinforcement, mortising, drilling, and tapping according to the Door Hardware Schedule and templates furnished as specified in Division 08 Section, "Door Hardware."

1. Locate hardware as indicated, or if not indicated, according to ANSI/SDI A250.8.
2. Reinforce doors to receive non-template, mortised and surface-mounted door hardware.
3. Comply with applicable requirements in ANSI/SDI A250.6 and ANSI/DHI A115 Series specifications for preparation of work for hardware.

2.5 FINISHES

A. FRP Door finish shall be:

1. Architect to choose from manufacture’s full range of colors.

B. Aluminum finish for stiles and rails, light kits, and door frames shall be:

1. Satin Clear.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Prior to installation, check openings for squareness, alignment, twist, and plumbness.

B. Drill and tap doors and frames to receive non-template, mortised, and surface-mounted door hardware.

3.3 INSTALLATION

A. General: Install work plumb, rigid, properly aligned, and securely fastened in place; comply with Drawings and manufacturer's written instructions. Comply with ANSI/SDI A250.11 and NFPA 80 at fire rated openings.

B. Fiberglass Reinforced Polyester Doors: Fit doors accurately in frames, within clearances specified below. Shim as necessary.

1. Non-Fire-Rated Doors:

 a. Jambs and Head: 1/8 inch (3 mm) plus or minus 1/16 inch (1.6 mm).
 b. Between Edges of Pairs of Doors: 1/8 inch (3 mm) plus or minus 1/16 inch (1.6 mm).
 c. Between Bottom of Door and Top of Finish Floor (No Threshold): Maximum 3/4 inch (19 mm).

C. Glazing: Comply with installation requirements in Division 08 Section "Glazing" and with door manufacturer's written instructions.

3.4 ADJUSTING AND CLEANING

A. Final Adjustments: Check and readjust operating hardware items immediately before final inspection. Leave work in complete and proper operating condition. Remove and replace defective work, including stainless steel work that is warped, bowed, or otherwise unacceptable.

B. Remove grout and other bonding material from stainless steel work immediately after installation.

C. Remove stains and materials that will have an adverse effect on the doors and frames and restore slight blemishes in accordance with manufacturer’s instructions to match original finish.

END OF SECTION
SECTION 08 41 13

ALUMINUM-FRAMED ENTRANCES AND STOREFRONTS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Exterior and interior storefront framing.
 2. Storefront framing for punched openings.
 3. Exterior and interior manual-swing entrance doors and door-frame units.

1.2 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Sustainable Design Submittals:
 1. Product Data: For sealants, indicating VOC content.
 2. Laboratory Test Reports: For sealants, indicating compliance with requirements for low-emitting materials.

C. Shop Drawings: Include plans, elevations, sections, full-size details, and attachments to other work.
 1. Show connection to and continuity with adjacent thermal, weather, air, and vapor barriers.

D. Samples: For each exposed finish required.

E. Entrance Door Hardware Schedule: Prepared by or under supervision of supplier, detailing fabrication and assembly of entrance door hardware, as well as procedures and diagrams.

F. Delegated-Design Submittal: For aluminum-framed entrances and storefronts indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.4 INFORMATIONAL SUBMITTALS

A. Energy Performance Certificates: NFRC-certified energy performance values from manufacturer.
B. Product test reports.

C. Sample warranties.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance data.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer.

B. Testing Agency Qualifications: Qualified according to ASTM E 699 for testing indicated.

C. Product Options: Information on Drawings and in Specifications establishes requirements for aesthetic effects and performance characteristics of assemblies. Aesthetic effects are indicated by dimensions, arrangements, alignment, and profiles of components and assemblies as they relate to sightlines, to one another, and to adjoining construction.

1. Do not change intended aesthetic effects, as judged solely by Architect, except with Architect's approval. If changes are proposed, submit comprehensive explanatory data to Architect for review.

1.7 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace components of aluminum-framed entrances and storefronts that do not comply with requirements or that fail in materials or workmanship within specified warranty period.

1. Warranty Period: Two years from date of Substantial Completion.

B. Special Finish Warranty: Standard form in which manufacturer agrees to repair finishes or replace aluminum that shows evidence of deterioration of factory-applied finishes within specified warranty period.

1. Warranty Period: 20 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design aluminum-framed entrances and storefronts.

B. General Performance: Comply with performance requirements specified, as determined by testing of aluminum-framed entrances and storefronts representing those indicated for this Project without failure due to defective manufacture, fabrication, installation, or other defects in construction.
1. Aluminum-framed entrances and storefronts shall withstand movements of supporting structure including, but not limited to, story drift, twist, column shortening, long-term creep, and deflection from uniformly distributed and concentrated live loads.

2. Failure also includes the following:
 a. Thermal stresses transferring to building structure.
 b. Glass breakage.
 c. Noise or vibration created by wind and thermal and structural movements.
 d. Loosening or weakening of fasteners, attachments, and other components.
 e. Failure of operating units.

C. Structural Loads:

1. Wind Loads: As indicated on Drawings.
2. Other Design Loads: As indicated on Drawings.

D. Deflection of Framing Members: At design wind pressure, as follows:

1. Deflection Normal to Wall Plane: Limited to edge of glass in a direction perpendicular to glass plane not exceeding 1/175 of the glass edge length for each individual glazing lite or an amount that restricts edge deflection of individual glazing lites to 3/4 inch, whichever is less.

E. Structural: Test according to ASTM E 330 as follows:

1. When tested at positive and negative wind-load design pressures, assemblies do not evidence deflection exceeding specified limits.
2. When tested at 150 percent of positive and negative wind-load design pressures, assemblies, including anchorage, do not evidence material failures, structural distress, or permanent deformation of main framing members exceeding 0.2 percent of span.
3. Test Durations: As required by design wind velocity, but not less than 10 seconds.

F. Air Infiltration: Test according to ASTM E 283 for infiltration as follows:

1. Fixed Framing and Glass Area:
 a. Maximum air leakage of 0.06 cfm/sq. ft. at a static-air-pressure differential of 6.24 lbf/sq. ft.

2. Entrance Doors:
 a. Pair of Doors: Maximum air leakage of 1.0 cfm/sq. ft. at a static-air-pressure differential of 1.57 lbf/sq. ft.
 b. Single Doors: Maximum air leakage of 0.5 cfm/sq. ft. at a static-air-pressure differential of 1.57 lbf/sq. ft.

G. Water Penetration under Static Pressure: Test according to ASTM E 331 as follows:

1. No evidence of water penetration through fixed glazing and framing areas when tested according to a minimum static-air-pressure differential of 20 percent of positive wind-load design pressure, but not less than 6.24 lbf/sq. ft.
H. Energy Performance: Certify and label energy performance according to NFRC as follows:
 1. Thermal Transmittance (U-factor): Fixed glazing and framing areas shall have U-factor of not more than 0.45 Btu/sq. ft. x h x deg F as determined according to NFRC 100.
 2. Solar Heat Gain Coefficient: Fixed glazing and framing areas shall have a solar heat gain coefficient of no greater than 0.35 as determined according to NFRC 200.
 3. Condensation Resistance: Fixed glazing and framing areas shall have an NFRC-certified condensation resistance rating of no less than 54 as determined according to NFRC 500.

I. Windborne-Debris Impact Resistance: Pass missile-impact and cyclic-pressure tests when tested according to ASTM E 1886 and testing information in ASTM E 1996 for Wind Zone 1.
 1. Large-Missile Test: For glazed openings located within 30 feet of grade.

J. Thermal Movements: Allow for thermal movements resulting from ambient and surface temperature changes:
 1. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.

2.2 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. EFCO Corporation.
 2. Kawneer North America; an Alcoa company.
 3. TRACO.
 4. Trulite Glass & Aluminum Solutions, LLC.
 5. Tubelite Inc.
 6. YKK AP America Inc.

2.3 FRAMING

A. Framing Members: Manufacturer's extruded- or formed-aluminum framing members of thickness required and reinforced as required to support imposed loads.
 2. Glazing System: Retained mechanically with gaskets on four sides.
 5. Fabrication Method: Field-fabricated stick system.

B. Backer Plates: Manufacturer's standard, continuous backer plates for framing members, if not integral, where framing abuts adjacent construction.

C. Brackets and Reinforcements: Manufacturer's standard high-strength aluminum with nonstaining, nonferrous shims for aligning system components.

D. Materials:
1. Aluminum: Alloy and temper recommended by manufacturer for type of use and finish indicated.
 a. Sheet and Plate: ASTM B 209.
 b. Extruded Bars, Rods, Profiles, and Tubes: ASTM B 221.
 c. Extruded Structural Pipe and Tubes: ASTM B 429/B 429M.
 d. Structural Profiles: ASTM B 308/B 308M.

2. Steel Reinforcement: Manufacturer's standard zinc-rich, corrosion-resistant primer complying with SSPC-PS Guide No. 12.00; applied immediately after surface preparation and pretreatment. Select surface preparation methods according to recommendations in SSPC-SP COM, and prepare surfaces according to applicable SSPC standard.
 a. Structural Shapes, Plates, and Bars: ASTM A 36/A 36M.
 b. Cold-Rolled Sheet and Strip: ASTM A 1008/A 1008M.
 c. Hot-Rolled Sheet and Strip: ASTM A 1011/A 1011M.

2.4 ENTRANCE DOOR SYSTEMS

A. Entrance Doors: Manufacturer's standard glazed entrance doors for manual-swing operation.

1. Door Construction: 1-3/4-inch overall thickness, with minimum 0.125-inch-thick, extruded-aluminum tubular rail and stile members. Mechanically fasten corners with reinforcing brackets that are deeply penetrated and fillet welded or that incorporate concealed tie rods.

2. Door Design: Wide stile; 5-inch nominal width.

 a. Provide nonremovable glazing stops on outside of door.

2.5 ENTRANCE DOOR HARDWARE

A. Entrance Door Hardware: Hardware not specified in this Section is specified in Section 087100 "Door Hardware."

B. General: Provide entrance door hardware and entrance door hardware sets indicated in door and frame schedule for each entrance door to comply with requirements in this Section.

C. Weather Stripping: Manufacturer's standard replaceable components.

D. Weather Sweeps: Manufacturer's standard exterior-door bottom sweep with concealed fasteners on mounting strip.

E. Silencers: BHMA A156.16, Grade 1.

F. Thresholds: BHMA A156.21, raised thresholds beveled with a slope of not more than 1:2, with maximum height of 1/2 inch.
2.6 GLAZING

A. Glazing: Comply with Section 088000 "Glazing."

B. Glazing Gaskets: Manufacturer's standard sealed-corner pressure-glazing system of black, resilient elastomeric glazing gaskets, setting blocks, and shims or spacers.

C. Glazing Sealants: As recommended by manufacturer.
 1. Sealant shall have a VOC content of 250 g/L or less.
 2. Sealant shall comply with the testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

2.7 FABRICATION

A. Form or extrude aluminum shapes before finishing.

B. Weld in concealed locations to greatest extent possible to minimize distortion or discoloration of finish. Remove weld spatter and welding oxides from exposed surfaces by descaling or grinding.

C. Fabricate components that, when assembled, have the following characteristics:
 1. Profiles that are sharp, straight, and free of defects or deformations.
 2. Accurately fitted joints with ends coped or mitered.
 3. Physical and thermal isolation of glazing from framing members.
 4. Accommodations for thermal and mechanical movements of glazing and framing to maintain required glazing edge clearances.
 5. Provisions for field replacement of glazing from exterior.
 6. Fasteners, anchors, and connection devices that are concealed from view to greatest extent possible.

D. Mechanically Glazed Framing Members: Fabricate for flush glazing without projecting stops.

E. Entrance Door Frames: Reinforce as required to support loads imposed by door operation and for installing entrance door hardware.

F. Entrance Doors: Reinforce doors as required for installing entrance door hardware.

G. Entrance Door Hardware Installation: Factory install entrance door hardware to the greatest extent possible. Cut, drill, and tap for factory-installed entrance door hardware before applying finishes.

H. After fabrication, clearly mark components to identify their locations in Project according to Shop Drawings.
PART 3 - EXECUTION

3.1 INSTALLATION

A. General:
 1. Comply with manufacturer's written instructions.
 2. Do not install damaged components.
 3. Fit joints to produce hairline joints free of burrs and distortion.
 4. Rigidly secure nonmovement joints.
 5. Install anchors with separators and isolators to prevent metal corrosion and electrolytic deterioration and to prevent impeding movement of moving joints.
 6. Seal perimeter and other joints watertight unless otherwise indicated.

B. Metal Protection:
 1. Where aluminum is in contact with dissimilar metals, protect against galvanic action by painting contact surfaces with materials recommended by manufacturer for this purpose or by installing nonconductive spacers.
 2. Where aluminum is in contact with concrete or masonry, protect against corrosion by painting contact surfaces with bituminous paint.

C. Set continuous sill members and flashing in full sealant bed as specified in Section 079200 "Joint Sealants" to produce weathertight installation.

D. Install components plumb and true in alignment with established lines and grades.

E. Install operable units level and plumb, securely anchored, and without distortion. Adjust weather-stripping contact and hardware movement to produce proper operation.

F. Install glazing as specified in Section 088000 "Glazing."

G. Entrance Doors: Install doors to produce smooth operation and tight fit at contact points.
 1. Exterior Doors: Install to produce weathertight enclosure and tight fit at weather stripping.
 2. Field-Installed Entrance Door Hardware: Install surface-mounted entrance door hardware according to entrance door hardware manufacturers' written instructions using concealed fasteners to greatest extent possible.

END OF SECTION
SECTION 08 71 00

DOOR HARDWARE

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Mechanical door hardware for the following:
 a. Swinging doors.

1.2 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

B. Keying Conference: Conduct conference at Project site.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: For electrified door hardware.
 1. Include diagrams for power, signal, and control wiring.
 2. Include details of interface of electrified door hardware and building safety and security systems.

C. Samples: For each exposed product in each finish specified.

D. Door hardware schedule.

E. Keying schedule.

1.4 INFORMATIONAL SUBMITTALS

A. Sample warranty.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance data.
1.6 QUALITY ASSURANCE

A. Installer Qualifications: Supplier of products and an employer of workers trained and approved by product manufacturers and of an Architectural Hardware Consultant who is available during the course of the Work to consult Contractor, Architect, and Owner about door hardware and keying.
 1. Scheduling Responsibility: Preparation of door hardware and keying schedule.
 2. Engineering Responsibility: Preparation of data for electrified door hardware, including Shop Drawings, based on testing and engineering analysis of manufacturer's standard units in assemblies similar to those indicated for this Project.

B. Architectural Hardware Consultant Qualifications: A person who is experienced in providing consulting services for door hardware installations that are comparable in material, design, and extent to that indicated for this Project and who is currently certified by DHI as an Architectural Hardware Consultant (AHC).

1.7 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace components of door hardware that fail in materials or workmanship within specified warranty period.
 1. Warranty Period: Three years from date of Substantial Completion unless otherwise indicated below:
 a. Manual Closers: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 SCHEDULED DOOR HARDWARE

A. Provide products for each door that comply with requirements indicated in Part 2 and Door Hardware Schedule.
 1. Door Hardware Sets are scheduled in this SECTION

2.2 HINGES

A. Hinges: BHMA A156.1, 5 Knuckle Concealed Ball Bearing
 1. Basis of Design: Stanley 5 knuckle concealed ball bearing: CB179, CB168 and CECB 179-12C as listed in hardware sets.
 2. Comparable products by Bommer and Hager will be acceptable.

2.3 MECHANICAL LOCKS AND LATCHES

A. Lock Functions: As indicated in Door Hardware schedule.

B. Lock Throw: Comply with testing requirements for length of bolts required for labeled fire doors, and as follows:
 2. Deadbolts: Minimum 1-inch bolt throw.
C. Lock Backset: 2-3/4 inches unless otherwise indicated.

D. Lock Trim:
 1. Description: Lever x Rose
 2. Levers: Forged or Cast, BEST Locking: 14H
 3. Roses: Forged or Cast.
 4. Dummy Trim: Match lever lock trim and escutcheons.

E. Strikes: Provide manufacturer's standard strike for each lock bolt or latchbolt complying with requirements indicated for applicable lock or latch and with strike box and curved lip extended to protect frame; finished to match lock or latch.
 1. Flat-Lip Strikes: For locks antifriction latchbolts, as recommended by manufacturer.
 2. Extra-Long-Lip Strikes: For locks used on frames with applied wood casing trim.
 3. Aluminum-Frame Strike Box: Manufacturer's special strike box fabricated for aluminum framing.
 4. Rabbet Front and Strike: Provide on locksets for rabbeted meeting stiles.

F. Mortise Locks: BHMA A156.13; Operational Grade 1; stamped steel case with steel or brass parts; Series 1000.
 1. Basis of Design: BEST Locking model 45H Mortise Lock
 2. BEST is existing.

2.4 AUXILIARY LOCKS

A. Mortise Auxiliary Locks: BHMA A156.36; Grade 1; with strike that suits frame.

2.5 MANUAL FLUSH BOLTS

A. Manual Flush Bolts: BHMA A156.16; minimum 3/4-inch throw; designed for mortising into door edge.
 1. Basis of Design: Trimco model 3915
 2. Comparable products by Burns Manufacturing and Door Controls International will be acceptable.

2.6 LOCK CYLINDERS and CORES

A. Standard Lock Cylinders: BHMA A156.5; Grade 1, face finished to match lockset.
 1. Core Type: Interchangeable

B. Lock Cores: BHMA A156.30; Grade 1 permanent cores that are removable; face finished to match lockset.
 1. Existing BEST SFIC system NO SUBSTITUTIONS.

C. Construction Cores: Provide construction cores that are replaceable by permanent cores. Provide 10 construction master keys.
2.7 KEYING

A. Keying System: Factory registered, complying with guidelines in BHMA A156.28, appendix. Provide one extra key blank for each lock. Incorporate decisions made in keying conference.
 1. Grand Master Key System: Change keys, a master key, and a grand master key operate cylinders.
 a. Provide three change keys and five each of master and grand master keys.
 2. Existing System:
 a. Master key or grand master key locks to Owner's existing BEST system.

B. Keys: Nickel silver.
 1. Stamping: Permanently inscribe each key with a visual key control number and include the following notation:
 a. Notation: "DO NOT DUPLICATE."

2.8 SURFACE CLOSERS

A. Surface Closers: BHMA A156.4; Grade 1, rack-and-pinion hydraulic type with adjustable sweep and latch speeds controlled by key-operated valves and forged-steel main arm. Comply with manufacturer's written instructions for size of door closers depending on size of door, exposure to weather, and anticipated frequency of use. Provide factory-sized closers, adjustable to meet field conditions and requirements for opening force.
 1. Basis of Design: Stanley model CLD-4550, arm types and options as listed in hardware sets.
 2. Comparable products by LCN Door Closers, Dorma Door Closers will be acceptable as approved by architect.

2.9 MECHANICAL STOPS AND HOLDERS

A. Wall- and Floor-Mounted Stops: BHMA A156.16.
 1. Basis of Design: Trimco
 2. Comparable products by Rockwood and Burns Manufacturing will be acceptable

2.10 OVERHEAD STOPS AND HOLDERS

A. Overhead Stops and Holders: BHMA A156.8.
 1. Basis of Design: Architectural Builders Hardware Mfg. (ABH)
 2. Comparable products by dormakaba and Chek-Mate will be acceptable.

2.11 DOOR GASKETING

A. Door Gasketing: BHMA A156.22; with resilient or flexible seal strips that are easily replaceable and readily available from stocks maintained by manufacturer.
 1. Basis of Design: National Guard Products (NGP)
 2. Comparable products by Reese and will be acceptable.
B. Maximum Air Leakage: When tested according to ASTM E 283 with tested pressure differential of 0.3-inch wg, as follows:
1. Smoke-Rated Gasketing: 0.3 cfm/sq. ft. of door opening.
2. Gasketing on Single Doors: 0.3 cfm/sq. ft. of door opening.
3. Gasketing on Double Doors: 0.50 cfm per foot of door opening.

2.12 THRESHOLDS
A. Thresholds: BHMA A156.21; anodized aluminum, fabricated to full width of opening indicated.
 1. Basis of Design: National Guard Products (NGP)
 2. Comparable products by Reese and Pemko will be acceptable.

2.13 METAL PROTECTIVE TRIM UNITS
A. Metal Protective Trim Units: BHMA A156.6; fabricated from 0.050-inch thick stainless steel, beveled 4 edges, counter sunk screw holes with manufacturer's standard machine or self-tapping screw fasteners.
 1. Basis of Design: Trimco Model KO050

2.14 AUXILIARY DOOR HARDWARE
A. Auxiliary Hardware: BHMA A156.16.
 1. Basis of Design: Trimco Model 1229A

2.15 FINISHES
A. Provide finishes complying with BHMA A156.18 as indicated in door hardware schedule.

PART 3 - EXECUTION

3.1 INSTALLATION
A. Mounting Heights: Mount door hardware units at heights to comply with the following unless otherwise indicated or required to comply with governing regulations.

B. Install each door hardware item to comply with manufacturer's written instructions. Where cutting and fitting are required to install door hardware onto or into surfaces that are later to be painted or finished in another way, coordinate removal, storage, and reinstallation of surface protective trim units with finishing work. Do not install surface-mounted items until finishes have been completed on substrates involved.

C. Hinges: Install types and in quantities indicated in door hardware schedule, but not fewer than the number recommended by manufacturer for application indicated or one hinge for every 30 inches
of door height, whichever is more stringent, unless other equivalent means of support for door, such as spring hinges or pivots, are provided.

D. Lock Cylinders: Install construction cores to secure building and areas during construction period.
 1. Replace construction cores with permanent cores as directed by Owner.
 2. Furnish permanent cores to Owner for installation.

E. Thresholds: Set thresholds for exterior doors and other doors indicated in full bed of sealant complying with requirements specified in Section 07 92 00 "Joint Sealants."

F. Stops: Provide floor stops for doors unless wall or other type stops are indicated in door hardware schedule. Do not mount floor stops where they will impede traffic.

G. Perimeter Gasketing: Apply to head and jamb, forming seal between door and frame.
 1. Do not notch perimeter gasketing to install other surface-applied hardware.

H. Meeting Stile Gasketing: Fasten to meeting stiles, forming seal when doors are closed.

I. Door Bottoms: Apply to bottom of door, forming seal with threshold when door is closed.

3.2 ADJUSTING

A. Adjust and check each operating item of door hardware and each door to ensure proper operation or function of every unit. Replace units that cannot be adjusted to operate as intended. Adjust door control devices to compensate for final operation of heating and ventilating equipment and to comply with referenced accessibility requirements.

3.3 DOOR HARDWARE SETS SCHEDULE

Manufacturer’s Abbreviations (Column 4):
BST Best Locking
BY By Others
STN Stanley
NA National Guard Products
TRM Trimco Inc.
Hardware Set# 01
Door# C101A, C102A, C103A, C104A, C104B
Each to have:

1ea. Continuous Hinge 662HD 628 STN
1ea. Storage Lock 45H7D15H (less OS trim) 630 BST
1ea. Flush Pull 1111A 630 TRM
1ea. Door Closer D-4550 P45-113 689 STN
1ea. OH Stop/Holder HD8000 series 630 ABH
1ea. Threshold 950 SIA ssms/ea 628 NGP
1ea. Auto Door Bottom 4440SA 628 NGP
1set Weather Seals 141NA 628 NGP
1ea. Rain Drip 16A 628 NGP

Hardware Set# 02
Door# C101B, C102B, C103B
Pair to have:

2ea. Continuous Hinge 662HD 628 STN
2ea. Flush Bolts 3915 626 TRM
1ea. Storage Lock 45H7D15H (less OS trim) 630 BST
1ea. Flush Pull 1111A 630 TRM
2ea. Door Closer D-4550 P45-113 689 STN
2ea. OH Stop/Holder HD8000 series 630 ABH
1ea. Threshold 950 SIA ssms/ea 628 NGP
2ea. Auto Door Bottom 4441SA 628 NGP
1set Weather Seals 141NA 628 NGP
1ea. Rain Drip 16A 628 NGP

Hardware Set# 03
Door# C101C, C102C, C103C, C104C, C104C
Each to have:

EXISTING TO REMAIN

END OF SECTION
SECTION 08 80 00

GLAZING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes glazing for the following products and applications, including those specified in other Sections where glazing requirements are specified by reference to this Section:

1. Doors.
2. Storefront framing.

1.3 DEFINITIONS

A. Glass Manufacturers: Firms that produce primary glass, fabricated glass, or both, as defined in referenced glazing publications.

B. Glass Thicknesses: Indicated by thickness designations in millimeters according to ASTM C 1036.

C. Interspace: Space between lites of an insulating-glass unit.

1.4 PERFORMANCE REQUIREMENTS

A. General: Installed glazing systems shall withstand normal thermal movement and wind and impact loads (where applicable) without failure, including loss or glass breakage attributable to the following: defective manufacture, fabrication, or installation; failure of sealants or gaskets to remain watertight and airtight; deterioration of glazing materials; or other defects in construction.

B. Delegated Design: Design glass, including comprehensive engineering analysis according to ASTM E 1300 by a qualified professional engineer, using the following design criteria:

1. Design Wind Pressures: As indicated on Drawings.
2. Design Snow Loads: As indicated on Drawings.
3. Vertical Glazing: For glass surfaces sloped 15 degrees or less from vertical, design glass to resist design wind pressure based on glass type factors for short-duration load.
4. Sloped Glazing: For glass surfaces sloped more than 15 degrees from vertical, design glass to resist each of the following combinations of loads:
a. Outward design wind pressure minus the weight of the glass. Base design on glass type factors for short-duration load.
b. Inward design wind pressure plus the weight of the glass plus half of the design snow load. Base design on glass type factors for short-duration load.
c. Half of the inward design wind pressure plus the weight of the glass plus the design snow load. Base design on glass type factors for long-duration load.

5. Glass Type Factors for Patterned Glass:
 a. Short-Duration Glass Type Factor for Patterned Glass: 1.0.
 b. Long-Duration Glass Type Factor for Patterned Glass: 0.6.

6. Thickness of Patterned Glass: Base design of patterned glass on thickness at thinnest part of the glass.

7. Probability of Breakage for Sloped Glazing: For glass surfaces sloped more than 15 degrees from vertical, design glass for a probability of breakage not greater than 0.001.

8. Maximum Lateral Deflection: For glass supported on all four edges, limit center-of-glass deflection at design wind pressure to not more than 1/50 times the short-side length or 1 inch, whichever is less.

9. Differential Shading: Design glass to resist thermal stresses induced by differential shading within individual glass lites.

C. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes acting on glass framing members and glazing components.

1. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.

1.5 PRECONSTRUCTION TESTING

A. Preconstruction Adhesion and Compatibility Testing: Test each glazing material type, tape sealant, gasket, glazing accessory, and glass-framing member for adhesion to and compatibility with elastomeric glazing sealants.

1. Testing will not be required if data are submitted based on previous testing of current sealant products and glazing materials matching those submitted.
2. Use ASTM C 1087 to determine whether priming and other specific joint-preparation techniques are required to obtain rapid, optimum adhesion of glazing sealants to glass, tape sealants, gaskets, and glazing channel substrates.
3. Test no fewer than eight Samples of each type of material, including joint substrates, shims, sealant backings, secondary seals, and miscellaneous materials.
4. Schedule sufficient time for testing and analyzing results to prevent delaying the Work.
5. For materials failing tests, submit sealant manufacturer's written instructions for corrective measures including the use of specially formulated primers.

1.6 SUBMITTALS, GENERAL

A. General: Submit all action submittals and informational submittals required by this Section concurrently.
1.7 ACTION SUBMITTALS

A. Product Data: For each glass product and glazing material indicated.

B. Glass Samples: For each type of the following products; 12 inches square.
 1. Insulating glass.

C. Glazing Schedule: List glass types and thicknesses for each size opening and location. Use same designations indicated on Drawings.

D. Delegated-Design Submittal: For glass indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

E. Warranties: Sample of special warranties.

1.8 INFORMATIONAL SUBMITTALS

A. Qualification Data: For installers.

B. Product Certificates: For glass and glazing products, from manufacturer.

C. Preconstruction adhesion and compatibility test report.

1.9 CLOSEOUT SUBMITTALS

A. Warranties: Executed special warranties.

1.10 QUALITY ASSURANCE

A. Installer Qualifications: A qualified installer who employs glass installers for this Project who are certified under the National Glass Association's Certified Glass Installer Program.

B. Source Limitations for Glass: Obtain tinted float glass, coated float glass, laminated glass, and insulating glass from single source from single manufacturer for each glass type.

C. Source Limitations for Glazing Accessories: Obtain from single source from single manufacturer for each product and installation method.

D. Glazing Publications: Comply with published recommendations of glass product manufacturers and organizations below, unless more stringent requirements are indicated. Refer to these publications for glazing terms not otherwise defined in this Section or in referenced standards.

E. Insulating-Glass Certification Program: Permanently marked either on spacers or on at least one component lite of units with appropriate certification label of IGCC.

F. Preinstallation Conference: Conduct conference at Project site.
1. Review and finalize construction schedule and verify availability of materials, Installer's personnel, equipment, and facilities needed.
2. Review temporary protection requirements for glazing during and after installation.

1.11 DELIVERY, STORAGE, AND HANDLING
A. Protect glazing materials according to manufacturer's written instructions. Prevent damage to glass and glazing materials from condensation, temperature changes, direct exposure to sun, or other causes.

1.12 PROJECT CONDITIONS
A. Environmental Limitations: Do not proceed with glazing when ambient and substrate temperature conditions are outside limits permitted by glazing material manufacturers and when glazing channel substrates are wet from rain, frost, condensation, or other causes.
1. Do not install glazing sealants when ambient and substrate temperature conditions are outside limits permitted by sealant manufacturer or below 40 deg F.

1.13 WARRANTY
A. Manufacturer's Special Warranty on Insulating Glass: Manufacturer's standard form in which insulating-glass manufacturer agrees to replace insulating-glass units that deteriorate within specified warranty period. Deterioration of insulating glass is defined as failure of hermetic seal under normal use that is not attributed to glass breakage or to maintaining and cleaning insulating glass contrary to manufacturer's written instructions. Evidence of failure is the obstruction of vision by dust, moisture, or film on interior surfaces of glass.
1. Warranty Period: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 GLASS PRODUCTS, GENERAL
A. Thickness: Where glass thickness is indicated, it is a minimum. Provide glass lites in thicknesses as needed to comply with requirements indicated.
B. Strength: Where fully tempered glass is indicated, provide Kind FT heat-treated float glass.

C. Thermal and Optical Performance Properties: Provide glass with performance properties specified, as indicated in manufacturer's published test data, based on procedures indicated below:

1. For monolithic-glass lites, properties are based on units with lites 6.0 mm thick.
2. For laminated-glass lites, properties are based on products of construction indicated.
3. For insulating-glass units, properties are based on units of thickness indicated for overall unit and for each lite.
4. U-Factors: Center-of-glazing values, according to NFRC 100 and based on LBL's WINDOW 5.2 computer program, expressed as Btu/sq. ft. x h x deg F.
5. Solar Heat-Gain Coefficient and Visible Transmittance: Center-of-glazing values, according to NFRC 200 and based on LBL's WINDOW 5.2 computer program.
6. Visible Reflectance: Center-of-glazing values, according to NFRC 300.

2.2 GLASS PRODUCTS

A. Float Glass: ASTM C 1036, Type I, Quality-Q3, Class I (clear) unless otherwise indicated.

B. Heat-Treated Float Glass: ASTM C 1048; Type I; Quality-Q3; Class I (clear) unless otherwise indicated; of kind and condition indicated.

1. Fabrication Process: By horizontal (roller-hearth) process with roll-wave distortion parallel to bottom edge of glass as installed unless otherwise indicated.
2. For uncoated glass, comply with requirements for Condition A.
3. For coated vision glass, comply with requirements for Condition C (other coated glass).

C. Uncoated Tinted Float Glass: Class 2, complying with other requirements specified.

1. Basis-of-Design Product: Subject to compliance with requirements, provide PPG Industries, Inc.; Solexia, or comparable product.
2. Tint Color: Light green.

D. Low-E Coated Float Glass: Complying with requirements specified.

1. Basis-of-Design Product: Subject to compliance with requirements, provide PPG Industries, Inc.; Solarban 60, or comparable product.

2.3 INSULATING GLASS

A. Insulating-Glass Units: Factory-assembled units consisting of sealed lites of glass separated by a dehydrated interspace, qualified according to ASTM E 2190, and complying with other requirements specified.

1. Sealing System: Dual seal, with manufacturer's standard primary and secondary.
2. Spacer: Manufacturer's standard spacer material and construction.
3. Desiccant: Molecular sieve or silica gel, or blend of both.
2.4 GLAZING GASKETS

A. Dense Compression Gaskets: Molded or extruded gaskets of profile and hardness required to maintain watertight seal, made from one of the following:

1. EPDM complying with ASTM C 864.
2. Silicone complying with ASTM C 1115.
3. Thermoplastic polyolefin rubber complying with ASTM C 1115.

B. Soft Compression Gaskets: Extruded or molded, closed-cell, integral-skinned EPDM, silicone, or thermoplastic polyolefin rubber gaskets complying with ASTM C 509, Type II, black; of profile and hardness required to maintain watertight seal.

1. Application: Use where soft compression gaskets will be compressed by inserting dense compression gaskets on opposite side of glazing or pressure applied by means of pressure-glazing stops on opposite side of glazing.

2.5 GLAZING SEALANTS

A. General:

1. Compatibility: Provide glazing sealants that are compatible with one another and with other materials they will contact, including glass products, seals of insulating-glass units, and glazing channel substrates, under conditions of service and application, as demonstrated by sealant manufacturer based on testing and field experience.

2. Suitability: Comply with sealant and glass manufacturers' written instructions for selecting glazing sealants suitable for applications indicated and for conditions existing at time of installation.

3. Sealants used inside the weatherproofing system shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

4. Colors of Exposed Glazing Sealants: As selected by Architect from manufacturer's full range.

B. Glazing Sealant: Neutral-curing silicone glazing sealant complying with ASTM C 920, Type S, Grade NS, Class 50, Use NT.

C. Glazing Sealants for Fire-Rated Glazing Products: Products that are approved by testing agencies that listed and labeled fire-resistant glazing products with which they are used for applications and fire-protection ratings indicated.

2.6 GLAZING TAPES

A. Back-Bedding Mastic Glazing Tapes: Preformed, butyl-based, 100 percent solids elastomeric tape; nonstaining and nonmigrating in contact with nonporous surfaces; with or without spacer rod as recommended in writing by tape and glass manufacturers for application indicated; and complying with ASTM C 1281 and AAMA 800 for products indicated below:
1. AAMA 804.3 tape, where indicated.
2. AAMA 806.3 tape, for glazing applications in which tape is subject to continuous pressure.
3. AAMA 807.3 tape, for glazing applications in which tape is not subject to continuous pressure.

B. Expanded Cellular Glazing Tapes: Closed-cell, PVC foam tapes; factory coated with adhesive on both surfaces; and complying with AAMA 800 for the following types:

1. AAMA 810.1, Type 1, for glazing applications in which tape acts as the primary sealant.
2. AAMA 810.1, Type 2, for glazing applications in which tape is used in combination with a full bead of liquid sealant.

2.7 MISCELLANEOUS GLAZING MATERIALS

A. General: Provide products of material, size, and shape complying with referenced glazing standard, requirements of manufacturers of glass and other glazing materials for application indicated, and with a proven record of compatibility with surfaces contacted in installation.

B. Cleaners, Primers, and Sealers: Types recommended by sealant or gasket manufacturer.

C. Setting Blocks: Elastomeric material with a Shore, Type A durometer hardness of 85, plus or minus 5.

D. Spacers: Elastomeric blocks or continuous extrusions of hardness required by glass manufacturer to maintain glass lites in place for installation indicated.

E. Edge Blocks: Elastomeric material of hardness needed to limit glass lateral movement (side walking).

F. Cylindrical Glazing Sealant Backing: ASTM C 1330, Type O (open-cell material), of size and density to control glazing sealant depth and otherwise produce optimum glazing sealant performance.

G. Perimeter Insulation for Fire-Resistive Glazing: Product that is approved by testing agency that listed and labeled fire-resistant glazing product with which it is used for application and fire-protection rating indicated.

2.8 FABRICATION OF GLAZING UNITS

A. Fabricate glazing units in sizes required to fit openings indicated for Project, with edge and face clearances, edge and surface conditions, and bite complying with written instructions of product manufacturer and referenced glazing publications, to comply with system performance requirements.

2.9 INSULATING-GLASS TYPES

A. Glass Type GL-1: Low-e-coated, tinted insulating glass.
1. Overall Unit Thickness: 1 inch.
2. Thickness of Each Glass Lite: 6.0 mm.
3. Outdoor Lite: Tinted fully tempered float glass.
4. Interspace Content: Air.
5. Indoor Lite: Clear fully tempered float glass.
6. Low-E Coating: Pyrolytic or sputtered on third surface.
8. Winter Nighttime U-Factor: 0.29 maximum.
9. Summer Daytime U-Factor: 0.27 maximum.
10. Solar Heat Gain Coefficient: 0.36 maximum.
11. Provide safety glazing labeling.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine framing, glazing channels, and stops, with Installer present, for compliance with the following:

1. Manufacturing and installation tolerances, including those for size, squareness, and offsets at corners.
2. Presence and functioning of weep systems.
3. Minimum required face and edge clearances.
4. Effective sealing between joints of glass-framing members.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

C. Beginning installation constitutes Contractor’s acceptance of substrates and conditions.

3.2 PREPARATION

A. Clean glazing channels and other framing members receiving glass immediately before glazing. Remove coatings not firmly bonded to substrates.

B. Examine glazing units to locate exterior and interior surfaces. Label or mark units as needed so that exterior and interior surfaces are readily identifiable. Do not use materials that will leave visible marks in the completed work.

3.3 GLAZING, GENERAL

A. Comply with combined written instructions of manufacturers of glass, sealants, gaskets, and other glazing materials, unless more stringent requirements are indicated, including those in referenced glazing publications.

B. Adjust glazing channel dimensions as required by Project conditions during installation to provide necessary bite on glass, minimum edge and face clearances, and adequate sealant thicknesses, with reasonable tolerances.
C. Protect glass edges from damage during handling and installation. Remove damaged glass from Project site and legally dispose of off Project site. Damaged glass is glass with edge damage or other imperfections that, when installed, could weaken glass and impair performance and appearance.

D. Apply primers to joint surfaces where required for adhesion of sealants, as determined by preconstruction testing.

E. Install setting blocks in sill rabbets, sized and located to comply with referenced glazing publications, unless otherwise required by glass manufacturer. Set blocks in thin course of compatible sealant suitable for heel bead.

F. Do not exceed edge pressures stipulated by glass manufacturers for installing glass lites.

G. Provide spacers for glass lites where length plus width is larger than 50 inches.
 1. Locate spacers directly opposite each other on both inside and outside faces of glass. Install correct size and spacing to preserve required face clearances, unless gaskets and glazing tapes are used that have demonstrated ability to maintain required face clearances and to comply with system performance requirements.
 2. Provide 1/8-inch minimum bite of spacers on glass and use thickness equal to sealant width. With glazing tape, use thickness slightly less than final compressed thickness of tape.

H. Provide edge blocking where indicated or needed to prevent glass lites from moving sideways in glazing channel, as recommended in writing by glass manufacturer and according to requirements in referenced glazing publications.

I. Set glass lites in each series with uniform pattern, draw, bow, and similar characteristics.

J. Set glass lites with proper orientation so that coatings face exterior or interior as specified.

K. Where wedge-shaped gaskets are driven into one side of channel to pressurize sealant or gasket on opposite side, provide adequate anchorage so gasket cannot walk out when installation is subjected to movement.

L. Square cut wedge-shaped gaskets at corners and install gaskets in a manner recommended by gasket manufacturer to prevent corners from pulling away; seal corner joints and butt joints with sealant recommended by gasket manufacturer.

3.4 TAPE GLAZING

A. Position tapes on fixed stops so that, when compressed by glass, their exposed edges are flush with or protrude slightly above sightline of stops.

B. Install tapes continuously, but not necessarily in one continuous length. Do not stretch tapes to make them fit opening.

C. Cover vertical framing joints by applying tapes to heads and sills first and then to jambs. Cover horizontal framing joints by applying tapes to jambs and then to heads and sills.
D. Place joints in tapes at corners of opening with adjoining lengths butted together, not lapped. Seal joints in tapes with compatible sealant approved by tape manufacturer.

E. Do not remove release paper from tape until right before each glazing unit is installed.

F. Apply heel bead of elastomeric sealant.

G. Center glass lites in openings on setting blocks and press firmly against tape by inserting dense compression gaskets formed and installed to lock in place against faces of removable stops. Start gasket applications at corners and work toward centers of openings.

H. Apply cap bead of elastomeric sealant over exposed edge of tape.

3.5 GASKET GLAZING (DRY)

A. Cut compression gaskets to lengths recommended by gasket manufacturer to fit openings exactly, with allowance for stretch during installation.

B. Insert soft compression gasket between glass and frame or fixed stop so it is securely in place with joints miter cut and bonded together at corners.

C. Installation with Drive-in Wedge Gaskets: Center glass lites in openings on setting blocks and press firmly against soft compression gasket by inserting dense compression gaskets formed and installed to lock in place against faces of removable stops. Start gasket applications at corners and work toward centers of openings. Compress gaskets to produce a weathertight seal without developing bending stresses in glass. Seal gasket joints with sealant recommended by gasket manufacturer.

D. Installation with Pressure-Glazing Stops: Center glass lites in openings on setting blocks and press firmly against soft compression gasket. Install dense compression gaskets and pressure-glazing stops, applying pressure uniformly to compression gaskets. Compress gaskets to produce a weathertight seal without developing bending stresses in glass. Seal gasket joints with sealant recommended by gasket manufacturer.

E. Install gaskets so they protrude past face of glazing stops.

3.6 SEALANT GLAZING (WET)

A. Install continuous spacers, or spacers combined with cylindrical sealant backing, between glass lites and glazing stops to maintain glass face clearances and to prevent sealant from extruding into glass channel and blocking weep systems until sealants cure. Secure spacers or spacers and backings in place and in position to control depth of installed sealant relative to edge clearance for optimum sealant performance.

B. Force sealants into glazing channels to eliminate voids and to ensure complete wetting or bond of sealant to glass and channel surfaces.

C. Tool exposed surfaces of sealants to provide a substantial wash away from glass.
3.7 CLEANING AND PROTECTION

A. Protect glass from damage immediately after installation by attaching crossed streamers to framing held away from glass. Do not apply markers to glass surface. Remove nonpermanent labels and clean surfaces.

B. Protect glass from contact with contaminating substances resulting from construction operations. If, despite such protection, contaminating substances do come into contact with glass, remove substances immediately as recommended in writing by glass manufacturer.

C. Examine glass surfaces adjacent to or below exterior concrete and other masonry surfaces at frequent intervals during construction, but not less than once a month, for buildup of dirt, scum, alkaline deposits, or stains; remove as recommended in writing by glass manufacturer.

D. Remove and replace glass that is broken, chipped, cracked, or abraded or that is damaged from natural causes, accidents, and vandalism, during construction period.

E. Wash glass on both exposed surfaces in each area of Project not more than four days before date scheduled for inspections that establish date of Substantial Completion. Wash glass as recommended in writing by glass manufacturer.

END OF SECTION
SECTION 08 90 00

LOUVERS AND VENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Fixed, extruded-aluminum louvers.

1.3 DEFINITIONS

A. Louver Terminology: Definitions of terms for metal louvers contained in AMCA 501 apply to this Section unless otherwise defined in this Section or in referenced standards.

B. Horizontal Louver: Louver with horizontal blades; i.e., the axes of the blades are horizontal.

C. Drainable-Blade Louver: Louver with blades having gutters that collect water and drain it to channels in jambs and mullions, which carry it to bottom of unit and away from opening.

1.4 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design louvers, including comprehensive engineering analysis by a qualified professional engineer, using structural performance requirements and design criteria indicated.

B. Structural Performance: Louvers shall withstand the effects of gravity loads and the following loads and stresses within limits and under conditions indicated without permanent deformation of louver components, noise or metal fatigue caused by louver blade rattle or flutter, or permanent damage to fasteners and anchors. Wind pressures shall be considered to act normal to the face of the building.

1. Wind Loads: Determine loads based on pressures as indicated on Drawings.

C. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes, without buckling, opening of joints, overstressing of components, failure of connections, or other detrimental effects.

1. Temperature Change (Range): 120 deg F, ambient; 180 deg F, material surfaces.
D. Louver Performance Ratings: Provide louvers complying with requirements specified, as demonstrated by testing manufacturer's stock units identical to those provided, except for length and width according to AMCA 500-L.

1.5 SUBMITTALS, GENERAL

A. General: Submit all action submittals (except Samples for Verification) required by this Section concurrently.

1.6 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.
 1. For louvers specified to bear AMCA seal, include printed catalog pages showing specified models with appropriate AMCA Certified Ratings Seals.

B. Shop Drawings: For louvers and accessories. Include plans, elevations, sections, details, and attachments to other work. Show frame profiles and blade profiles, angles, and spacing.
 1. Show weep paths, gaskets, flashing, sealant, and other means of preventing water intrusion.
 2. Show mullion profiles and locations.

C. Samples for Initial Selection: For units with factory-applied color finishes.

D. Samples for Verification: For each type of metal finish required.

E. Delegated-Design Submittal: For louvers indicated to comply with structural performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.7 QUALITY ASSURANCE

A. Source Limitations: Obtain louvers and vents from single source from a single manufacturer where indicated to be of same type, design, or factory-applied color finish.

B. Welding: Qualify procedures and personnel according to the following:
 1. AWS D1.2/D1.2M, "Structural Welding Code - Aluminum."

D. Preinstallation Conference: Conduct conference at Project site.
 1. Review and discuss the finishing of aluminum that is required to be coordinated with the finishing of other aluminum work for color and finish matching.
1.8 PROJECT CONDITIONS

 A. Field Measurements: Verify actual dimensions of openings by field measurements before fabrication.

PART 2 - PRODUCTS

2.1 MATERIALS

 A. Aluminum Extrusions: ASTM B 221, Alloy 6063-T5, T-52, or T6.

 B. Aluminum Sheet: ASTM B 209, Alloy 3003 or 5005 with temper as required for forming, or as otherwise recommended by metal producer for required finish.

 D. Fasteners: Use types and sizes to suit unit installation conditions.

 1. Use Phillips flat-head screws for exposed fasteners unless otherwise indicated.

 2. For fastening aluminum, use aluminum or 300 series stainless-steel fasteners.

 3. For color-finished louvers, use fasteners with heads that match color of louvers.

 E. Postinstalled Fasteners for Concrete and Masonry: Torque-controlled expansion anchors, made from stainless-steel components, with capability to sustain, without failure, a load equal to 4 times the loads imposed, for concrete, or 6 times the load imposed, for masonry, as determined by testing per ASTM E 488, conducted by a qualified independent testing agency.

 F. Bituminous Paint: Cold-applied asphalt emulsion complying with ASTM D 1187.

2.2 FABRICATION, GENERAL

 A. Assemble louvers in factory to minimize field splicing and assembly. Disassemble units as necessary for shipping and handling limitations. Clearly mark units for reassembly and coordinated installation.

 B. Vertical Assemblies: Where height of louver units exceeds fabrication and handling limitations, fabricate units to permit field-bolted assembly with close-fitting joints in jambs and mullions, reinforced with splice plates.

 1. Continuous Vertical Assemblies: Fabricate units without interrupting blade-spacing pattern unless horizontal mullions are indicated.

 C. Maintain equal louver blade spacing, including separation between blades and frames at head and sill, to produce uniform appearance.

 D. Fabricate frames, including integral sills, to fit in openings of sizes indicated, with allowances made for fabrication and installation tolerances, adjoining material tolerances, and perimeter sealant joints.
1. Frame Type: Channel unless otherwise indicated.

E. Include supports, anchorages, and accessories required for complete assembly.

F. Provide vertical mullions of type and at spacings indicated, but not more than recommended by manufacturer, or 72 inches o.c., whichever is less.

1. Semirecessed Mullions: Where indicated, provide mullions partly recessed behind louver blades so louver blades appear continuous. Where length of louver exceeds fabrication and handling limitations, fabricate with interlocking split mullions and close-fitting blade splices designed to permit expansion and contraction.

G. Join frame members to each other and to fixed louver blades with fillet welds concealed from view unless otherwise indicated or size of louver assembly makes bolted connections between frame members necessary.

2.3 FIXED, EXTRUDED-ALUMINUM LOUVERS

A. Horizontal, Continuous-Line, Drainable-Blade Louver: Drainable-blade louver with blade gutters (drains) in rear two-thirds of blades only and with semirecessed mullions capable of collecting and draining water from blades.

1. Basis-of-Design Product: Subject to compliance with requirements, provide Arrow United Industries; a division of Mestek, Inc.; Model EA415DCL or comparable product.
2. Louver Depth: 4 inches.
3. Frame and Blade Nominal Thickness: Not less than 0.125 inch.
4. Louver Performance Ratings:
 a. Free Area: Not less than 9 sq. ft. for 48-inch-wide by 48-inch-high louver.

2.4 LOUVER SCREENS

A. General: Provide screen at each exterior louver.

1. Screen Location for Fixed Louvers: Interior face.
2. Screening Type: Bird screening.

B. Secure screen frames to louver frames with stainless-steel machine screws, spaced a maximum of 6 inches from each corner and at 12 inches o.c.

C. Louver Screen Frames: Fabricate with mitered corners to louver sizes indicated.

1. Metal: Same kind and form of metal as indicated for louver to which screens are attached. Reinforce extruded-aluminum screen frames at corners with clips.
2. Finish: Same finish as louver frames to which louver screens are attached.

D. Louver Screening for Aluminum Louvers:

1. Bird Screening: Aluminum, 1/2-inch-square mesh, 0.063-inch wire.
2.5 BLANK-OFF PANELS

A. Insulated, Blank-Off Panels: Laminated panels consisting of insulating core surfaced on back and front with metal sheets and attached to back of louver.

1. Thickness: 2 inches.
2. Metal Facing Sheets: Aluminum sheet, not less than 0.025-inch nominal thickness.
3. Insulating Core: Extruded-polystyrene foam.
4. Seal perimeter joints between panel faces and louver frames with gaskets or sealant.
5. Panel Finish: Same type of finish applied to louvers, but black color.
6. Attach blank-off panels with clips.

2.6 FINISHES, GENERAL

A. Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.

2.7 ALUMINUM FINISHES

A. Finish louvers after assembly.

B. High-Performance Organic Finish: 2-coat fluoropolymer finish complying with AAMA 2605 and containing not less than 70 percent PVDF resin by weight in color coat. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers' written instructions.

1. Color and Gloss: As selected by Architect from manufacturer's full range.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and openings, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

C. Beginning installation constitutes Contractor’s acceptance of substrates and conditions.

3.2 PREPARATION

A. Coordinate setting drawings, diagrams, templates, instructions, and directions for installation of anchorages that are to be embedded in concrete or masonry construction. Coordinate delivery of such items to Project site.
3.3 INSTALLATION

A. Locate and place louvers and vents level, plumb, and at indicated alignment with adjacent work.

B. Use concealed anchorages where possible. Provide brass or lead washers fitted to screws where required to protect metal surfaces and to make a weathertight connection.

C. Form closely fitted joints with exposed connections accurately located and secured.

D. Provide perimeter reveals and openings of uniform width for sealants and joint fillers, as indicated.

E. Repair finishes damaged by cutting, welding, soldering, and grinding. Restore finishes so no evidence remains of corrective work. Return items that cannot be refinished in the field to the factory, make required alterations, and refinish entire unit or provide new units.

F. Protect unpainted galvanized and nonferrous-metal surfaces that will be in contact with concrete, masonry, or dissimilar metals from corrosion and galvanic action by applying a heavy coating of bituminous paint or by separating surfaces with waterproof gaskets or nonmetallic flashing.

G. Install concealed gaskets, flashings, joint fillers, and insulation as louver installation progresses, where weathertight louver joints are required. Comply with Division 07 Section "Joint Sealants" for sealants applied during louver installation.

3.4 ADJUSTING AND CLEANING

A. Clean exposed surfaces of louvers and vents that are not protected by temporary covering, to remove fingerprints and soil during construction period. Do not let soil accumulate during construction period.

B. Before final inspection, clean exposed surfaces with water and a mild soap or detergent not harmful to finishes. Thoroughly rinse surfaces and dry.

C. Restore louvers and vents damaged during installation and construction so no evidence remains of corrective work. If results of restoration are unsuccessful, as determined by Architect, remove damaged units and replace with new units.

1. Touch up minor abrasions in finishes with air-dried coating that matches color and gloss of, and is compatible with, factory-applied finish coating.

END OF SECTION
SECTION 09 21 16.23

GYPSUM BOARD SHAFT WALL ASSEMBLIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes: Gypsum board shaft wall assemblies.

1.3 SUBMITTALS, GENERAL

A. General: Submit all action submittals required by this Section concurrently.

1.4 ACTION SUBMITTALS

A. Product Data: For each component of gypsum board shaft wall assembly.

1. Gypsum shaftliner board, moisture- and mold-resistant type X.
3. Steel drill screws.
4. Track fasteners.

B. LEED Submittals:

1. Product Data for Credit MR 4: For products having recycled content, documentation indicating percentages by weight of postconsumer and preconsumer recycled content. Include statement indicating cost for each product having recycled content.
2. Product Certificates for Credit MR 5: For products and materials required to comply with requirements for regional materials, certificates indicating location of material manufacturer and point of extraction, harvest, or recovery for each raw material. Include statement indicating distance to Project, cost for each regional material, and fraction by weight that is considered regional.
3. Laboratory Test Reports for Credit EQ 4: For gypsum board shaft wall systems, documentation indicating that products comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
1.5 QUALITY ASSURANCE
 A. Preinstallation Conference: Conduct conference at Project site.

1.6 DELIVERY, STORAGE, AND HANDLING
 A. Store materials inside under cover and keep them dry and protected against weather, condensation, direct sunlight, construction traffic, and other potential causes of damage. Stack panels flat and supported on risers on a flat platform to prevent sagging.

1.7 FIELD CONDITIONS
 A. Environmental Limitations: Comply with ASTM C 840 requirements or with gypsum board manufacturer's written recommendations, whichever are more stringent.
 B. Do not install interior products until installation areas are enclosed and conditioned.
 C. Do not install panels that are wet, moisture damaged, or mold damaged.
 1. Indications that panels are wet or moisture damaged include, but are not limited to, discoloration, sagging, and irregular shape.
 2. Indications that panels are mold damaged include, but are not limited to, fuzzy or splotchy surface contamination and discoloration.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
 A. Fire-Resistance-Rated Assemblies: For fire-resistance-rated assemblies, provide materials and construction identical to those tested in assembly indicated according to ASTM E 119 by an independent testing agency.
 B. STC-Rated Assemblies: Provide materials and construction identical to those of assemblies tested according to ASTM E 90 and classified according to ASTM E 413 by a testing and inspecting agency.
 C. Low-Emitting Materials: Gypsum shaft wall assemblies shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.2 GYPSUM BOARD SHAFT WALL ASSEMBLIES
 A. Fire-Resistance Rating: As indicated.
 B. STC Rating: As indicated.
C. Studs: Manufacturer's standard profile for repetitive members, corner and end members, and fire-resistance-rated assembly indicated.
 1. Depth: As indicated.
 2. Minimum Base-Metal Thickness: 0.033 inch.

D. Runner Tracks: Manufacturer's standard J-profile track with manufacturer's standard long-leg length, but at least 2 inches long and matching studs in depth.
 1. Minimum Base-Metal Thickness: 0.033 inch.

E. Elevator Hoistway Entrances: Manufacturer's standard J-profile jamb strut with long-leg length of 3 inches, matching studs in depth, and not less than 0.033 inch thick.

F. Insulation: Sound attenuation blankets.

2.3 PANEL PRODUCTS

A. Recycled Content of Gypsum Panel Products: Postconsumer recycled content plus one-half of preconsumer recycled content not less than <Insert number> percent by weight.

B. Regional Materials: Gypsum panel products shall be manufactured within 500 miles of Project site from materials that have been extracted, harvested, or recovered, as well as manufactured, within 500 miles of Project site.

C. Panel Size: Provide in maximum lengths and widths available that will minimize joints in each area and that correspond with support system indicated.

D. Gypsum Shaftliner Board, Moisture- and Mold-Resistant Type X: ASTM C 1396/C 1396M; manufacturer's proprietary fire-resistive liner panels with moisture- and mold-resistant core and surfaces.
 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. CertainTeed Corp.; ProRoc Moisture and Mold Resistant Shaftliner.
 b. National Gypsum Company; Gold Bond Brand Fire-Shield Shaftliner XP.
 c. USG Corporation; Sheetrock Brand Mold Tough Gypsum Liner Panel.
 2. Thickness: 1 inch.
 4. Mold Resistance: ASTM D 3273, score of 10 as rated according to ASTM D 3274.

E. Gypsum Board: As specified in Section 09 29 00 "Gypsum Board."

F. Gypsum Base for Gypsum Veneer Plaster: As specified in Section 09 26 13 "Gypsum Veneer Plastering."

G. Cementitious Backer Units: As specified in Section 09 29 00 "Gypsum Board."
2.4 NON-LOAD-BEARING STEEL FRAMING

A. Recycled Content of Steel: Postconsumer recycled content plus one-half of preconsumer recycled content not less than \[25\] \(<\text{Insert number}>\) percent.

B. Steel Framing Members: Comply with ASTM C 645 requirements for metal unless otherwise indicated.

2.5 AUXILIARY MATERIALS

A. General: Provide auxiliary materials that comply with manufacturer's written recommendations.

B. Trim Accessories: Cornerbead, edge trim, and control joints of material and shapes as specified in [Section 09 29 00 "Gypsum Board"] [Section 09 26 13 "Gypsum Veneer Plastering"] that comply with gypsum board shaft wall assembly manufacturer's written recommendations for application indicated.

C. Steel Drill Screws: ASTM C 1002 unless otherwise indicated.

D. Track Fasteners: Power-driven fasteners of size and material required to withstand loading conditions imposed on shaft wall assemblies without exceeding allowable design stress of track, fasteners, or structural substrates in which anchors are embedded.

E. Sound Attenuation Blankets: As specified in [Section 09 29 00 "Gypsum Board."] [Section 09 26 13 "Gypsum Veneer Plastering."

F. Acoustical Sealant: As specified in [Section 09 29 00 "Gypsum Board."] [Section 09 26 13 "Gypsum Veneer Plastering."

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates to which gypsum board shaft wall assemblies attach or abut, with Installer present, including hollow-metal frames, elevator hoistway door frames, cast-in anchors, and structural framing. Examine for compliance with requirements for installation tolerances and other conditions affecting performance.

B. Examine panels before installation. Reject panels that are wet, moisture damaged, or mold damaged.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

D. Beginning installation constitutes Contractor's acceptance of substrates and conditions.
3.2 PREPARATION

A. Sprayed Fire-Resistive Materials: Coordinate with gypsum board shaft wall assemblies so both elements of Work remain complete and undamaged. Patch or replace sprayed fire-resistive materials removed or damaged during installation of shaft wall assemblies to comply with requirements specified in Section 07 81 00 "Applied Fireproofing."

B. After sprayed fire-resistive materials are applied, remove only to extent necessary for installation of gypsum board shaft wall assemblies and without reducing the fire-resistive material thickness below that which is required to obtain fire-resistance rating indicated. Protect remaining fire-resistive materials from damage.

3.3 PRE-ENCLOSURE REVIEW

A. Notify Architect prior to applying panels to allow observation of framing installation.

3.4 INSTALLATION

A. General: Install gypsum board shaft wall assemblies to comply with requirements of fire-resistance-rated assemblies indicated, manufacturer's written installation instructions, and ASTM C 754 other than stud-spacing requirements.

B. Do not bridge building expansion joints with shaft wall assemblies; frame both sides of expansion joints with furring and other support.

C. Install supplementary framing in gypsum board shaft wall assemblies around openings and as required for blocking, bracing, and support of gravity and pullout loads of fixtures, equipment, services, heavy trim, furnishings, wall-mounted door stops, and similar items that cannot be supported directly by shaft wall assembly framing.

1. Elevator Hoistway: At elevator hoistway-entrance door frames, provide jamb struts on each side of door frame.

2. Reinforcing: Where items directly attach to gypsum board shaft wall assemblies, provide galvanized steel reinforcing strip with 0.054-inch minimum thickness of base metal (uncoated), accurately positioned and secured behind at least one layer of face panel.

D. Penetrations: At penetrations in shaft wall, maintain fire-resistance rating of shaft wall assembly by installing supplementary steel framing around perimeter of penetration and fire protection behind boxes containing wiring devices, elevator call buttons, elevator floor indicators, and similar items.

E. Isolate perimeter of gypsum panels from building structure to prevent cracking of panels, while maintaining continuity of fire-rated construction.

F. Control Joints: Install control joints according to ASTM C 840 and in specific locations approved by Architect while maintaining fire-resistance rating of gypsum board shaft wall assemblies.
G. Sound-Rated Shaft Wall Assemblies: Seal gypsum board shaft walls with acoustical sealant at perimeter of each assembly where it abuts other work and at joints and penetrations within each assembly.

H. Cant Panels: At projections into shaft exceeding 4 inches or where indicated, install 1/2- or 5/8-inch- thick gypsum board cants covering tops of projections. No recesses allowed (at steel beams especially).

 1. Slope cant panels at least 75 degrees from horizontal. Set base edge of panels in adhesive and secure top edges to shaft walls at 24 inches o.c. with screws fastened to shaft wall framing.
 2. Where steel framing is required to support gypsum board cants, install framing at 24 inches o.c. and extend studs from the projection to shaft wall framing.

I. Installation Tolerance: Install each framing member so fastening surfaces vary not more than 1/8 inch from the plane formed by faces of adjacent framing.

3.5 PROTECTION

A. Protect installed products from damage from weather, condensation, direct sunlight, construction, and other causes during remainder of the construction period.

B. Remove and replace panels that are wet, moisture damaged, or mold damaged.

 1. Indications that panels are wet or moisture damaged include, but are not limited to, discoloration, sagging, and irregular shape.
 2. Indications that panels are mold damaged include, but are not limited to, fuzzy or splotchy surface contamination and discoloration.

END OF SECTION
SECTION 09 96 00 – HIGH-PERFORMANCE COATINGS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes surface preparation and application of high-performance coating systems, for the following:
 1. General use interior applications.

1.3 SUBMITTALS, GENERAL
 A. General: Submit all action submittals (except Samples for Verification) and informational submittals required by this Section concurrently.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of product for substrates indicated. Include preparation requirements and application instructions. Include all paint products under one cover sheet.
 1. Interior concrete floors in mechanical rooms.
 B. Samples for Initial Selection: For each type of topcoat product indicated.
 C. Samples for Verification: For each type of coating system and in each color and gloss of topcoat indicated.
 1. Submit Samples on rigid backing, 8 inches square.
 2. Step coats on Samples to show each coat required for system.
 3. Label each coat of each Sample.
 4. Label each Sample for location and application area.
 D. Product List: For each product indicated, include the following:
 1. Cross-reference to paint system and locations of application areas. Use same designations indicated on Drawings and in schedules.
 2. VOC content.
 E. Coatings Maintenance Manual:
1. Upon conclusion of the project, the contractor or paint manufacture/supplier shall furnish a coatings maintenance manual such as Sherwin Williams “Custodian Project Color and Product Information” report. Manual shall include an Area Summary with finish schedule, Area Detail designating where each product/color/finish was used, product data pages, Material Safety Data Sheets, care and cleaning instructions. Touch up procedures and color samples of each color and finish used. All information contained in a self-bound 3 ring hole punched catalog.

1.5 QUALITY ASSURANCE

A. Qualification Data: For applicator.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials, from the same product run, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Coatings: 10 percent, but not less than 1 gal. of each material and color applied.

1.7 QUALITY ASSURANCE

A. Applicator Qualifications: A firm or individual, experienced in applying high performance coatings specified in this Section, who has successfully completed a minimum of five previous projects similar in nature, size, and extent to this Project; familiar with special requirements indicated; and with sufficient trained staff to apply manufacturer's products according to specified requirements.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Store materials in tightly covered containers in well-ventilated areas with ambient temperatures continuously maintained at not less than 45 deg F.

1. Maintain containers in clean condition, free of foreign materials and residue.
2. Remove rags and waste from storage areas daily.

1.9 FIELD CONDITIONS

A. Apply coatings only when temperature of surfaces to be coated and surrounding air temperatures are between 50 and 95 deg F.

B. Do not apply coatings when relative humidity exceeds 85 percent; at temperatures less than 5 deg F above the dew point; or to damp or wet surfaces.

C. Do not apply exterior coatings in snow, rain, fog, or mist.

D. Lighting: Do not install high-performance coatings until a lighting level of not less than 80 fc is provided on the surfaces to receive coating.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Benjamin Moore & Co.
2. Sherwin-Williams Company (The).
3. Tnemec Inc.

B. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to products listed in Part 3 articles for the application indicated.

2.2 HIGH PERFORMANCE COATINGS, GENERAL

A. Material Compatibility:

1. Provide materials for use within each coating system that are compatible with one another and substrates indicated, under conditions of service and application as demonstrated by manufacturer, based on testing and field experience.

2. For each coat in a coating system, provide products recommended in writing by manufacturers of topcoat for use in coating system and on substrate indicated.

3. Provide products of same manufacturer for each coat in a coating system.

B. Colors: As selected by Architect from manufacturer's full range.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions, with Applicator present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.

1. Maximum Moisture Content of Substrates: When measured with an electronic moisture meter as follows:

 a. Concrete: 12 percent.
 b. Masonry (Clay and CMU): 12 percent.
 c. Wood: 15 percent.
 d. Gypsum Board: 12 percent.
 e. Plaster: 8 percent.

B. Gypsum Board Substrates: Verify that finishing compound is sanded smooth.
C. Plaster Substrates: Verify that plaster is fully cured.

D. Verify suitability of substrates, including surface conditions and compatibility with existing finishes and primers.

E. Proceed with coating application only after unsatisfactory conditions have been corrected.
 1. Beginning coating application constitutes Contractor's acceptance of substrates and conditions.

3.2 PREPARATION

A. Remove hardware, covers, plates, and similar items already in place that are removable and are not to be painted. If removal is impractical or impossible because of size or weight of item, provide surface-applied protection before surface preparation and painting.
 1. After completing painting operations, use workers skilled in the trades involved to reinstall items that were removed. Remove surface-applied protection.

B. Clean substrates of substances that could impair bond of coatings, including dust, dirt, oil, grease, and incompatible paints and encapsulants.
 1. Remove incompatible primers and reprime substrate with compatible primers or apply tie coat as required to produce coating systems indicated.

C. Concrete Substrates: Remove release agents, curing compounds, efflorescence, and chalk. Do not coat surfaces if moisture content or alkalinity of surfaces to be coated exceeds that permitted in manufacturer's written instructions.

D. Concrete Floors: Prepare by diamond grinding, whip blasting, or mechanical shot blasting, as recommended by coating manufacturer.

E. Masonry Substrates: Remove efflorescence and chalk. Do not coat surfaces if moisture content or alkalinity of surfaces or if alkalinity of mortar joints exceed that permitted in manufacturer's written instructions.

F. Steel Substrates: Remove rust, loose mill scale, and shop primer if any. Clean using methods recommended in writing by paint manufacturer but not less than the following:
 1. SSPC-SP 6/NACE No. 3, "Commercial Blast Cleaning."
 2. SSPC-SP 10/NACE No. 2, "Near-White Blast Cleaning."

G. Shop-Primed Steel Substrates: Clean field welds, bolted connections, and abraded areas of shop paint, and paint exposed areas with the same material as used for shop priming to comply with SSPC-PA 1 for touching up shop-primed surfaces.

H. Galvanized-Metal Substrates: Remove grease and oil residue from galvanized sheet metal using bio-degradable detergent. Then abrasive blast with fine abrasive to produce clean, lightly etched surfaces that promote adhesion of subsequently applied coatings.
I. Aluminum Substrates: Remove loose surface oxidation by scarification.

J. Wood Substrates:
 1. Scrape and clean knots. Before applying primer apply coat of knot sealer recommended in writing by topcoat manufacturer for coating system indicated.
 2. Sand surfaces that will be exposed to view and dust off.
 3. Prime edges, ends, faces, undersides, and back sides of wood.
 4. After priming, fill holes and imperfections in the finish surfaces with putty or plastic wood filler. Sand smooth when dried.

K. Galvanized Metal/Galvanized Deck- Factory Primed Surface: Coordinate with approved paint manufacturer on compatibility of paint finish coats to factory prime surface.

L. After removing all surface contamination, the surface should be scuff sanded or scrubbed with an abrasive cleaner to dull the surface for best adhesion.

3.3 APPLICATION

A. Apply high-performance coatings according to manufacturer's written instructions.
 1. Use applicators and techniques suited for coating and substrate indicated.
 2. Coat surfaces behind movable equipment and furniture same as similar exposed surfaces. Before final installation, coat surfaces behind permanently fixed equipment or furniture with prime coat only.
 3. Coat back sides of access panels, removable or hinged covers, and similar hinged items to match exposed surfaces.
 4. Do not apply coatings over labels of independent testing agencies or equipment name, identification, performance rating, or nomenclature plates.

B. Tint each undercoat a lighter shade to facilitate identification of each coat if multiple coats of the same material are to be applied. Tint undercoats to match color of finish coat, but provide sufficient difference in shade of undercoats to distinguish each separate coat.

C. If undercoats or other conditions show through final coat, apply additional coats until cured film has a uniform coating finish, color, and appearance.

D. Apply coatings to produce surface films without cloudiness, spotting, holidays, laps, brush marks, runs, sags, ropiness, or other surface imperfections. Produce sharp glass lines and color breaks.

3.4 FIELD QUALITY CONTROL

A. Dry Film Thickness Testing: Owner will engage the services of a qualified testing and inspecting agency to inspect and test coatings for dry film thickness.
1. Contractor shall touch up and restore coated surfaces damaged by testing.

2. If test results show that dry film thickness of applied coating does not comply with coating manufacturer's written recommendations, Contractor shall pay for testing and apply additional coats as needed to provide dry film thickness that complies with coating manufacturer's written recommendations.

3.5 CLEANING AND PROTECTION

A. At end of each workday, remove rubbish, empty cans, rags, and other discarded materials from Project site.

B. After completing coating application, clean spattered surfaces. Remove spattered coatings by washing, scraping, or other methods. Do not scratch or damage adjacent finished surfaces.

C. Protect work of other trades against damage from coating operation. Correct damage by cleaning, repairing, replacing, and recoating, as approved by Architect, and leave in an undamaged condition.

D. At completion of construction activities of other trades, touch up and restore damaged or defaced coated surfaces.

3.6 INTERIOR HIGH PERFORMANCE COATING SCHEDULE: GENERAL USE

A. Concrete Floors in Mechanical Rooms:

1. First Coat:
 a. Benjamin Moore & Co. Corotech V160-1 Epoxy Mastic Coating @4.6-7.2 DFT
 b. Sherwin-Williams Company (The); Macropoxy 646-100 Fast Cure Epoxy B58-620 Series at 5.0-10.0 mils DFT.
 c. Tnemec Inc.; Series L69 Hi-Build Epoxoline II at 3.0 to 5.0 mils DFT.

2. Second Coat:
 a. Benjamin Moore & Co. Corotech V160-1 Epoxy Mastic Coating @4.6-7.2 DFT
 b. Sherwin-Williams Company (The); Macropoxy 646-100 Fast Cure Epoxy B58-620 Series at 5.0-10.0 mils DFT.
 c. Tnemec Inc.; Series L69 Hi-Build Epoxoline II at 3.0 to 5.0 mils DFT.

3. Third Coat:
 a. Benjamin Moore & Co. Corotech V160-1 Epoxy Mastic Coating @4.6-7.2 DFT
 b. Sherwin-Williams Company (The); Macropoxy 646-100 Fast Cure Epoxy B58-620 Series at 5.0-10.0 mils DFT.
 c. Tnemec Inc.; Series L69 Hi-Build Epoxoline II at 3.0 to 5.0 mils DFT.

END OF SECTION
DELAWARE TECHNICAL COMMUNITY COLLEGE AIR HANDLING UNIT REPLACEMENT
GEORGE CAMPUS - EAST BUILDING WILMINGTON, DELAWARE

SECTION 21 13 13
WET-PIPE SPRINKLER SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Pipes, fittings, and specialties.
 2. Sprinklers.

1.3 DEFINITIONS
A. Standard-Pressure Sprinkler Piping: Wet-pipe sprinkler system piping designed to operate at working pressure of 175-psig maximum.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Shop Drawings: For wet-pipe sprinkler systems.
 1. Include plans, elevations, sections, and attachment details.
 2. Include diagrams for power, signal, and control wiring.

C. Delegated-Design Submittal: For wet-pipe sprinkler systems indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.5 INFORMATIONAL SUBMITTALS
A. Coordination Drawings: Sprinkler systems, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 Ductwork.
HVAC hydronic piping.

Lighting fixtures.

B. Qualification Data: For qualified Installer.

C. Approved Sprinkler Piping Drawings: Working plans, prepared according to NFPA 13, that have been approved by authorities having jurisdiction, including hydraulic calculations if applicable.

D. Welding certificates.

E. Field Test Reports and Certificates: Indicate and interpret test results for compliance with performance requirements and as described in NFPA 13. Include "Contractor's Material and Test Certificate for Aboveground Piping."

F. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For wet-pipe sprinkler systems and specialties to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE

A. Installer Qualifications:

1. Installer's responsibilities include designing, fabricating, and installing sprinkler systems and providing professional engineering services needed to assume engineering responsibility. Base calculations on results of fire-hydrant flow test.

a. Engineering Responsibility: Preparation of working plans, calculations, and field test reports by a qualified professional engineer.

B. Welding Qualifications: Qualify procedures and operators according to 2010 ASME Boiler and Pressure Vessel Code.

1.8 FIELD CONDITIONS

A. Interruption of Existing Sprinkler Service: Do not interrupt sprinkler service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary sprinkler service according to requirements indicated:

1. Notify Construction Manager no fewer than two days in advance of proposed interruption of sprinkler service.

2. Do not proceed with interruption of sprinkler service without Construction Manager's written permission.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Sprinkler system equipment, specialties, accessories, installation, and testing shall comply with the following:
 2. NFPA 13R.

B. Standard-Pressure Piping System Component: Listed for 175-psig minimum working pressure.

C. Delegated Design: Engage a qualified professional engineer, as defined in Section 01 40 00 "Quality Requirements," to design wet-pipe sprinkler systems.
 1. Sprinkler system design shall be approved by authorities having jurisdiction.
 a. Sprinkler Occupancy Hazard Classifications:
 1) Mechanical Equipment Rooms: Ordinary Hazard, Group 1.

2.2 STEEL PIPE AND FITTINGS

A. Standard-Weight, Black-Steel Pipe: ASTM A 53/A 53M, Type E, Grade B. Pipe ends may be factory or field formed to match joining method.

C. Uncoated-Steel Couplings: ASTM A 865/A 865M, threaded.

D. Malleable- or Ductile-Iron Unions: UL 860.

F. Grooved-Joint, Steel-Pipe Appurtenances:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Anvil International.
 b. National Fittings, Inc.
 c. Shurjoint Piping Products USA Inc.
 d. Smith-Cooper International.
 e. Tyco Fire Products LP.
 f. Victaulic Company.

4. Grooved-End-Pipe Couplings for Steel Piping: AWWA C606 and UL 213 rigid pattern, unless otherwise indicated, for steel-pipe dimensions. Include ferrous housing sections, EPDM-rubber gasket, and bolts and nuts.

G. Steel Pressure-Seal Fittings: UL 213, FM Global-approved, 175-psig pressure rating with steel housing, rubber O-rings, and pipe stop; for use with fitting manufacturers’ pressure-seal tools.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Victaulic Company.

2.3 SPRINKLER PIPING SPECIALTIES

A. Branch Outlet Fittings:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Anvil International.
 b. National Fittings, Inc.
 c. Shurjoint Piping Products USA Inc.
 d. Tyco Fire Products LP.
 e. Victaulic Company.

5. Type: Mechanical-tee and -cross fittings.

6. Configurations: Snap-on and strapless, ductile-iron housing with branch outlets.

7. Size: Of dimension to fit onto sprinkler main and with outlet connections as required to match connected branch piping.

8. Branch Outlets: Grooved, plain-end pipe, or threaded.

B. Adjustable Drop Nipples:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Aegis Technologies, Inc.
 b. CECA, LLC.
 c. Corcoran Piping System Co.
 d. Merit Manufacturing.

5. Size: Same as connected piping.
7. Inlet and Outlet: Threaded.

2.4 SPRINKLERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2. Reliable Automatic Sprinkler Co., Inc. (The).
 3. Tyco Fire Products LP.
 4. Venus Fire Protection Ltd.
 5. Victaulic Company.

B. Listed in UL's "Fire Protection Equipment Directory" or FM Global's "Approval Guide."

C. Pressure Rating for Automatic Sprinklers: 175-psig minimum.

D. Automatic Sprinklers with Heat-Responsive Element:
 2. Nonresidential Applications: UL 199.
 3. Characteristics: Nominal 1/2-inch orifice with Discharge Coefficient K of 5.6, and for "Ordinary" temperature classification rating unless otherwise indicated or required by application.

E. Sprinkler Finishes: Chrome plated.

F. Sprinkler Escutcheons: Materials, types, and finishes for the following sprinkler mounting applications. Escutcheons for concealed, flush, and recessed-type sprinklers are specified with sprinklers.

G. Sprinkler Guards:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Reliable Automatic Sprinkler Co., Inc. (The).
 b. Tyco Fire Products LP.
 c. Victaulic Company.
 d. Viking Corporation.
 2. Standard: UL 199.
 3. Type: Wire cage with fastening device for attaching to sprinkler.
PART 3 - EXECUTION

3.1 PREPARATION
 A. Perform fire-hydrant flow test according to NFPA 13 and NFPA 291. Use results for system design calculations required in "Quality Assurance" Article.
 B. Report test results promptly and in writing.

3.2 SERVICE-ENTRANCE PIPING
 A. Connect sprinkler piping to water-service piping for service entrance to building. Comply with requirements for exterior piping in Section 21 11 00 "Facility Fire-Suppression Water-Service Piping" for exterior piping.

3.3 WATER-SUPPLY CONNECTIONS
 A. Connect sprinkler piping to building's interior water-distribution piping. Comply with requirements for interior piping in Section 22 11 16 "Domestic Water Piping."
 B. Install shutoff valve, check valve, pressure gage, and drain at connection to water supply.

3.4 PIPING INSTALLATION
 A. Locations and Arrangements: Drawing plans, schematics, and diagrams indicate general location and arrangement of piping. Install piping as indicated on approved working plans.
 1. Deviations from approved working plans for piping require written approval from authorities having jurisdiction. File written approval with Architect before deviating from approved working plans.
 2. Coordinate layout and installation of sprinklers with other construction that penetrates ceilings, including light fixtures, HVAC equipment, and partition assemblies.
 B. Piping Standard: Comply with NFPA 13 requirements for installation of sprinkler piping.
 C. Install seismic restraints on piping. Comply with NFPA 13 requirements for seismic-restraint device materials and installation.
 D. Use listed fittings to make changes in direction, branch takeoffs from mains, and reductions in pipe sizes.
 E. Install unions adjacent to each valve in pipes NPS 2 and smaller.
 F. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.
 G. Install sprinkler piping with drains for complete system drainage.
H. Install sprinkler control valves, test assemblies, and drain risers adjacent to standpipes when sprinkler piping is connected to standpipes.

I. Install hangers and supports for sprinkler system piping according to NFPA 13. Comply with requirements for hanger materials in NFPA 13. In seismic-rated areas, refer to Section 21 05 48 "Vibration and Seismic Controls for Fire-Suppression Piping and Equipment."

J. Fill sprinkler system piping with water.

K. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 21 05 17 "Sleeves and Sleeve Seals for Fire-Suppression Piping."

3.5 JOINT CONSTRUCTION

A. Install couplings, flanges, flanged fittings, unions, nipples, and transition and special fittings that have finish and pressure ratings same as or higher than system's pressure rating for aboveground applications unless otherwise indicated.

B. Install unions adjacent to each valve in pipes NPS 2 and smaller.

C. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.

D. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

E. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

F. Flanged Joints: Select appropriate gasket material in size, type, and thickness suitable for water service. Join flanges with gasket and bolts according to ASME B31.9.

G.Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.

H. Steel-Piping, Pressure-Sealed Joints: Join lightwall steel pipe and steel pressure-seal fittings with tools recommended by fitting manufacturer.

I. Steel-Piping, Cut-Grooved Joints: Cut square-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe joints.

J. Steel-Piping, Roll-Grooved Joints: Roll rounded-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe grooved joints.
K. Steel-Piping, Pressure-Sealed Joints: Join Schedule 5 steel pipe and steel pressure-seal fittings with tools recommended by fitting manufacturer.

3.6 SPRINKLER INSTALLATION

A. Install dry-type sprinklers with water supply from heated space. Do not install pendent or sidewall, wet-type sprinklers in areas subject to freezing.

B. Install sprinklers into flexible, sprinkler hose fittings, and install hose into bracket on ceiling grid.

3.7 IDENTIFICATION

A. Install labeling and pipe markers on equipment and piping according to requirements in NFPA 13.

3.8 FIELD QUALITY CONTROL

A. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

1. Leak Test: After installation, charge systems and test for leaks. Repair leaks and retest until no leaks exist.
2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
3. Flush, test, and inspect sprinkler systems according to NFPA 13, "Systems Acceptance" Chapter.
4. Energize circuits to electrical equipment and devices.
5. Coordinate with fire-alarm tests. Operate as required.
6. Coordinate with fire-pump tests. Operate as required.
7. Verify that equipment hose threads are same as local fire department equipment.

B. Sprinkler piping system will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports.

3.9 CLEANING

A. Clean dirt and debris from sprinklers.

B. Only sprinklers with their original factory finish are acceptable. Remove and replace any sprinklers that are painted or have any other finish than their original factory finish.

3.10 PIPING SCHEDULE

A. Sprinkler specialty fittings may be used, downstream of control valves, instead of specified fittings.
B. Standard-pressure, wet-pipe sprinkler system, NPS 2 and smaller, shall be the following:
 1. Schedule 30], black-steel pipe with cut- or roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.

3.11 SPRINKLER SCHEDULE

A. Use sprinkler types in subparagraphs below for the following applications:
 1. Rooms without Ceilings: Upright sprinklers.

B. Provide sprinkler types in subparagraphs below with finishes indicated.
 1. Concealed Sprinklers: Rough brass, with factory-painted white cover plate.
 2. Flush Sprinklers: Bright chrome, with painted white escutcheon.
 3. Recessed Sprinklers: Bright chrome, with bright chrome escutcheon.
 4. Residential Sprinklers: Dull chrome.
 5. Pendent Sprinklers: Chrome plated in finished spaces exposed to view; rough bronze in unfinished spaces not exposed to view; wax coated where exposed to acids, chemicals, or other corrosive fumes.

END OF SECTION
SECTION 23 00 00

GENERAL REQUIREMENTS MECHANICAL AND ELECTRICAL

PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. Work under this Section is subject to the requirements of the Contract Documents, including the Drawings, General and Supplementary Conditions, and Division 1 of the Specifications.

B. This section is hereby made a part of all other sections of Division 23 & 26 as fully as if repeated in each therein.

1.2 GENERAL PROVISIONS

A. The conditions of Division 1 GENERAL REQUIREMENTS apply to each and every Contract and Contractor or other person or persons supplying any material or labor entering this building, either directly or indirectly.

B. Mechanical and Electrical Contractors are bound by provisions of Conditions as described above.

C. Three (3) Sub-Contractors will be covered by these General Requirements. They are:
 1. Heating, Ventilating and Air Conditioning.
 2. Electrical.
 3. ATC (Direct Digital Controls).

D. For simplicity, these Sub-Contracts and Sub-Contractors will be referred to further herein as the HVAC, DDC Controls and Electrical Contracts or Contractors.

E. The term "Mechanical Contractor" shall mean the HVAC, Plumbing, Fire Suppression and DDC Controls Contractors.

1.3 DESCRIPTION

A. The Drawings and Specifications shall be understood to cover systems of Plumbing, Fire Protection, Heating, Ventilation and Air Conditioning, Temperature Control, and Insulation and Pipe Covering as shown on the drawings and as specified. The drawings and specifications are to be taken together. Work specified and not shown, or work shown and not specified, shall be as binding as though required by both, the drawings and specifications.

B. Minor items and accessories or devices reasonably inferable as necessary to the complete and proper operation of any system shall be provided for such systems, whether or not they are specifically called for by the specifications or the drawings.
1.4 DEFINITIONS
A. Exposed: Open to view inside the building.
B. Concealed: Any piping, ductwork or equipment not considered exposed to view. For example, spaces between ceiling and floor construction above; between double walls; furred-in areas; pipe and duct shafts, etc.
C. Conditioned: Forced supply or return air, which has been heated or cooled.
E. Fixture Runout: Branch pipe connection to a terminal unit.
F. Mechanical Equipment Room: Any room or confined space, such as a penthouse, pump room, fan room, or service room, where mechanical equipment is located.
G. “Where exposed to people’s contact” (Not including maintenance personnel): Being capable of being reached without the use of a ladder.
H. Exposed: In plain view of the end-user and occupants of any space other than mechanical or service spaces.

1.5 DRAWINGS AND SPECIFICATIONS
A. It is the intent of the specifications and drawings to include under each item all materials, apparatus and labor necessary to properly install, equip, adjust and put into perfect operation the respective portions of the installations specified and to so interconnect the various items or sections of the work as to form a complete and properly operating whole.
B. Any apparatus, machinery or small items not mentioned in detail which may be found necessary to complete or perfect any portion of the installation in a substantial manner and in compliance with the requirements stated, implied or intended shall be furnished without extra cost to the Owner. This shall include all materials, devices or methods peculiar to the machinery, apparatus or systems furnished and installed by the HVAC, Plumbing, DDC Controls and Electrical Contractors.
C. In referring to drawings, figured dimensions take precedence over scale measurements. Discrepancies must be referred to the Engineer for decision. Each Contractor shall certify and verify all dimensions before ordering material or commencing work.
D. Any work called for in the specifications, but not mentioned or shown on the drawings, or called for on the drawings, but not mentioned in the specifications, shall be furnished as though called for in both.
E. When any device or part of equipment is herein referred to in the singular number, such as “the pump” such reference shall be deemed to apply to as many such devices as required to complete the installation.
F. The term "Provide" shall mean "Furnish and Install". Neither term will be used generally in these specifications, but will be assumed. The term "Furnish" shall mean to obtain and deliver on the job for installation by other trades.

G. The Drawings are essentially diagrammatic in nature and show general arrangement of the equipment, piping, ductwork, accessories, etc. Because of the small scale of the Drawings, it is not possible to show each offsets, fittings, and accessories, which may be required. Carefully investigate the structural conditions, original Architectural Drawings, Equipment Drawings, and the finished conditions of the work and arrange such work accordingly, furnish any fittings, pipe accessories that may be required to meet such conditions.

H. Any changes from the plans necessary to make the work conform to building as constructed and to fit work of other trades, or to conform to rules of the governing authorities and regulations, shall be met by the Contractor without extra cost to the Building Owner/Tenant.

I. The layout of the piping, ductwork, equipment, etc., as shown on the Drawings shall be checked and exact locations shall be determined by the dimensions of equipment approved and Contractor shall obtain the Engineer's approval for any revised layout before the apparatus is installed. The Contractor shall consult the Architectural, Structural, and Equipment Drawings for the dimensions, locations of partitions, locations and sizes of structural supports, foundations, to coordinate installation and penetrations, etc.

J. Contractor shall also refer to approved Shop Drawing of equipment furnished under other Contracts or Sections of the Specifications for exact location of service connections. The equipment Shop Drawings will be furnished to the Contractor before roughing in. Contractor shall not install any piping or ductwork for said equipment until they have received approved Coordination Drawings for same.

1.6 LAWS, ORDINANCES, REGULATIONS AND PERMITS

A. The entire HVAC, Plumbing, DDC Controls and Electrical Systems in all and or part shall conform to all pertinent laws, ordinances and regulations of all bodies having jurisdiction, notwithstanding anything in these drawings or specifications to the contrary.

B. The work shall be installed in conformity with the City, State and Federal, or Board of Underwriters' laws, regulations, rules, or ordinances in effect and governing same, such rules and regulations and local ordinances to be considered part of these Specifications. Contractor shall be held strictly responsible for any violation of same and shall change their work to conform without additional cost to Building Owner/Tenant.

C. Each Contractor shall pay all fees and obtain and pay for all permits and inspections required by any authority having jurisdiction in connection with their work.

D. Electrical work shall comply with the requirements of the National Electrical Code, NFPA and other boards and departments having local jurisdiction. Electrical Contractor shall obtain and pay for Certifications of Inspection by an authorized Electrical
Inspection Agency and by local, municipal and state approving agencies. The materials, in general, shall be Underwriters' Laboratories listed and shall bear UL label.

1.7 EXISTING UTILITIES

A. Location of utilities as shown on the drawings has been determined from the best available information and is given for the convenience of the Contractor; however, Building Owner/Tenant does not assume responsibility in the event that during construction, utilities other than those shown may be encountered, and that the actual location of those which are shown may be different from the location as shown on the plans.

B. The Contractor shall be responsible for any interference with or damage to any existing utilities, and shall repair or replace same with the least possible delay.

C. The Contractor shall notify Engineer of any broken or open pipes discovered during construction.

1.8 CONNECTIONS TO UTILITIES

A. Apply for and obtain services from utility companies and municipalities. All charges for which utility companies and municipalities must be reimbursed shall be paid for by the respective Contractor at no additional cost to the Owner.

1.9 TESTS

A. The following requirements are supplementary to tests specified for individual equipment or systems in Mechanical and Electrical work sections.

1. Give written notice of date of test in ample time to all concerned.

B. Concealed or insulated work shall remain uncovered until all required tests have been completed; but if construction schedule requires, arrange for prior tests on parts of systems as approved.

C. As soon as conditions permit, conduct preliminary tests of equipment to ascertain compliance with specified requirements. Make needed changes, adjustments and/or replacements as preliminary tests may indicate, prior to acceptance tests.

D. Conduct pressure, performance and operating tests as specified or required for each system or equipment unit in the presence of the Architect, Engineer or Owner as well as a representative of agencies having jurisdiction.

E. Obtain Certificates of Approval and/or Acceptance as specified or required in compliance with regulations of agencies having jurisdiction. Work shall not be deemed complete until such Certificates have been delivered to the Architect.

F. Testing shall prove conclusively that Mechanical and Electrical systems operate properly, efficiently and quietly in accordance with intent of drawings and specifications.
1.10 CONTINUITY OF SERVICES (SHUTDOWN AND NOTIFICATIONS)

A. It is imperative that service interruptions on the various existing utilities be held to an absolute minimum. Wherever possible, the Contractor shall provide suitable temporary services or connections, where continuity of service for essential systems can be maintained by this means. It will be the Building Owner's/Tenant's final prerogative to decide which systems are to be considered as essential, and to establish the maximum allowable shutdown time, if any, for each system.

B. Generally, no action shall be taken by the Mechanical and Electrical Contractors that will interrupt any of the existing building services for this building or any other building until previously arranged with the Engineer and Owner or their authorized representative.

C. The Building Owner/Tenant will require not less than 72 hours advance notice, in writing, that an interruption of service in any system is desired. Such notice shall identify the system or systems involved, and shall be submitted in duplicate, one (1) copy of which will be signed and returned by the Building Owner's/Tenant's authorized representative stating whether the requested shutdown will be permitted or not.

D. Should any service be interrupted by these Contractors, the Contractor causing such interruption shall provide immediately all labor, including overtime if necessary, and all material and equipment necessary for restoration of such service.

1.11 ENTRANCE OF EQUIPMENT

A. Each Contractor shall perform all necessary rigging required for completion of work under their contract.

B. Contractor shall be responsible to repair all damage as a result of rigging and/or bringing equipment into the building. All damaged items shall be restored back to their original condition at no additional cost to the Owner.

1.12 VISIT TO SITE

A. Due to the nature of the work involved under this contract, all bidders are required to thoroughly examine the site.

B. Bidding Contractors shall thoroughly review Contract Documents prior to visiting the site, take Contract Documents to site and thoroughly explore to any extent necessary, the existing conditions as relating to fulfilling the requirements of this Contract.

C. If discrepancies are noted between requirements of Contract Documents and existing conditions, Contractor shall so indicate to the Architect during bidding period and receive clarification before bidding. Failure to comply with this requirement will result in Architect’s interpretation during the construction period and the Architect’s decision will be final and binding as the sole interpreter of the contract requirements.

D. Extras will not be considered for any work relating to connections with existing systems or adaptability of new systems to existing structures.
E. Submission of proposals shall be considered evidence that Contractors have complied with the requirements of this Article.

1.13 LINES AND LEVELS
A. At the job site, the Contractor shall layout and establish the lines and levels necessary for this work by using Bench Marks.

1.14 OVERTIME WORK
A. It is contemplated that work included be done during regular working hours on a "straight time" basis.
B. Where a shutdown of essential utilities is required for final connections or "cross overs", the Building Owner/Tenant and Architect shall be notified well in advance and approval obtained before proceeding with the work. The period of interruption of services shall be held to the minimum required to complete the work. If overtime work is required, this overtime shall be included as a part of the base bid.

1.15 INSTRUCTING OWNER'S PERSONNEL
A. After all tests and adjustments have been made, each Contractor shall fully instruct the representatives of the Owner in all details of operation of the equipment installed under their contract.
B. Each Contractor shall operate their equipment for sufficient length of time to satisfy the Architect that requirements of the Contract Documents have been fulfilled.
C. All training will be video-recorded by the Contractor. Provide three (3) copies to the Maintenance Superintendent.
D. Operation & Maintenance Manuals for all Equipment and Systems must be submitted before any Instruction to Owner’s Personnel are scheduled.

1.16 OPERATING AND MAINTENANCE INSTRUCTIONS
A. Each Contractor shall provide three (3) copies of printed instructions to the Architect upon completion of installation. Instructions shall be bound in separate, hardback, 3-ring or 3 D-ring loose leaf binders.
B. Instruction books shall be prepared by sections and contain detailed start-up, operating and maintenance instructions for all components of all systems, including wiring, and piping diagrams necessary for clarity. The cover of each binder shall be identified with the name of the project and the words "Operating and Maintenance Instructions".
C. Each section shall have labeled tabs and be clearly marked with equipment or system name and contain detailed parts list data, ordering information and the name, address and telephone number of the closest supply source.
D. All instructional data shall be neatly and completely prepared to the satisfaction of the Architect.

E. Operation & Maintenance Manuals for all Equipment and Systems must be submitted before any Instruction to Owner’s Personnel are scheduled.

1.17 GUARANTEE

A. All material, equipment and workmanship provided by each Contractor shall be in first class operating condition in every respect at time of acceptance by Owner. Acceptance by the Owner shall be by letter to this effect written to each Contractor.

B. Each Contractor shall unconditionally guarantee in writing all materials, equipment and workmanship for a period of two (2) years from date of acceptance by Owner unless a longer period is stipulated under specified headings. During the guarantee period each Contractor shall repair or replace, at their own expense, any materials, equipment or workmanship in which defects may develop and they shall also provide free service for all equipment and systems involved in their contract during this guarantee period.

C. Guarantee shall also include restoration to its original condition of all adjacent work that must be disturbed in fulfilling this guarantee.

D. All such repairs and/or replacements shall be made without delay and at the convenience of the Owner.

E. Repairs or replacements shall bear an additional twelve (12) months guarantee from the time repair or replacement is complete. This requirement shall be binding, even though it will exceed product guarantees normally furnished by some manufacturers.

F. Guarantees furnished by Subcontractors and/or Equipment Manufacturers shall be counter-signed by the related Contractor for joint and/or individual responsibility for subject item.

G. Manufacturer’s equipment guarantees or warranties extending beyond the guarantee period described above shall be transferred to the Owner along with the contractor's guarantees.

H. Note that guarantees shall run from the date of final payment for the complete project, not from the date of installation of, or payment for an item or device.

1.18 MINOR DEVIATIONS

A. The dimensions of equipment hereinafter specified or indicated on the Drawings are intended to establish the outlines and characteristics of such equipment in general. Minor deviations in dimensions will be permitted to allow the manufacturers specified to bid on their nearest stock equipment, provided the specified ratings are met or exceeded.

B. Where manufacturers’ catalog numbers or types are mentioned in the Specifications or indicated on the Drawings, they are intended to be used as a guide only and shall not be interpreted as taking precedence over the basic rating and duty specified. In all cases,
manufacturers shall verify the duty specified with particular characteristics of the equipment they intend to offer for approval and shall also pay the additional charges as may be required under other Divisions.

1.19 SHOP DRAWINGS

A. Submit electronic copies of shop drawings for all material and equipment as noted in Manufacturer’s and Sub-Contractors List, except where indicated otherwise further herein.

B. Prior to submission of shop drawings, the Contractor shall notify the Engineer of any site conditions differing from those indicated or specified.

C. Prepare shop drawings by careful reference to drawings and specifications.

D. Identify each shop drawing by Job Name and reference to applicable Specification Article number.

E. Shop drawing data for all equipment shall include, but not be limited to, the following:
 1. Manufacturers’ catalog designation, photographs and specifications.
 2. Full electrical data, including specifically, electrical characteristics.
 3. Dimensions, capacities, ratings, material and finish.
 4. Such other detailed information as required for proper evaluation.

F. Review Time:
 1. Allow two (2) weeks for the Engineer’s processing of each submittal, exclusive of Owner’s, Architect’s or others in the processing chain. Allow a longer time period where processing must be delayed for coordination with subsequent submittals.

G. Submission of shop drawings for electric motor starters shall include a tabulation listing:
 1. The equipment the starter is intended to control.
 2. Horsepower.
 3. Voltage.
 4. Phase.
 5. Full load amperes.
 6. The manufacturer’s number or type.
 7. Overload heater numbers and amperage.
 8. Quantity of auxiliary contacts.
 10. Pilot light arrangement if applicable.

H. Each Contractor shall examine all shop drawings before submission for review. Each Contractor shall then forward all shop drawings with their initialed acceptance stamp and by so doing the Contractor thereby represents that they have determined and verified all field measurements, field construction criteria, materials, dimensions, catalog numbers, and similar data, have notified the Engineer of site conditions varying from those
indicated or specified, and that they have checked and coordinated each item with other applicable accepted shop drawings and the contract requirements. Shop drawings and catalog data submitted without the Contractor's stamp of acceptance will be returned to the Contractor without review.

I. Material and equipment installed or used without shop drawing review are subject to rejection by the Engineer.

J. Corrections or comments made on shop drawings during review by the Engineer does not relieve the Contractor from compliance with requirements of the drawings and specifications. Such review shall be only for general conformance with the design concept and general compliance with the information given in the Contract Documents. It shall not include review of quantities, dimensions, weights or gauges, fabrication processes, construction methods, coordination with the work of other trades, or construction safety precautions, all of which are the sole responsibility of the Contractor. Review of a specific item shall not indicate acceptance of an assembly of which the item is a component. The Engineer shall not be responsible for any deviations from the Contract Documents not clearly noted by the Contractor, nor shall the Engineer review partial submissions or those for which submissions for correlated items have not been received. The Contractor is responsible for: confirming and correlating all quantities, clearance and dimensions, selecting fabrication processes and techniques of construction, coordinating work with that of all other trades, and performing their work in a safe and satisfactory manner.

K. Furnish electronic copies of the pipe layouts, and equipment drawings on ¼” = 1’-0” scale plans using AutoCAD Release 2010 or higher. The drawings shall show the coordination between new work and existing system conditions; include a symbol list, title block information, drawing titles, key plan, north arrow, room names and numbers, match lines; pipe heights; details of congested areas; and a typical elevation showing discipline coordination. The sheet size for floor plans and associated details shall match the Design Drawing sheet size. The ductwork layout shall be shown in double line. The drawing’s layering system shall comply with the Building Owner’s/Tenant’s AutoCAD Standards Manual.

L. Electronic drawing files in AutoCAD, Release 2010 will be available to the Sub-contractors through the General Contractor. If electronic drawing files are requested, the Engineer shall provide compact diskettes (CDs) to the Contractor containing the mechanical, plumbing, gas, fire protection, and electrical floor plans.

1.20 AS-BUILT DRAWINGS

A. During the course of the work, maintain a record set of drawings on which shall be marked the actual physical location of all piping, valves, equipment, conduit, outlets, access panels, controls, actuators, etc.

B. Include all Addendum, Change Orders and construction field directives (responses to RFI’s) on the As-Built Drawings.
C. At project completion, obtain a clean set of prints and a AutoCAD 2010/2013 CD from the Engineer, and make a set of reproducibles. Neatly transfer all the recorded as-built information on both the reproducibles and AutoCAD 2010/2013 CD.

D. Provide two (2) prints of these reproducibles, along with the reproducibles themselves and CAD CD, to the Engineer. In addition, attach one (1) complete set of prints to each of the OPERATING AND MAINTENANCE INSTRUCTIONS specified previously herein.

1.21 PUNCH LIST CLOSE-OUT

A. Each Contractor shall carefully read and review each punch list item.

B. Contractors shall review the contract documents and job correspondence minutes relating to punch listed items to assure thorough understanding thereof within three (3) working days after receipt of the punch list.

C. It is the responsibility of the Contractor to contact the author of the punch list to resolve any items in question, including factual inclusion of the punch listed items, as part of the work covered by the contract documents as basic services.

D. In the absence of such contact, the Contractor agrees to comply with all items in the punch list.

E. Upon resolution of the final punch list items, reduce the action taken to writing on the Contractor's company letterhead, and state, for the record, by reference to each punch list item, thereby absolving the Architect of the responsibility of repeatedly visiting the site to verify completion of final punch list items. The Contractor's letter is to be termed "Final Punch List Resolution Letter."

F. Contractor must clearly state where exceptions are taken.

G. Approval of final payments for work done by the Contractor will be granted upon receipt and acceptance of the "Final Resolution Letter."

1.22 TEMPORARY FACILITIES, UTILITIES AND HEATING

A. Refer to Section TEMPORARY FACILITIES AND CONTROLS in Division 1 of these specifications.

1.23 RELATED REQUIREMENTS SPECIFIED ELSEWHERE

A. Summary of Work

B. Project Meetings

C. Construction Schedules

D. Temporary Facilities
E. Shop Drawings
F. Project Closeout
G. Project Record Documents

PART 2 MATERIALS

2.1 MANUFACTURER'S AND SUB-CONTRACTORS LIST

A. Before ordering any material or equipment unit, and not later than twenty (20) working days after signing of contracts each Contractor shall submit a list of Manufacturers, Sub-Contractors and Suppliers showing make, type, manufacturers name and trade designation of all materials, and equipment, proposed for use under this contract. List shall be prepared by reference to specifications.

B. The list, when accepted, shall be supplementary to specifications, and no variations therefrom will be permitted except with the approval of the Architect.

C. No shop drawings will be processed until the Contractor has satisfactorily completed the requirements of this Article.

2.2 MATERIALS AND EQUIPMENT

A. All materials and equipment shall be new, unless noted otherwise, and shall conform to the grade, quality and standards specified herein.

B. All equipment offered under these specifications shall be limited to products regularly produced and recommended for service ratings in accordance with engineering data or other comprehensive literature made available to the public and in effect at the time of opening of bids.

C. Items such as valves, motors, starting equipment, vibration isolating devices, lamps, and all other equipment and material, where applicable and practicable, shall each be of one manufacturer.

D. Equipment shall be installed in strict accordance with manufacturer's instructions for type and capacity of each piece of equipment used. Contractors shall obtain these instructions which will be considered part of these specifications. Type, capacity and application of equipment shall be suitable and shall operate satisfactorily for the purpose intended in the HVAC, Plumbing and Electrical Systems.

2.3 SUBSTITUTIONS

A. See General Conditions.

2.4 EQUIPMENT VARIATIONS
A. The materials and products mentioned in these specifications are given to establish a standard of quality, design and performance. The phrases "equivalent acceptable", "or equal", "equal to", and “approved substitute” shall be used to indicate that other similar products may be used provided such substitutes are accepted by the Architect as meeting all standards necessary to perform the function intended. Where three (3) or more manufacturers are mentioned for an item, selection shall be made from among those manufacturers. Specific products listed without reference to equals or substitutions shall be provided as specified, unless a written request for substitution is submitted to the Architect for approval ten (10) days prior to the date for receipt of bids. Such request shall include a complete description of the proposed substitute, along with sufficient documentation and other information necessary for a complete evaluation of the proposed substitution. If approved, substitute product will be listed in an addendum so that all bidders are alerted to it.

B. The Contract Documents have been prepared to provide for the incorporation of at least one of the specified items or assemblies of every category of materials, products or pieces of equipment. In the event that the incorporation into the work of an approved substituted item or assembly will require revisions or additions to the contractual requirements of either the contractor proposing the substitution or any other contractor, the contractor proposing the substitution shall bear the cost of such revisions or additions to the work of all trades affected, and shall pay for all engineering or architectural services required at no change in the contract sum.

2.5 VIBRATION ELIMINATION

A. The Mechanical and Electrical Contractors shall provide vibration isolation support provisions for all moving or rotating equipment, machinery and transformers when such provisions are not furnished and/or integrally mounted by the equipment manufacturers. They shall be equal to Amber/Booth Company or Korfund Company, Inc., and installed in accordance with vibration isolation manufacturers' recommendations unless specified otherwise herein.

B. Provide all rotating or moving machinery or equipment suspended from building structure with approved resilient suspension mountings.

C. Provide the equivalent of Flexonics Corp. metallic vibration isolating connections between all pumps and connecting piping.

D. All electrical connections to moving or vibrating equipment, such as motors, generators, transformers, etc., shall be made by use of flexible metallic conduit.

E. No rigid pipes, ducts, conduit or other extended machine assemblies connected to vibration isolated equipment shall be tied in directly with the building construction. Such elements shall be connected to the equipment through flexible fittings, and be supported by isolating equipment as required.

F. All systems shall operate free from objectionable vibration and noise resulting therefrom, and each Contractor shall take all necessary steps required to achieve this result without additional cost to the Owner.
2.6 INSERTS, HANGER SUPPORTS, CLAMPS, FASTENINGS

A. All materials, designs and types of inserts, hanger supports and clamps shall meet the requirements of the Manufacturers Standardization Society Document MSS-SP-58, latest edition, and also Underwriters Laboratories, Inc., National Electrical Code and Factory Mutual Engineering Division Standards where applicable. Insert, hanger support and clamp types referenced herein are shown in MSS-SP-58.

B. Each Contractor shall be responsible for and provide all necessary inserts, hanger supports, fastenings, clamps and attachments necessary for support of their work. The types of all inserts, hanger supports, fastenings, clamps and attachments to be used shall be selected to suit both new and existing building construction conditions and applied for the purposes intended.

C. For Mechanical systems, clamps and attachments to steel beams and bar joists shall be made using types 20, 21, 23, 25, 27, 28, 29 or 30 as applicable to suit conditions of construction. Clamps and attachments shall be selected on the basis of the required load to be supported. Provide all necessary steel angle iron or channel between bar joists, or steel beams where direct attachment cannot be made. No holes are to be drilled or burned in structural building steel for hanger rod supports.

D. Metallic masonry anchors shall be provided for all pre-cast concrete, masonry and cast concrete construction, and may be provided as an alternate for cast-in-place construction. Locate in pre-cast and cast-in-place concrete as directed by the Architect. Dynabolt, Ram-In and/or Tru-Bolt masonry anchors as manufactured by Ramset shall be provided as recommended by the anchor manufacturer for the various applications, stresses and services involved. Redhead, Hilti or Wej-It equivalents acceptable. Installation of masonry anchors shall be accomplished by pre-drilling concrete or masonry to diameters and depths required to properly accommodate anchor bolts.

E. Toggle bolts may be used in dry wall and lath and block plaster walls. The use of toggle bolts shall be restricted to the weight limitations imposed by the toggle bolt manufacturer for the size used.

F. Except where noted otherwise herein, attachment to wood or material of similar fibrous nature shall be made with lag screws and/or wood screws of required size.

G. Screws with wooden or plastic plugs, or lead caulking anchors are not acceptable.

2.7 ACCESS DOORS AND PANELS

A. Each Mechanical and Electrical Contractor shall furnish and locate for installation under General Construction, all access doors and panels for concealed portions of Mechanical and Electrical work requiring accessibility for operation and maintenance of their installed work.

B. Access door size is shown, on the drawings.

C. Sixteen (16) gauge minimum doors with screw fasteners and painted finish. They shall be equal to Inryco/Milcor, Karp Associates as follows:
D. Underwriters "B" label access doors where required for access to shafts, corridors, and where located in fire walls and partitions.

E. No access panels shall be installed without specific approval of the Architect as to location. The proposed location of panels of each Contractor shall be reviewed with the Architect by the General Contractor's Job Superintendent before installation of equipment or panels. Controversies must be resolved at no cost to the Owner.

2.8 ANCHOR BOLTS

A. Mechanical and Electrical Contractors shall provide and set in place at the time foundations, bases or curbs are poured or formed, all necessary anchor bolts as required for the various equipment specified herein. They shall be hook type anchor bolts of proper size and length to suit the apparatus. Set bolts in pipe sleeves of approximately twice the bolt diameter and of length equal to the embedded length of the bolt, with sleeves terminating flush with finished surfaces of foundations, bases or curbs.

B. When the equipment is set in its proper position and aligned with the anchor bolts, the space between the anchor bolts and the inside wall of the sleeves shall be completely filled with non-shrink cementitious grout equal to Crystex as manufactured by L & M Construction Chemicals, Inc., Master Builders or approved equal.

C. Each Contractor shall assume all responsibility for the location of all anchor bolts for the equipment furnished by them under these specifications, and must have a representative present at the time foundations, bases or curbs are poured or formed.

D. All anchor bolts shall be of sufficient strength to withstand any loading imposed by the attached materials or equipment.

2.9 SLEEVES

A. Each Contractor shall furnish and set all sleeves required for their work and be fully responsible for the final and permanent locations thereof.

B. Sleeves shall be provided in the following locations:

1. All pipes passing through all cast-in-place concrete construction and masonry walls.
2. All conduits passing through cast-in-place waterproof concrete construction and waterproof masonry walls.

C. Sleeves shall extend through construction and be finished flush with each surface except where noted otherwise. Each sleeve shall provide for a minimum ½" clearance around pipe, or its covering in the instance of pipe covered with insulation.

D. All sleeves in waterproof walls shall be fitted and sealed with positive hydrostatic "Link Seals" as manufactured by Thunderline Corporation. Sleeves shall be sized accordingly. Link Seals shall be placed around piping and/or conduit and inserted into the void between inner wall of sleeve and piping and/or conduit. Tighten link seals as required for watertight seal.
E. All sleeves shall be Schedule 40 steel pipe finished with smooth edges. Sleeves in waterproof walls shall be fabricated with minimum 1/4” thick rectangular steel plate placed around mid-point of sleeve, continuously welded to sleeve and then the entire/plate assembly placed into proper position prior to erection of walls. Otherwise sleeves shall be provided with a minimum of three (3) lugs for anchoring.

F. Voids between sleeves and piping or conduit, where located in fire partitions or masonry walls, shall be packed with mineral fiber rope, with fire-rate link seals or foamed with proper 3M fire-rate fitted foam.

G. All sleeves shall be set prior to or during erection of walls. Cutting or drilling of walls after erection will not be permitted.

H. If sleeves are omitted or located incorrectly the particular contractor who is at fault shall at their own expense, engage the trade which originally installed the work to cut and patch to the satisfaction of the Architect.

I. Any pipe or conduit that must pass through pre-cast floors and will be exposed in finished areas that have floor drains including areas such as Janitors Closets, Toilet Rooms and the like shall be made watertight by use of "Link Seals" inserted into void between piping and/or conduit and openings thereof.

J. All openings for piping and conduit in existing masonry or concrete work shall be neatly core drilled.

2.10 MANUFACTURER'S NAMEPLATES

A. Each major component of the equipment shall have the manufacturer's name, address, model number and rating on a plate securely affixed in a conspicuous place. The nameplate of a distributing agent is not acceptable. ASME Code ratings, or other data, which is die-stamped into the surface of the equipment, shall be in a visible location.

PART 3 EXECUTION

3.1 METHOD OF PROCEDURE

A. The drawings accompanying these specifications are diagrammatic and intended to cover the approximate and relative locations of the HVAC, Plumbing, DDC Controls and Electrical Systems.

B. Installation, connection and interconnection of all components of these systems shall be complete and made in accordance with the manufacturer's instructions and best trade practices.

C. Each Contractor shall erect all parts of equipment to be furnished under their contract at such time and in such manner as not to delay or interfere with other Contractors on the work.
D. All piping, conduit and duct work shall be plugged as required during construction to prevent entering of dirt.

E. Before material is ordered or any work performed, each Contractor shall verify all measurements, including lines, grades, pipes, and conduit and duct work elevations at the building and shall be responsible for the correctness thereof. No extra compensation will be allowed on account of differences between actual dimensions and measurements and those indicated in the Contract Documents. Any discrepancies discovered shall be submitted to the Architect for consideration before proceeding with the work.

F. Each Contractor shall lay out their work and be responsible for the establishment of heights, grades, etc., for all interior and exterior piping, drains, fixtures, conduit, duct work, etc., included in Contract Documents, in strict accordance with the intent expressed thereby; and all the physical conditions to be met at the building and finished grade, and shall be responsible for the correctness thereof. The establishment of the location of all work shall be performed in consideration of the finished work. In case of conflict, equipment and/or materials shall be relocated without cost to the Owner, as directed by the Architect, regardless of which equipment was installed first.

G. Each Contractor shall cooperate with other Contractors for the proper securing and anchoring of all work included within these specifications. Extraordinary care shall be used in the erection and installation of all equipment and materials to avoid marring surfaces of the work of other Contractors, as each Contractor will be held financially responsible for all such injury caused by the lack of precaution and due to negligence on the part of their workers.

H. Do not run pipe or conduit for Mechanical and Electrical Systems in any concrete slab three inches (3") or less in thickness. Do not place any pipe or conduit in any slab where the outside diameter of the pipe or conduit is more than one-quarter the thickness of the slab.

I. All piping, duct work, conduit and other Mechanical and Electrical materials and equipment shown to be mounted below ceilings are to be kept as close to ceiling areas as possible unless otherwise noted.

J. Items such as valves, dampers, cleanouts, etc. that will be concealed in construction shall be installed and so arranged as to be fully accessible for adjustment, service and maintenance.

3.2 ERECTION AND WORKMANSHIP

A. Contractor shall adapt their work to job conditions and make such changes as required and permitted by the Architect/Engineer such as moving their work to clear beams, joists, light fixtures, etc., adjusting risers, avoiding interferences with windows and openings, etc., raising or lowering their work to permit the passing of ductwork or the work of other trades etc., as required or as job conditions dictate, without any additional cost to the Building Owner/Tenant.

B. The workmanship shall be first class in every respect and shall be performed only by skilled mechanics, recognized as such in their respective trades.
3.3 PROTECTION

A. All piping, materials and accessories having finished polished chromium plated surfaces and machines with finished or unpainted surfaces of equipment furnished under these specifications shall be given a thick coat of a neutral protection grease and carefully covered with thick cloth or heavy building paper held securely in place to protect the finish against damage during the entire period of construction. Equipment shall also be protected by use of canvas tarps, vinyl sheeting or similar materials held securely in place.

B. All openings in pipes, fittings, duct work, conduit and all other materials shall be effectively sealed to exclude dirt, sand, and other foreign materials.

C. Exercise every precaution to exclude dust, dirt and all other foreign materials from switchgear rooms, transformers, and all mechanical equipment rooms during construction. Rooms and equipment contained therein shall be vacuum cleaned at regular intervals. All relays, meters and mechanical equipment contained with electrical components shall be protected with heavy paper held in place with approved mastic tape to exclude fine dust and particles. Sufficient electric heaters shall be installed and maintained in equipment rooms and transformer compartments to keep equipment dry during construction.

D. Any such fixtures, equipment or apparatus damaged prior to final acceptance of the work shall be restored to its original condition or replaced with a new one.

3.4 CUTTING AND PATCHING

A. Existing construction:

1. The General Contractor shall perform all cutting and patching required for the work of all trades.

2. Each of these Contractors shall confer with and give the General Contractor complete information as to size of openings in all construction, so that such openings may be provided as the building progresses.

3. If openings are omitted or incorrect through failure of these Contractor to follow these instructions, the particular Contractor shall, at their own expense, engage the trade which originally installed the work to cut and patch to the satisfaction of the Architect.

4. All openings for pipe and conduit shall be neatly core-drilled.

3.5 CONCRETE AND MASONRY WORK

A. Mechanical and Electrical Contractors shall provide all cast-in-place concrete, pre-cast concrete and masonry work (brick and block) required for completion of their contracts.

B. The Architect shall review and approve materials used.

C. Unless shown or specified otherwise, all equipment foundations shall be six inches (6") minimum from floor, of sufficient mass, and secured to the floor.
3.6 SUPPORTS

A. Except where noted otherwise in the specifications and shown on drawings, each Contractor shall provide all materials, equipment supports, supplies and labor necessary as required to adequately support, brace and strengthen equipment and materials furnished as part of their contract.

C. All steel supports shall be primed (primer plus two (2) coats) before and finish-painted after installation.

3.7 LINTELS

A. The General Contractor will furnish and install all lintels required for the installation and completion of all work of Mechanical and Electrical Contractors, provided that the General Contractor is advised in advance of such requirements.

B. Failure to give proper notice and/or to comply with the above requires the Sub-Contractor involved to be financially liable for all work and material necessary for the completion of required work.

3.8 ESCUTCHEONS

A. Except as noted otherwise, the Mechanical and Electrical Contractors shall provide heavy solid pattern, steel, cast iron or malleable iron escutcheons with set screws and prime coat of paint on all uninsulated piping and conduit exposed to view within structure where passing through floors, partitions, walls or ceilings. Escutcheons are not required in equipment rooms, boiler rooms or other unfinished areas.

B. For piping with sleeves extending above floor, provide escutcheons with deep recesses.

C. Provide solid pattern, smooth chrome plated cast brass escutcheons for all chrome plated pipe fixture connections.

D. Provide nickel-plated cast-iron escutcheons where pipes pass through toilet rooms, walls or ceilings.

E. Provide collars of angle fabrication for duct passing through floors, walls and ceilings in finished areas.

3.9 FLASHING

A. Base and counter flashings shall be provided by the respective Contractor where work penetrates roof construction.
3.10 PAINTING AND FINISHING

A. All painting, generally, will be provided by the General Contractor, except where specifically noted otherwise in the Mechanical and Electrical Specifications.

B. Equipment and material furnished with factory enamel finish will not be painted unless finish has been damaged, in which case the equipment or material shall be refinished by the Contractor who furnished it, to the satisfaction of the Architect.

C. Do not paint nameplates, labels, tags, stainless steel, or chromium-plated items such as valve stems, motor shafts, levers, handles, trim strips, etc.

D. Ductwork behind the grilles, registers, diffusers, etc. which is exposed to view through the units, shall be given one (1) coat of primer and a finish coat of flat black paint.

E. No work shall be allowed to develop rust during the course of the work. Work showing evidence of rust or other corrosion shall be immediately scraped clean and rust primed with an approved primer.

3.11 MECHANICAL - ELECTRICAL COORDINATION

A. Equipment electrical current characteristics as shown on electrical drawings.

B. The nameplate voltage of all motors furnished with mechanical equipment shall be within the range of the voltage shown for use with the motor as the upper limit, and 5% less than this voltage as the lower limit.

C. Each Mechanical Contractor shall furnish all motors, float and pressure switches, temperature control, other special automatic controls as noted in the HVAC and Plumbing Specifications, and all motor starters for all equipment furnished under their contract except where noted otherwise.

D. All starters shall be provided by the electrical contractor. Starters and fuses are sized based on the standard of design for the HVAC equipment. Should any piece of HVAC equipment change in model, size or manufacturer, and subsequently, the fuse, overload or starter size be required to be changed, the mechanical contractor, or contractor initiating such change shall bear all costs thereto, of the electrical contractor or any other contractor affected by such change.

E. All electrical equipment furnished by the Mechanical Contractors shall be as recommended by the Mechanical Equipment manufacturers, in accordance with the Electrical Specification for similar items, and of such type as to work properly with automatic temperature control sequences where required.

F. The Electrical Contractor shall provide all starters, combination starter disconnects, controllers, push-buttons, safety switches for motors, and wiring from starters to motors and install equipment furnished to them by mechanical contractors, unless otherwise indicated in the Mechanical Specifications.
G. Where controllers and/or starters are furnished as an integral part of any equipment, the contractor supplying the equipment shall furnish complete wiring between controllers, starters and motors.

H. Electrical Contractor shall provide disconnect switches for all equipment under all contracts, except where such switches are an integral part of equipment, or specified with such equipment.

I. Mechanical Contractor shall set all motors and furnish, set and pipe as necessary, float switches, temperature control and other special automatic temperature controls.

J. Mechanical Contractor shall provide all control wiring specified in their respective section of the specification. The Electrical Contractor shall provide all other wiring required for the completion of the work of the Mechanical Contractors.

K. Mechanical Contractor shall furnish the Electrical Contractor with complete wiring diagrams as required.

L. Any electrical work performed by either Mechanical Contractor or their Sub-Contractors shall be performed in accordance with the requirements of the ELECTRICAL Section of these specifications.

3.12 LUBRICATION

A. Each Contractor shall be responsible for the proper and necessary lubrication of any items of operating, rotating or moving equipment which they will furnish, install or which must operate as part of the systems on which they work.

B. When an item of operating equipment is furnished and installed by a Contractor, it will be their responsibility to accomplish the lubrication.

C. When an item of operating equipment is furnished by one Contractor and the installation by another, it shall be the responsibility of the Contractor furnishing the equipment to apply the lubricants.

D. All rotating or moving equipment shall be lubricated prior to energizing and operating the equipment. Should the Contractor responsible for the lubrication fail to apply lubricants prior to initial start-up and the equipment is damaged as a result of their negligence, that Contractor shall be required to provide all corrective action necessary including replacement, if required, for the proper operation of equipment.

E. Lubrication shall be accomplished in the manner prescribed or recommended by the manufacturer of the specific item. For motor driven equipment this precaution of lubrication will apply individually to the driver and the driven.

F. The lubricants shall be of the type, grade, specification and manufacture as prescribed or recommended by the manufacturer of the specific equipment item.

G. The Contractor who supplies any item of rotating equipment will have the responsibility of securing written instructions on the lubricating procedure and shall furnish not less
than one year's supply of all necessary lubricants properly identified so they can be replaced.

H. Any moving or rotating equipment furnished by the Owner that is to be installed, reused and/or serviced shall also be lubricated. Except where noted otherwise in the Mechanical and Electrical specifications, the Contractor installing, reusing and or servicing all such equipment shall be responsible for the proper lubrication thereof including obtaining proper lubricating instructions from the various manufacturers involved, furnishing and applying the necessary lubricants and leaving the Owner with a one (1) year’s supply of lubricant.

3.13 MECHANICAL - ELECTRICAL COORDINATION

A. Equipment electrical current characteristics as shown on electrical drawings. Refer to article "Current Characteristics and Load Ratings of Motors and Equipment", Section 16100, ELECTRICAL-BASIC MATERIALS AND METHODS.

B. The nameplate voltage of all motors furnished with mechanical equipment shall be within the range of the voltage shown for use with the motor as the upper limit, and 5% less than this voltage as the lower limit.

C. Each Mechanical Contractor shall furnish all motors, float and pressure switches, temperature control, other special automatic controls as noted in the HVAC and Plumbing Specifications, and all motor starters for all equipment furnished under their contract except where noted otherwise.

D. All starters shall be provided by the electrical contractor. Starters and fuses are sized based on the standard of design for the HVAC equipment. Should any piece of HVAC equipment change in model, size or manufacturer, and subsequently, the fuse, overload or starter size be required to be changed, the mechanical contractor, or contractor initiating such change shall bear all costs thereto, of the electrical contractor or any other contractor affected by such change.

E. All electrical equipment furnished by the Mechanical Contractors shall be as recommended by the Mechanical Equipment manufacturers, in accordance with the Electrical Specification for similar items, and of such type as to work properly with automatic temperature control sequences where required.

F. The Electrical Contractor shall provide all starters, combination starter disconnects, controllers, push-buttons, safety switches for motors, and wiring from starters to motors and install equipment furnished to them by mechanical contractors, unless otherwise indicated in the Mechanical Specifications.

G. Where controllers and/or starters are furnished as an integral part of any equipment, the contractor supplying the equipment shall furnish complete wiring between controllers, starters and motors.

H. Electrical Contractor shall provide disconnect switches for all equipment under all contracts, except where such switches are an integral part of equipment, or specified with such equipment.
I. Mechanical Contractor shall set all motors and furnish, set and pipe as necessary, float switches, temperature control and other special automatic temperature controls.

J. Mechanical Contractor shall provide all control wiring specified in their respective section of the specification. The Electrical Contractor shall provide all other wiring required for the completion of the work of the Mechanical Contractors.

K. Mechanical Contractor shall furnish the Electrical Contractor with complete wiring diagrams as required.

L. Any electrical work performed by either Mechanical Contractor or their Sub-Contractors shall be performed in accordance with the requirements of the ELECTRICAL Section of these specifications.

3.14 REMOVAL AND RELOCATION

A. Mechanical and Electrical Contractors shall perform all removal and relocation work required for completion of systems in their contracts.

B. Removals shown on drawings are a general indication only, and may not necessarily indicate the full extent of removals which may be required to complete this work.

C. Where existing partitions, walls, ceilings and floors are to be removed, all ducts, piping, conduits, materials, fixtures and equipment attached or fastened thereto or within shall be carefully removed.

D. Where work under this contract interferes with the existing construction, duct work, piping, conduit or equipment, remove all such materials and reroute to clear the obstruction. Provide additional piping, conduits, ducts, and material of the same design and quality if the piping and/or conduit is to be continued in use.

E. Disconnect and remove all accessible piping, conduit, duct work, materials, fixtures and equipment not required in the new systems. Plug all outlets at the main or riser connection.

F. Removed materials not desired by the Owner and not to be reset and not specified nor indicated to be reused, shall become the property of the Contractor and shall be promptly removed from site.

G. All demolition work is subject to the direction and approval of the Architect and shall be performed in such manner as not to interfere with the normal operation of the building.

3.15 DEMOLITION

A. Disconnect, demolish, and remove Work specified in Division 15 Sections.

B. If pipe, ductwork, insulation, or equipment to remain is damaged or disturbed, remove damaged portions and install new products of equal capacity and quality.
C. Accessible Work: Remove indicated exposed pipe and ductwork in its entirety.

D. Work Abandoned in Place: Cut and remove underground pipe a minimum of 2 inches beyond face of adjacent construction. Cap and patch surface to match existing finish.

E. Removal: Remove indicated equipment from Project site.

F. Temporary Disconnection: Remove, store, clean, reinstall, reconnect, and make operational equipment indicated for relocation.

3.16 SAFETY MEASURES TO BE TAKEN

A. The Engineer has not been retained nor compensated to provide design and construction review services relating to the Contractor's safety precautions or to means, methods, techniques, sequences or procedures required for the Contractor to perform their work. The Contractor will be solely and completely responsible for conditions of the job site, including safety of the people and property during performance of the work. This requirement will apply continuously and not be limited to normal working hours. The Engineer's observations of the Contractor's performance are not intended to include review of the adequacy of the Contractor's safety measures in, on or near the construction site. It shall be the Contractor's responsibility to comply with "Safety and Health Regulations for Construction", Volume 36, No. 75, part II of the Federal Register by the U.S. Department of Labor. Contractor shall be responsible for providing any such safety measures and shall consult with the State or Federal Safety Inspector for interpretation whenever in doubt as to whether safe conditions do or do not exist; or whether they are or are not in compliance with State or Federal Regulations.

3.17 MANUFACTURER'S RECOMMENDATIONS

A. The materials and/or equipment shall be installed in accordance with manufacturer's recommendations and instructions.

3.18 INTERFERENCES

A. Before making any installation, the work of the trades must be coordinated and the necessary changes shall be made to avoid interferences or improper effect on work to be performed by any other Section. In the event that interferences develop, the Architect's/Engineer's decision will be final and no additional compensation will be allowed for moving of misplaced piping, ducts, conduit and/or equipment.

3.19 CLEANING

A. Premises shall be maintained in an orderly fashion at all times during the construction period. Remove any cartons, containers, crates, etc., as soon as their contents have been removed, and remove the debris as soon as possible.

B. Each Contractor and/or Sub-Contractor who is responsible for execution of individual sections of work shall be responsible for the following:
1. Removal of all lumber, refuse, metal, piping and debris from site resulting from their work.
2. Cleaning drippings resulting from their work, etc., from finished work of other trades.
3. Cleaning, polishing, waxing of their work as required.
4. The cartons, debris, etc., shall be removed from the site and premises at the sole expense of the Contractor.

C. After testing, and acceptance of all work by the Architect Engineer and the Owner, each Contractor shall thoroughly clean all equipment and material involved in their Contract to the satisfaction of the Architect Engineer.

D. At the completion of the work, the Contractor shall clean the work, equipment, etc., free from dust, etc., and leave the work area in good housekeeping fashion in a manner acceptable to the Building Owner's/Tenant's Representative.

E. All heating and cooling coils shall be free of residue and oil prior to start-up. Any extraneous cleaning and venting of the facilities caused by a failure to clean coils shall be the direct responsibility of the Mechanical Contractor.

3.20 TEMPORARY LIGHT AND POWER

A. The Contractor shall provide temporary light and power feeders throughout the building during the construction as specified in the GENERAL CONDITIONS.

3.21 EXTRA MATERIALS

A. Refer to Fire Protection Specification Sections.

3.22 START UP AND SERVICING OF EQUIPMENT AND SYSTEMS

A. After work has been completed under the Mechanical and Electrical contracts, and prior to final acceptance tests, each Contractor shall have manufacturers or their authorized agents of the equipment and material installed, completely check their equipment and put it into actual operation. In each case, the respective Contractor shall have the manufacturers thoroughly check the complete installation of the equipment produced by them for proper and correct operation under the service intended.

B. Six (6) months after final acceptance of the work under each of the Mechanical and Electrical contracts, each of the Contractors shall have the manufacturers again check their equipment for proper operation and lubrication. Coincidentally, these contractors shall assure that the building custodian is properly instructed in the servicing of the equipment.

C. Prior to expiration of the guarantee period, each contractor shall check all equipment, materials and systems installed under their contract, make necessary adjustments and/or replacements, and leave systems in first class operating condition.

3.23 LABELING AND IDENTIFYING
A. Piping Systems: Install pipe markers on each system. Include arrows showing normal direction of flow.

1. Plastic markers, with application systems. Install on insulation segment if required for hot, uninsulated piping.

2. Locate pipe markers as follows if piping is exposed in finished spaces, machine rooms, and accessible maintenance spaces, such as shafts, tunnels, plenums, and exterior non-concealed locations:
 a. Near each valve and control device.
 b. Near each branch, excluding short takeoffs for fixtures and terminal units. Mark each pipe at branch, if flow pattern is not obvious.
 c. Near locations if pipes pass through walls, floors, ceilings, or enter non-accessible enclosures.
 d. At access doors, manholes, and similar access points that permit view of concealed piping.
 e. Near major equipment items and other points of origination and termination.
 f. Spaced at maximum of 12-foot intervals along each run.
 g. On piping above removable acoustical ceilings, except omit intermediately spaced markers.
 h. Special “Asbestos Free” markers must be spaced at a maximum of 50-foot intervals.

B. Equipment: Install engraved plastic-laminate sign or equipment marker on or near each major item of mechanical equipment.

1. Lettering Size: Minimum 1/4-inch high lettering for name of unit if viewing distance is less than 24 inches, 1/2-inch high lettering for distances up to 72 inches, and proportionately larger lettering for greater distances. Provide secondary lettering two-thirds to three-fourths of size of principal lettering.

2. Text of Signs: Provide name of identified unit. Include text to distinguish between multiple units, inform user of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations.

C. Duct Systems: Identify air supply, return, exhaust, intake, and relief ducts with duct markers; or provide stenciled signs and arrows, showing duct system service and direction of flow.

1. Location: In each space, if ducts are exposed or concealed by removable ceiling system, locate signs near points where ducts enter into space and at maximum intervals of 50 feet.

D. Adjusting: Relocate identifying devices as necessary for unobstructed view in finished construction.

END OF SECTION
SECTION 23 05 13
COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.3 COORDINATION
A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 1. Motor controllers.
 2. Torque, speed, and horsepower requirements of the load.
 3. Ratings and characteristics of supply circuit and required control sequence.
 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS
A. Comply with NEMA MG 1 unless otherwise indicated.
B. Comply with IEEE 841 for severe-duty motors.

2.2 MOTOR CHARACTERISTICS
A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet above sea level.
B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.
2.3 POLYPHASE MOTORS

A. Description: NEMA MG 1, Design B, medium induction motor.

B. Efficiency: Energy efficient, as defined in NEMA MG 1.

C. Service Factor: 1.15.

D. Multispeed Motors: Variable torque.
 1. For motors with 2:1 speed ratio, consequent pole, single winding.
 2. For motors with other than 2:1 speed ratio, separate winding for each speed.

E. Multispeed Motors: Separate winding for each speed.

F. Rotor: Random-wound, squirrel cage.

G. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.

H. Temperature Rise: Match insulation rating.

I. Insulation: Class F.

J. Code Letter Designation:
 1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
 2. Motors Smaller than 15 HP: Manufacturer's standard starting characteristic.

K. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.4 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.

B. Motors Used with Variable Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width modulated inverters.
 2. Energy- and Premium-Efficient Motors: Class B temperature rise; Class F insulation.
 3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
 4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.

C. Severe-Duty Motors: Comply with IEEE 841, with 1.15 minimum service factor.
2.5 SINGLE-PHASE MOTORS

A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:

1. Permanent-split capacitor.
2. Split phase.
3. Capacitor start, inductor run.
4. Capacitor start, capacitor run.

B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.

C. Bearings: Pre-lubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.

D. Motors 1/20 HP and Smaller: Shaded-pole type.

E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION
SECTION 23 05 19

METERS AND GAGES FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Filled-system thermometers.
2. Dial-type pressure gages.
3. Thermowells.
4. Gage attachments.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Wiring Diagrams: For power, signal, and control wiring.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For meters and gages to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 THERMOMETERS

A. Direct-Mounted, Metal-Case, Vapor-Actuated Thermometers:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 a. Ashcroft Inc.
 b. Trerice, H. O. Co.
 c. Weiss Instruments, Inc.

3. Case: Sealed type, drawn steel; 6 inch nominal diameter.

4. Element: Bourdon tube or other type of pressure element.

5. Movement: Mechanical, dampening type, with link to pressure element and connection to pointer.

6. Dial: Nonreflective aluminum with permanently etched scale markings graduated in deg F.

8. Window: plastic.

9. Ring: Metal.

10. Connector Type(s): Union joint, adjustable, with ASME B1.1 screw threads.

11. Thermal System: Liquid-filled bulb in copper-plated steel, aluminum, or brass stem and of length to suit installation.

 b. Design for Thermowell Installation: Bare stem.

12. Accuracy: Plus or minus 2 percent of scale range.

2.2 DUCT-THERMOMETER MOUNTING BRACKETS

A. Description: Flanged bracket with screw holes, for attachment to air duct and made to hold thermometer stem.

2.3 THERMOWELLS

A. Thermowells:

 2. Description: Pressure-tight, socket-type fitting made for insertion in piping tee fitting.
 3. Material for Use with Copper Tubing: CNR or CUNI.
 4. Material for Use with Steel Piping: CRES.
 5. Type: Stepped shank unless straight or tapered shank is indicated.
 6. External Threads: NPS 1/2, NPS 3/4, or NPS 1, ASME B1.20.1 pipe threads.
 7. Internal Threads: 1/2, 3/4, and 1 inch, with ASME B1.1 screw threads.
 8. Bore: Diameter required to match thermometer bulb or stem.
 9. Insertion Length: Length required to match thermometer bulb or stem.
 10. Lagging Extension: Include on thermowells for insulated piping and tubing.
 11. Bushings: For converting size of thermowell's internal screw thread to size of thermometer connection.

2.4 PRESSURE GAGES

A. Direct-Mounted, Metal-Case, Dial-Type Pressure Gages:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Ashcroft Inc.
 b. Trerice, H. O. Co.
 c. Watts; a Watts Water Technologies company.
 d. Weiss Instruments, Inc.
3. Case: Liquid-filled Sealed type(s); drawn steel; 6 inch nominal diameter.
4. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.
5. Pressure Connection: Brass, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated.
6. Movement: Mechanical, with link to pressure element and connection to pointer.
7. Dial: Nonreflective aluminum with permanently etched scale markings graduated in psi.
10. Ring: Metal Stainless steel.
11. Accuracy: Grade B, plus or minus 2 percent of middle half of scale range.

2.5 GAGE ATTACHMENTS

A. Snubbers: ASME B40.100, brass; with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and porous-metal-type surge-dampening device. Include extension for use on insulated piping.

B. Valves: Brass or stainless-steel needle, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install thermowells with socket extending to center of pipe and in vertical position in piping tees.

B. Install thermowells of sizes required to match thermometer connectors. Include bushings if required to match sizes.

C. Install thermowells with extension on insulated piping.

D. Fill thermowells with heat-transfer medium.

E. Install direct-mounted thermometers in thermowells and adjust vertical and tilted positions.

F. Install duct-thermometer mounting brackets in walls of ducts. Attach to duct with screws.

G. Install direct-mounted pressure gages in piping tees with pressure gage located on pipe at the most readable position.
H. Install remote-mounted pressure gages on panel.
I. Install permanent indicators on walls or brackets in accessible and readable positions.
J. Install connection fittings in accessible locations for attachment to portable indicators.
K. Install thermometers in the following locations:
 1. Inlet and outlet of each hydronic coil in air-handling units.
L. Install pressure gages in the following locations:
 1. Inlet and outlet of each hydronic coil in air-handling units.

3.2 CONNECTIONS
A. Install thermometers and gages adjacent to machines and equipment to allow service and
 maintenance of thermometers, gages, machines, and equipment.

3.3 ADJUSTING
A. After installation, calibrate thermometers according to manufacturer's written instructions.
B. Adjust faces of thermometers and gages to proper angle for best visibility.

3.4 THERMOMETER SCHEDULE
A. Thermometers at inlet and outlet of each hydronic coil shall be one of the following:
 1. Sealed, bimetallic-actuated type.
 2. Test plug with EPDM self-sealing rubber inserts.

3.5 THERMOMETER SCALE-RANGE SCHEDULE
A. Scale Range for Chilled-Water Piping: 0 to 100 deg F.
B. Scale Range for Air Ducts: 0 to 100 deg F.

3.6 PRESSURE-GAGE SCHEDULE
A. Pressure gages at discharge of each pressure-reducing valve shall be one of the following:
 2. Test plug with EPDM self-sealing rubber inserts.
3.7 PRESSURE-GAGE SCALE-RANGE SCHEDULE

A. Scale Range for Chilled-Water Piping: 0 to 100 psi.

END OF SECTION
SECTION 23 05 23.12
BALL VALVES FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Brass ball valves.
2. Bronze ball valves.

1.3 DEFINITIONS

A. CWP: Cold working pressure.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of valve.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Prepare valves for shipping as follows:

1. Protect internal parts against rust and corrosion.
2. Protect threads, flange faces, and weld ends.

B. Use the following precautions during storage:

1. Maintain valve end protection.
2. Store valves indoors and maintain at higher-than-ambient-dew-point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.

C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use operating handles or stems as lifting or rigging points.
PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

B. ASME Compliance:
 1. ASME B1.20.1 for threads for threaded-end valves.
 2. ASME B16.1 for flanges on iron valves.
 3. ASME B16.5 for flanges on steel valves.
 4. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 6. ASME B31.1 for power piping valves.
 7. ASME B31.9 for building services piping valves.

C. Bronze valves shall be made with dezincification-resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc are not permitted.

D. Refer to HVAC valve schedule articles for applications of valves.

E. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

F. Valve Sizes: Same as upstream piping unless otherwise indicated.

G. Valve Actuator Types:
 1. Handlever: For quarter-turn valves smaller than NPS 4.

H. Valves in Insulated Piping:
 1. Include 2-inch stem extensions.
 2. Extended operating handle of nonthermal-conductive material, and protective sleeves that allow operation of valves without breaking the vapor seals or disturbing insulation.
 3. Memory stops that are fully adjustable after insulation is applied.

I. Valve Bypass and Drain Connections: MSS SP-45.

2.2 BRASS BALL VALVES

A. Brass Ball Valves, Two-Piece with Full Port and Stainless-Steel Trim:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Apollo Valves; Conbraco Industries, Inc.
 b. Crane; Crane Energy Flow Solutions.
 c. Hammond Valve.
d. Milwaukee Valve Company.

2. Description:
 b. SWP Rating: 150 psig.
 c. CWP Rating: 600 psig.
 d. Body Design: Two piece.
 e. Body Material: Forged brass.
 f. Ends: Threaded.
 g. Seats: PTFE.
 h. Stem: Stainless steel.
 i. Ball: Stainless steel, vented.
 j. Port: Full.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.
 B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.
 C. Examine threads on valve and mating pipe for form and cleanliness.
 D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.
 E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION
 A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
 B. Locate valves for easy access and provide separate support where necessary.
 C. Install valves in horizontal piping with stem at or above center of pipe.
 D. Install valves in position to allow full stem movement.
 E. Install valve tags. Comply with requirements in Section 23 05 53 "Identification for HVAC Piping and Equipment" for valve tags and schedules.
3.3 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

A. If valves with specified SWP classes or CWP ratings are unavailable, the same types of valves with higher SWP classes or CWP ratings may be substituted.

B. Select valves with the following end connections:

1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solder-joint valve-end option is indicated in valve schedules below.
2. For Copper Tubing, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.

3.4 CONDENSER-WATER VALVE SCHEDULE

A. Pipe NPS 2 and Smaller: Brass or bronze ball valves, two-piece with stainless-steel trim, and full port.

1. Valves may be provided with solder-joint ends instead of threaded ends.

3.5 HEATING-WATER VALVE SCHEDULE

A. Pipe NPS 2 and Smaller: Brass or bronze ball valves, two-piece with stainless-steel trim, and full port.

1. Valves may be provided with solder-joint ends instead of threaded ends.

END OF SECTION
SECTION 23 05 23.13

BUTTERFLY VALVES FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Iron, single-flange butterfly valves.
2. Iron, grooved-end butterfly valves.

1.3 DEFINITIONS

A. CWP: Cold working pressure.
B. EPDM: Ethylene propylene copolymer rubber.
C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.
D. SWP: Steam working pressure.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of valve.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Prepare valves for shipping as follows:

1. Protect internal parts against rust and corrosion.
2. Protect threads, flange faces, grooves, and weld ends.
3. Set butterfly valves closed or slightly open.

B. Use the following precautions during storage:

1. Maintain valve end protection.
2. Store valves indoors and maintain at higher-than-ambient-dew-point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.

C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

B. ASME Compliance:
 1. ASME B16.1 for flanges on iron valves.
 2. ASME B16.5 for pipe flanges and flanged fittings, NPS 1/2 through NPS 24.
 3. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 4. ASME B31.1 for power piping valves.
 5. ASME B31.9 for building services piping valves.

C. AWWA Compliance: Comply with AWWA C606 for grooved-end connections.

D. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

E. Valve Sizes: Same as upstream piping unless otherwise indicated.

F. Valve Actuator Types:
 1. Handlever: For valves NPS 6 and smaller.

G. Valves in Insulated Piping: With 2-inch stem extensions with extended necks.

2.2 IRON, SINGLE-FLANGE BUTTERFLY VALVES

A. Iron, Single-Flange Butterfly Valves with Aluminum-Bronze Disc:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. DeZURIK.
 b. Hammond Valve.
 c. Jenkins Valves; Crane Energy Flow Solutions.
 d. KITZ Corporation.
 e. Milwaukee Valve Company.
 f. NIBCO INC.
 g. Red-White Valve Corp.
 h. Stockham; Crane Energy Flow Solutions.
2. Description:

 a. Standard: MSS SP-67, Type I.
 b. CWP Rating: 150 psig.
 c. Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.
 d. Body Material: ASTM A 126, cast iron or ASTM A 536, ductile iron.
 e. Seat: EPDM.
 f. Stem: One- or two-piece stainless steel.
 g. Disc: Aluminum bronze.

B. Iron, Single-Flange Butterfly Valves with Ductile-Iron Disc:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. DeZURIK.
 b. Hammond Valve.
 c. KITZ Corporation.
 d. Milwaukee Valve Company.
 e. NIBCO INC.
 f. Red-White Valve Corp.
 g. Stockham; Crane Energy Flow Solutions.
 h. WATTS.

2. Description:

 a. Standard: MSS SP-67, Type I.
 b. CWP Rating: 150 psig.
 c. Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.
 d. Body Material: ASTM A 126, cast iron or ASTM A 536, ductile iron.
 e. Seat: EPDM.
 f. Stem: One- or two-piece stainless steel.
 g. Disc: Nickel-plated or -coated ductile iron.

2.3 DUCTILE-IRON, GROOVED-END BUTTERFLY VALVES

A. Iron, Grooved-End Butterfly Valves, 175 CWP:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Victaulic Company.
 b. Pre-approved equipment acceptable.

2. Description:
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.

C. Examine mating flange faces for damage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

D. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

B. Locate valves for easy access and provide separate support where necessary.

C. Install valves in horizontal piping with stem at or above center of pipe.

D. Install valves in position to allow full stem movement.

E. Install valve tags. Comply with requirements in Section 23 05 53 "Identification for HVAC Piping and Equipment" for valve tags and schedules.

3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 CHILLED WATER VALVE SCHEDULE

A. Pipe NPS 2-1/2 and Larger:
2. Iron, Grooved-End Butterfly Valves, NPS 2-1/2 to NPS 12: 175 CWP.

END OF SECTION
SECTION 23 05 23.14
CHECK VALVES FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Bronze swing check valves.

1.3 DEFINITIONS
A. CWP: Cold working pressure.
B. EPDM: Ethylene propylene copolymer rubber.
C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.
D. SWP: Steam working pressure.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of valve.

1.5 DELIVERY, STORAGE, AND HANDLING
A. Prepare valves for shipping as follows:
 1. Protect internal parts against rust and corrosion.
 2. Protect threads, flange faces, grooves, and weld ends.
 3. Block check valves in either closed or open position.

B. Use the following precautions during storage:
 1. Maintain valve end protection.
 2. Store valves indoors and maintain at higher than ambient dew point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.
C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

B. ASME Compliance:

1. ASME B1.20.1 for threads for threaded-end valves.
2. ASME B16.1 for flanges on iron valves.
3. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
4. ASME B16.18 for solder joint.
5. ASME B31.1 for power piping valves.
6. ASME B31.9 for building services piping valves.

C. AWWA Compliance: Comply with AWWA C606 for grooved-end connections.

D. Bronze valves shall be made with dezincification-resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc are not permitted.

E. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

F. Valve Sizes: Same as upstream piping unless otherwise indicated.

G. Valve Bypass and Drain Connections: MSS SP-45.

2.2 BRONZE SWING CHECK VALVES

A. Bronze Swing Check Valves with Bronze Disc, Class 125:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. American Valve, Inc.
 b. Crane; Crane Energy Flow Solutions.
 c. Hammond Valve.
 d. Jenkins Valves; Crane Energy Flow Solutions.
 e. KITZ Corporation.
 f. Milwaukee Valve Company.
 g. NIBCO INC.
 h. Red-White Valve Corp.
 i. Stockham; Crane Energy Flow Solutions.
 j. WATTS.
2. Description:
 a. Standard: MSS SP-80, Type 3.
 b. CWP Rating: 200 psig.
 c. Body Design: Horizontal flow.
 e. Ends: Threaded.
 f. Disc: Bronze.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.
 B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.
 C. Examine threads on valve and mating pipe for form and cleanliness.
 D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.
 E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION
 A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
 B. Locate valves for easy access and provide separate support where necessary.
 C. Install valves in horizontal piping with stem at or above center of pipe.
 D. Install valves in position to allow full stem movement.
 E. Install check valves for proper direction of flow and as follows:
 1. Swing Check Valves: In horizontal position with hinge pin level.
 2. Plate-Type Check Valves: In horizontal or vertical position, between flanges.
 3. Lift Check Valves: With stem upright and plumb.
 F. Install valve tags. Comply with requirements for valve tags and schedules in Section 23 05 53 "Identification for HVAC Piping and Equipment."
3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

A. If valve applications are not indicated, use the following:

B. If valves with specified SWP classes or CWP ratings are unavailable, the same types of valves with higher SWP classes or CWP ratings may be substituted.

C. Select valves, except wafer types, with the following end connections:
 1. For Steel Piping, NPS 2 and Smaller: Threaded ends.
 2. For Steel Piping, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules.
 3. For Grooved-End Steel Piping except Steam and Steam Condensate Piping: Valve ends may be grooved.

3.5 CHILLED WATER VALVE SCHEDULE

A. Pipe NPS 2 and Smaller:
 1. Bronze Valves: May be provided with solder-joint ends instead of threaded ends.
 2. Bronze swing check valves with bronze disc, Class 125.

END OF SECTION
SECTION 23 05 29

HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Metal pipe hangers and supports.
2. Trapeze pipe hangers.
3. Fiberglass pipe hangers.
4. Metal framing systems.
5. Thermal-hanger shield inserts.
6. Fastener systems.
7. Pipe stands.
8. Equipment supports.

B. Related Requirements:

1. Section 05 50 00 "Metal Fabrications" for structural-steel shapes and plates for trapeze hangers for pipe and equipment supports.
2. Section 23 05 16 "Expansion Fittings and Loops for HVAC Piping" for pipe guides and anchors.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: Show fabrication and installation details and include calculations for the following; include Product Data for components:

1. Trapeze pipe hangers.
2. Equipment supports.

1.4 INFORMATIONAL SUBMITTALS

A. Welding certificates.
1.5 QUALITY ASSURANCE

A. Structural-Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code, Section IX.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Structural Performance: Hangers and supports for HVAC piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.

1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

2.2 METAL PIPE HANGERS AND SUPPORTS

A. Carbon-Steel Pipe Hangers and Supports:

1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
2. Galvanized Metallic Coatings: Pre-galvanized, hot-dip galvanized, or electro-galvanized.
4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.

2.3 TRAPEZE PIPE HANGERS

A. Description: MSS SP-58, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.4 THERMAL-HANGER SHIELD INSERTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. National Pipe Hanger Corporation.
2. Pipe Shields Inc.
3. Piping Technology & Products, Inc.
4. Rilco Manufacturing Co., Inc.
5. Value Engineered Products, Inc.
B. Insulation-Insert Material for Cold Piping: ASTM C591, Type VI, Grade 1 polyisocyanurate with 125-psi minimum compressive strength and vapor barrier.

C. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.

D. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.

E. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.5 FASTENER SYSTEMS

A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Hilti, Inc.
 b. ITW Ramset/Red Head; Illinois Tool Works, Inc.
 c. MKT Fastening, LLC.
 d. Simpson Strong-Tie Co., Inc.

B. Mechanical-Expansion Anchors: Insert-wedge-type anchors for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. B-line, an Eaton business.
 b. Empire Tool and Manufacturing Co., Inc.
 c. Hilti, Inc.
 d. ITW Ramset/Red Head; Illinois Tool Works, Inc.
 e. MKT Fastening, LLC.

2. Indoor Applications: Zinc-coated or stainless-steel.

2.6 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.

2.7 MATERIALS

A. Carbon Steel: ASTM A1011/A1011M.
B. Structural Steel: ASTM A36/A36M, carbon-steel plates, shapes, and bars; galvanized.

C. Threaded Rods: Continuously threaded. Zinc-plated or galvanized steel for indoor applications and stainless steel for outdoor applications. Mating nuts and washers of similar materials as rods.

 1. Properties: Non-staining, non-corrosive, and non-gaseous.
 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 APPLICATION
 A. Comply with requirements in Section 07 84 13 "Penetration Firestopping" for firestopping materials and installation for penetrations through fire-rated walls, ceilings, and assemblies.

 B. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.

3.2 HANGER AND SUPPORT INSTALLATION
 A. Metal Pipe-Hanger Installation: Comply with MSS SP-58. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.

 B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-58. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
 2. Field fabricate from ASTM A36/A36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.

 C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled strut systems.

 D. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.

 E. Fastener System Installation:
 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

F. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.

H. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

I. Install lateral bracing with pipe hangers and supports to prevent swaying.

J. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

K. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

L. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

M. Insulated Piping:

1. Attach clamps and spacers to piping.
 a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.

2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.

 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

3. Shield Dimensions for Pipe: Not less than the following:

 a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 b. NPS 4: 12 inches long and 0.06 inch thick.
 c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.

4. Pipes NPS 8 and Larger: Include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.
AIR HANDLING UNIT REPLACEMENT
DELAWARE TECHNICAL COMMUNITY COLLEGE
WILMINGTON, DELAWARE
GEORGE CAMPUS - EAST BUILDING

5. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.3 EQUIPMENT SUPPORTS

A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.

B. Grouting: Place grout under supports for equipment and make bearing surface smooth.

C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.4 METAL FABRICATIONS

A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.

B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.

C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:

1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
2. Obtain fusion without undercut or overlap.
3. Remove welding flux immediately.
4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.5 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.6 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.

B. Touchup: Comply with requirements in Section 09 91 13 "Exterior Painting" and Section 09 91 23 "Interior Painting" for cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal.
C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A780/A780M.

3.7 HANGER AND SUPPORT SCHEDULE

A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.

B. Comply with MSS SP-58 for pipe-hanger selections and applications that are not specified in piping system Sections.

C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.

D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

E. Use carbon-steel pipe hangers and supports and metal trapeze pipe hangers and attachments for general service applications.

F. Use stainless-steel pipe hangers and or corrosion-resistant attachments for hostile environment applications.

G. Use copper-plated pipe hangers and copper attachments for copper piping and tubing.

H. Use padded hangers for piping that is subject to scratching.

I. Use thermal-hanger shield inserts for insulated piping and tubing.

J. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of non-insulated or insulated, stationary pipes NPS 1/2 to NPS 30.

2. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36, requiring clamp flexibility and up to 4 inches of insulation.

3. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes NPS 1/2 to NPS 24 if little or no insulation is required.

4. Pipe Hangers (MSS Type 5): For suspension of pipes NPS 1/2 to NPS 4, to allow off-center closure for hanger installation before pipe erection.

5. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of non-insulated, stationary pipes NPS 3/4 to NPS 8.

6. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of non-insulated, stationary pipes NPS 1/2 to NPS 8.

7. Adjustable Band Hangers (MSS Type 9): For suspension of non-insulated, stationary pipes NPS 1/2 to NPS 8.

8. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of non-insulated, stationary pipes NPS 1/2 to NPS 8.

10. Extension Hinged or Two-Bolt Split Pipe Clamps (MSS Type 12): For suspension of non-insulated, stationary pipes NPS 3/8 to NPS 3.
11. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30.
12. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
13. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.
14. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
15. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes NPS 2-1/2 to NPS 36 if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange.
16. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30, from two rods if longitudinal movement caused by expansion and contraction might occur.
17. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes NPS 2-1/2 to NPS 24, from single rod if horizontal movement caused by expansion and contraction might occur.
18. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is unnecessary.
19. Pipe Roll and Plate Units (MSS Type 45): For support of pipes NPS 2 to NPS 24 if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is unnecessary.
20. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes NPS 2 to NPS 30 if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.

K. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.
2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.

L. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.

M. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
6. C-Clamps (MSS Type 23): For structural shapes.
7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.
11. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
12. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 a. Light (MSS Type 31): 750 lb.
 b. Medium (MSS Type 32): 1500 lb.
 c. Heavy (MSS Type 33): 3000 lb.
13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.

N. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

O. Comply with MSS SP-58 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.

P. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.

END OF SECTION
SECTION 23 05 53
IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Equipment labels.
 2. Warning signs and labels.
 3. Pipe labels.
 4. Valve tags.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Samples: For color, letter style, and graphic representation required for each identification material and device.

C. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.

D. Valve numbering scheme.

E. Valve Schedules: For each piping system to include in maintenance manuals.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Metal Labels for Equipment:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Brady Corporation.
 b. Brimar Industries, Inc.
c. Carlton Industries, LP.
d. Craftmark Pipe Markers.
e. emedco.
f. Kolbi Pipe Marker Co.
g. LEM Products Inc.
h. Seton Identification Products.

2. Material and Thickness: Anodized aluminum, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.

4. Background Color: Blue.

5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.

8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Plastic Labels for Equipment:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. Brady Corporation.
b. Brimar Industries, Inc.
c. Carlton Industries, LP.
d. Craftmark Pipe Markers.
e. emedco.
f. Kolbi Pipe Marker Co.
g. LEM Products Inc.
h. Seton Identification Products.

2. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.

4. Background Color: Blue.

5. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

6. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

7. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.

9. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

C. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), and the Specification Section number and title where equipment is specified.
D. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number, and identify Drawing numbers where equipment is indicated (plans, details, and schedules) and the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Brady Corporation.
2. Brimar Industries, Inc.
3. Carlton Industries, LP.
5. emedco.
6. LEM Products Inc.
7. Marking Services Inc.
10. Stranco, Inc.

B. Material and Thickness: Multi-layer, multi-color, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.

D. Background Color: Red.

E. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

F. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

G. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.

I. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

J. Label Content: Include caution and warning information plus emergency notification instructions.

2.3 PIPE LABELS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Actioncraft Products, Inc.; a division of Industrial Test Equipment Co., Inc.
2. Brady Corporation.
4. Carlton Industries, LP.
5. Craftmark Pipe Markers.
6. emedco.
8. LEM Products Inc.
9. Marking Services Inc.
10. Seton Identification Products.

B. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction according to ASME A13.1.

C. Pretensioned Pipe Labels: Pre-coiled, semi-rigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.

D. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

E. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings; also include pipe size and an arrow indicating flow direction.
 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions or as separate unit on each pipe label to indicate flow direction.
 2. Lettering Size: Size letters according to ASME A13.1 for piping.

2.4 VALVE TAGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Actioncraft Products, Inc.; a division of Industrial Test Equipment Co., Inc.
 2. Brady Corporation.
 4. Carlton Industries, LP.
 5. Craftmark Pipe Markers.
 6. emedco.
 8. LEM Products Inc.
 9. Marking Services Inc.
 10. Seton Identification Products.

B. Description: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.
 1. Tag Material: minimum thickness, and having predrilled or stamped holes for attachment hardware.
 2. Fasteners: Brass beaded chain.
C. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.

1. Valve-tag schedule shall be included in operation and maintenance data.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 GENERAL INSTALLATION REQUIREMENTS

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

B. Coordinate installation of identifying devices with locations of access panels and doors.

C. Install identifying devices before installing acoustical ceilings and similar concealment.

3.3 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.

B. Locate equipment labels where accessible and visible.

3.4 PIPE LABEL INSTALLATION

A. Piping Color Coding: Painting of piping is specified.

B. Stenciled Pipe Label Option: Stenciled labels may be provided instead of manufactured pipe labels, at Installer's option. Install stenciled pipe labels, complying with ASME A13.1, with painted, color-coded bands or rectangles on each piping system.

1. Identification Paint: Use for contrasting background.

C. Pipe Label Locations: Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:

1. Near each valve and control device.
2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
3. Near penetrations and on both sides of through walls, floors, ceilings, and inaccessible enclosures.
4. At access doors, manholes, and similar access points that permit view of concealed piping.
5. Near major equipment items and other points of origination and termination.
6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.

D. Directional Flow Arrows: Arrows shall be used to indicate direction of flow in pipes, including pipes where flow is allowed in both directions.

E. Pipe Label Color Schedule:

3.5 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in piping systems, except check valves, valves within factory-fabricated equipment units, shutoff valves, faucets, convenience and lawn-watering hose connections, and HVAC terminal devices and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.

B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:
 1. Valve-Tag Size and Shape:
 a. Refrigerant: 2 inches, round.
 b. Hot Water: 2 inches, round.
 2. Valve-Tag Colors:

3.6 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

END OF SECTION
SECTION 23 05 93

TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Balancing Air Systems:
 a. Constant-air-volume systems.

2. Balancing Hydronic Piping Systems:
 a. Constant-flow hydronic systems.

3. Testing, Adjusting, and Balancing Equipment:
 a. Motors.
 b. Chillers.
 c. Cooling towers.
 d. Boilers.
 e. Heat-transfer coils.

4. Control system verification.

1.3 DEFINITIONS

B. BAS: Building automation systems.

D. TAB: Testing, adjusting, and balancing.

F. TAB Specialist: An independent entity meeting qualifications to perform TAB work.
1.4 PREINSTALLATION MEETINGS

A. TAB Conference: If requested by the Owner, conduct a TAB conference at Project site after approval of the TAB strategies and procedures plan to develop a mutual understanding of the details. Provide a minimum of 14 days' advance notice of scheduled meeting time and location.

1. Minimum Agenda Items:
 b. The TAB plan.
 c. Needs for coordination and cooperation of trades and subcontractors.
 d. Proposed procedures for documentation and communication flow.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: Within 30 days of Contractor's Notice to Proceed, submit documentation that the TAB specialist and this Project's TAB team members meet the qualifications specified in "Quality Assurance" Article.

D. System Readiness Checklists: Within 30 days of Contractor's Notice to Proceed, submit system readiness checklists as specified in "Preparation" Article.

E. Examination Report: Submit a summary report of the examination review required in "Examination" Article.

F. Certified TAB reports.

G. Sample report forms.

H. Instrument calibration reports, to include the following:

1. Instrument type and make.
2. Serial number.
3. Application.
4. Dates of use.
5. Dates of calibration.

1.6 QUALITY ASSURANCE

A. TAB Specialists Qualifications: Certified by NEBB or TABB.
1. TAB Field Supervisor: Employee of the TAB specialist and certified by NEBB or TABB.
2. TAB Technician: Employee of the TAB specialist and certified by NEBB or TABB as TAB technician.

B. Instrumentation Type, Quantity, Accuracy, and Calibration: Comply with requirements in ASHRAE 111, Section 4, "Instrumentation."

C. ASHRAE/IES 90.1 Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6.7.2.3 - "System Balancing."

1.7 FIELD CONDITIONS

A. Full Owner Occupancy: Owner will occupy the site and existing building during entire TAB period. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.

B. Partial Owner Occupancy: Owner may occupy completed areas of building before Substantial Completion. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 TAB SPECIALISTS

A. Subject to compliance with requirements noted above.

3.2 EXAMINATION

A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems designs that may preclude proper TAB of systems and equipment.

B. Examine installed systems for balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are applicable for intended purpose and are accessible.

C. Examine the approved submittals for HVAC systems and equipment.

D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems output, and statements of philosophies and assumptions about HVAC system and equipment controls.

E. Examine ceiling plenums and underfloor air plenums used for supply, return, or relief air to verify that they are properly separated from adjacent areas. Verify that penetrations in plenum walls are sealed and fire-stopped if required.
F. Examine equipment performance data including fan and pump curves.
 1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.
 2. Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment performance. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," or in SMACNA's "HVAC Systems - Duct Design." Compare results with the design data and installed conditions.

G. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.

H. Examine test reports specified in individual system and equipment Sections.

I. Examine HVAC equipment and verify that bearings are greased, belts are aligned and tight, filters are clean, and equipment with functioning controls is ready for operation.

J. Examine strainers. Verify that startup screens have been replaced by permanent screens with indicated perforations.

K. Examine control valves for proper installation for their intended function of throttling, diverting, or mixing fluid flows.

L. Examine heat-transfer coils for correct piping connections and for clean and straight fins.

M. Examine operating safety interlocks and controls on HVAC equipment.

N. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.3 PREPARATION

A. Prepare a TAB plan that includes the following:
 1. Equipment and systems to be tested.
 3. Instrumentation to be used.
 4. Sample forms with specific identification for all equipment.

B. Perform system-readiness checks of HVAC systems and equipment to verify system readiness for TAB work. Include, at a minimum, the following:
 1. Airside:
 a. Verify that leakage and pressure tests on air distribution systems have been satisfactorily completed.
 b. Duct systems are complete with terminals installed.
 c. Volume, smoke, and fire dampers are open and functional.
d. Clean filters are installed.
e. Fans are operating, free of vibration, and rotating in correct direction.
f. Variable-frequency controllers' startup is complete and safeties are verified.
g. Automatic temperature-control systems are operational.
h. Ceilings are installed.
i. Windows and doors are installed.
j. Suitable access to balancing devices and equipment is provided.

2. Hydronics:

a. Verify leakage and pressure tests on water distribution systems have been satisfactorily completed.
b. Piping is complete with terminals installed.
c. Water treatment is complete.
d. Systems are flushed, filled, and air purged.
e. Strainers are pulled and cleaned.
f. Control valves are functioning per the sequence of operation.
g. Shutoff and balance valves have been verified to be 100 percent open.
h. Variable-frequency controllers' startup is complete and safeties are verified.
i. Suitable access to balancing devices and equipment is provided.
j. Pumps are started and proper rotation is verified.
k. Pump gage connections are installed directly at pump inlet and outlet flanges or in discharge and suction pipe prior to valves or strainers.

3.4 GENERAL PROCEDURES FOR TESTING AND BALANCING

A. Perform testing and balancing procedures on each system according to the procedures contained in AABC's "National Standards for Total System Balance"; NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems"; or SMACNA's "HVAC Systems - Testing, Adjusting, and Balancing" and in this Section.

B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.

1. After testing and balancing, patch probe holes in ducts with same material and thickness as used to construct ducts.
2. After testing and balancing, install test ports and duct access doors that comply with requirements in Section 23 33 00 "Air Duct Accessories."
3. Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish according to Section 23 07 13 "Duct Insulation," Section 23 07 16 "HVAC Equipment Insulation," and Section 23 07 19 "HVAC Piping Insulation."

C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.

D. Take and report testing and balancing measurements in inch-pound (IP) units.
3.5 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Cross-check the summation of required outlet volumes with required fan volumes.

B. Prepare schematic diagrams of systems' "as-built" duct layouts.

C. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.

D. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaust-air dampers through the supply-fan discharge and mixing dampers.

E. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.

F. Verify that motor starters are equipped with properly sized thermal protection.

G. Check dampers for proper position to achieve desired airflow path.

H. Check for airflow blockages.

I. Check condensate drains for proper connections and functioning.

J. Check for proper sealing of air-handling-unit components.

K. Verify that air duct system is sealed as specified in Section 233113 "Metal Ducts."

3.6 PROCEDURES FOR CONSTANT VOLUME SYSTEMS

A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.

1. Measure total airflow.
 a. Set outside-air, return-air, and relief-air dampers for proper position that simulates minimum outdoor-air conditions.
 b. Where duct conditions allow, measure airflow by Pitot-tube traverse. If necessary, perform multiple Pitot-tube traverses to obtain total airflow.
 c. Where duct conditions are not suitable for Pitot-tube traverse measurements, a coil traverse may be acceptable.
 d. If a reliable Pitot-tube traverse or coil traverse is not possible, measure airflow at terminals and calculate the total airflow.

2. Measure fan static pressures as follows:
 a. Measure static pressure directly at the fan outlet or through the flexible connection.
 b. Measure static pressure directly at the fan inlet or through the flexible connection.
 c. Measure static pressure across each component that makes up the air-handling system.
 d. Report artificial loading of filters at the time static pressures are measured.
3. Review Record Documents to determine variations in design static pressures versus actual static pressures. Calculate actual system-effect factors. Recommend adjustments to accommodate actual conditions.

4. Obtain approval from Architect for adjustment of fan speed higher or lower than indicated speed. Comply with requirements in HVAC Sections for air-handling units for adjustment of fans, belts, and pulley sizes to achieve indicated air-handling-unit performance.

5. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload occurs. Measure amperage in full-cooling, full-heating, economizer, and any other operating mode to determine the maximum required brake horsepower.

B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows.

1. Measure airflow of submain and branch ducts.
2. Adjust submain and branch duct volume dampers for specified airflow.
3. Re-measure each submain and branch duct after all have been adjusted.

C. Adjust air inlets and outlets for each space to indicated airflows.

1. Set airflow patterns of adjustable outlets for proper distribution without drafts.
2. Measure inlets and outlets airflow.
3. Adjust each inlet and outlet for specified airflow.
4. Re-measure each inlet and outlet after they have been adjusted.

D. Verify final system conditions.

1. Re-measure and confirm that minimum outdoor, return, and relief airflows are within design. Readjust to design if necessary.
2. Re-measure and confirm that total airflow is within design.
3. Re-measure all final fan operating data, rpms, volts, amps, and static profile.
4. Mark all final settings.
5. Test system in economizer mode. Verify proper operation and adjust if necessary.
6. Measure and record all operating data.
7. Record final fan-performance data.

3.7 GENERAL PROCEDURES FOR HYDRONIC SYSTEMS

A. Prepare test reports for pumps, coils, and heat exchangers. Obtain approved submittals and manufacturer-recommended testing procedures. Crosscheck the summation of required coil and heat exchanger flow rates with pump design flow rate.

B. Prepare schematic diagrams of systems' "as-built" piping layouts.

C. In addition to requirements in "Preparation" Article, prepare hydronic systems for testing and balancing as follows:

1. Check liquid level in expansion tank.
2. Check highest vent for adequate pressure.
3. Check flow-control valves for proper position.
4. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.
5. Verify that motor starters are equipped with properly sized thermal protection.
6. Check that air has been purged from the system.

3.8 PROCEDURES FOR CONSTANT-FLOW HYDRONIC SYSTEMS

A. Adjust pumps to deliver total design gpm.
 1. Measure total water flow.
 a. Position valves for full flow through coils.
 b. Measure flow by main flow meter, if installed.
 c. If main flow meter is not installed, determine flow by pump TDH or exchanger pressure drop.
 2. Measure pump TDH as follows:
 a. Measure discharge pressure directly at the pump outlet flange or in discharge pipe prior to any valves.
 b. Measure inlet pressure directly at the pump inlet flange or in suction pipe prior to any valves or strainers.
 c. Convert pressure to head and correct for differences in gage heights.
 d. Verify pump impeller size by measuring the TDH with the discharge valve closed. Note the point on manufacturer's pump curve at zero flow, and verify that the pump has the intended impeller size.
 e. With valves open, read pump TDH. Adjust pump discharge valve until design water flow is achieved.

B. Adjust flow-measuring devices installed in mains and branches to design water flows.
 1. Measure flow in main and branch pipes.
 2. Adjust main and branch balance valves for design flow.
 3. Re-measure each main and branch after all have been adjusted.

C. Adjust flow-measuring devices installed at terminals for each space to design water flows.
 1. Measure flow at terminals.
 2. Adjust each terminal to design flow.
 3. Re-measure each terminal after it is adjusted.
 4. Position control valves to bypass the coil, and adjust the bypass valve to maintain design flow.
 5. Perform temperature tests after flows have been balanced.

D. For systems with pressure-independent valves at terminals:
1. Measure differential pressure and verify that it is within manufacturer's specified range.
2. Perform temperature tests after flows have been verified.

E. For systems without pressure-independent valves or flow-measuring devices at terminals:
1. Measure and balance coils by either coil pressure drop or temperature method.
2. If balanced by coil pressure drop, perform temperature tests after flows have been verified.

F. Verify final system conditions as follows:
1. Re-measure and confirm that total water flow is within design.
2. Re-measure final pumps' operating data, TDH, volts, amps, and static profile.
3. Mark final settings.

G. Verify that memory stops have been set.

3.9 PROCEDURES FOR CHILLERS

A. Balance water flow through each evaporator and condenser to within specified tolerances of indicated flow with all pumps operating. With only one chiller operating in a multiple chiller installation, do not exceed the flow for the maximum tube velocity recommended by the chiller manufacturer. Measure and record the following data with each chiller operating at design conditions:

1. Evaporator-water entering and leaving temperatures, pressure drop, and water flow.
2. For water-cooled chillers, condenser-water entering and leaving temperatures, pressure drop, and water flow.
3. Evaporator and condenser refrigerant temperatures and pressures, using instruments furnished by chiller manufacturer.
4. Power factor if factory-installed instrumentation is furnished for measuring kilowatts.
5. Kilowatt input if factory-installed instrumentation is furnished for measuring kilowatts.
7. For air-cooled chillers, verify condenser-fan rotation and record fan and motor data including number of fans and entering- and leaving-air temperatures.

3.10 PROCEDURES FOR COOLING TOWERS

A. Balance total condenser-water flows to towers. Measure and record the following data:

1. Condenser-water flow to each cell of the cooling tower.
2. Entering- and leaving-water temperatures.
3. Wet- and dry-bulb temperatures of entering air.
4. Wet- and dry-bulb temperatures of leaving air.
5. Condenser-water flow rate recirculating through the cooling tower.
6. Cooling-tower spray pump discharge pressure.
7. Condenser-water flow through bypass.
8. Fan and motor operating data.
3.11 PROCEDURES FOR BOILERS

A. Hydronic Boilers:
 1. Measure and record entering- and leaving-water temperatures.
 2. Measure and record water flow.
 3. Record relief valve pressure setting.

3.12 DUCT LEAKAGE TESTS

A. Witness the duct pressure testing performed by Installer.
B. Verify that proper test methods are used and that leakage rates are within specified tolerances.
C. Report deficiencies observed.

3.13 CONTROLS VERIFICATION

A. In conjunction with system balancing, perform the following:
 1. Verify temperature control system is operating within the design limitations.
 2. Confirm that the sequences of operation are in compliance with Contract Documents.
 3. Verify that controllers are calibrated and function as intended.
 4. Verify that controller set points are as indicated.
 5. Verify the operation of lockout or interlock systems.
 6. Verify the operation of valve and damper actuators.
 7. Verify that controlled devices are properly installed and connected to correct controller.
 8. Verify that controlled devices travel freely and are in position indicated by controller: open, closed, or modulating.
 9. Verify location and installation of sensors to ensure that they sense only intended temperature, humidity, or pressure.

B. Reporting: Include a summary of verifications performed, remaining deficiencies, and variations from indicated conditions.

3.14 PROCEDURES FOR TESTING, ADJUSTING, AND BALANCING EXISTING SYSTEMS

A. Perform a preconstruction inspection of existing equipment that is to remain and be reused.
 1. Measure and record the operating speed, airflow, and static pressure of each fan.
 2. Measure motor voltage and amperage. Compare the values to motor nameplate information.
 3. Check the refrigerant charge.
 4. Check the condition of filters.
 5. Check the condition of coils.
 6. Check the operation of the drain pan and condensate-drain trap.
 7. Check bearings and other lubricated parts for proper lubrication.
B. Before performing testing and balancing of existing systems, inspect existing equipment that is to remain and be reused to verify that existing equipment has been cleaned and refurbished. Verify the following:

1. New filters are installed.
2. Coils are clean and fins combed.
3. Drain pans are clean.
4. Fans are clean.
5. Bearings and other parts are properly lubricated.
6. Deficiencies noted in the preconstruction report are corrected.

C. Perform testing and balancing of existing systems to the extent that existing systems are affected by the renovation work.

1. Compare the indicated airflow of the renovated work to the measured fan airflows, and determine the new fan speed and the face velocity of filters and coils.
2. Verify that the indicated airflows of the renovated work result in filter and coil face velocities and fan speeds that are within the acceptable limits defined by equipment manufacturer.
3. If calculations increase or decrease the airflow rates and water flow rates by more than 5 percent, make equipment adjustments to achieve the calculated rates. If increase or decrease is 5 percent or less, equipment adjustments are not required.
4. Balance each air outlet.

3.15 TOLERANCES

A. Set HVAC system's airflow rates and water flow rates within the following tolerances:

1. Supply, Return, and Exhaust Fans and Equipment with Fans: **Plus or minus 10 percent.**
2. Air Outlets and Inlets: **Plus or minus 10 percent.**
3. Heating-Water Flow Rate: **Plus or minus 10 percent.**
4. Cooling-Water Flow Rate: **Plus or minus 10 percent.**

B. Maintaining pressure relationships as designed shall have priority over the tolerances specified above.

3.16 PROGRESS REPORTING

A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems balancing devices. Recommend changes and additions to systems balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.

B. Status Reports: Prepare weekly progress reports to describe completed procedures, procedures in progress, and scheduled procedures. Include a list of deficiencies and problems found in systems being tested and balanced. Prepare a separate report for each system and each building floor for systems serving multiple floors.
3.17 FINAL REPORT

A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.

1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
2. Include a list of instruments used for procedures, along with proof of calibration.
3. Certify validity and accuracy of field data.

B. Final Report Contents: In addition to certified field-report data, include the following:

1. Fan curves.
2. Manufacturers’ test data.
3. Field test reports prepared by system and equipment installers.
4. Other information relative to equipment performance; do not include Shop Drawings and Product Data.

C. General Report Data: In addition to form titles and entries, include the following data:

1. Title page.
2. Name and address of the TAB specialist.
3. Project name.
4. Project location.
5. Architect’s name and address.
6. Engineer’s name and address.
7. Contractor’s name and address.
9. Signature of TAB supervisor who certifies the report.
10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
11. Summary of contents including the following:

 a. Indicated versus final performance.
 b. Notable characteristics of systems.
 c. Description of system operation sequence if it varies from the Contract Documents.

12. Nomenclature sheets for each item of equipment.
13. Data for terminal units, including manufacturer’s name, type, size, and fittings.
14. Notes to explain why certain final data in the body of reports vary from indicated values.
15. Test conditions for fans and pump performance forms including the following:

 a. Settings for outdoor-, return-, and exhaust-air dampers.
 b. Conditions of filters.
 c. Cooling coil, wet- and dry-bulb conditions.
 d. Face and bypass damper settings at coils.
 e. Fan drive settings including settings and percentage of maximum pitch diameter.
 f. Inlet vane settings for variable-air-volume systems.
 g. Settings for supply-air, static-pressure controller.
 h. Other system operating conditions that affect performance.
D. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following:

1. Quantities of outdoor, supply, return, and exhaust airflows.
2. Duct, outlet, and inlet sizes.
4. Pipe and valve sizes and locations.
5. Terminal units.

E. Air-Handling-Unit Test Reports: For air-handling units with coils, include the following:

1. Unit Data:
 a. Unit identification.
 b. Location.
 c. Make and type.
 d. Model number and unit size.
 e. Manufacturer's serial number.
 f. Unit arrangement and class.
 g. Discharge arrangement.
 h. Sheave make, size in inches, and bore.
 i. Center-to-center dimensions of sheave and amount of adjustments in inches.
 j. Number, make, and size of belts.
 k. Number, type, and size of filters.

2. Motor Data:
 a. Motor make, and frame type and size.
 b. Horsepower and rpm.
 c. Volts, phase, and hertz.
 d. Full-load amperage and service factor.
 e. Sheave make, size in inches, and bore.
 f. Center-to-center dimensions of sheave and amount of adjustments in inches.

3. Test Data (Indicated and Actual Values):
 a. Total airflow rate in cfm.
 b. Total system static pressure in inches wg.
 c. Fan rpm.
 d. Discharge static pressure in inches wg.
 e. Filter static-pressure differential in inches wg.
 f. Cooling-coil static-pressure differential in inches wg.
 g. Outdoor airflow in cfm.
 h. Return airflow in cfm.
 i. Outdoor-air damper position.
 j. Return-air damper position.

F. Round, Flat-Oval, and Rectangular Duct Traverse Reports: Include a diagram with a grid representing the duct cross-section and record the following:
1. **Report Data:**
 a. System and air-handling-unit number.
 b. Location and zone.
 c. Traverse air temperature in deg F.
 d. Duct static pressure in inches wg.
 e. Duct size in inches.
 f. Duct area in sq. ft.
 g. Indicated airflow rate in cfm.
 h. Indicated velocity in fpm.
 i. Actual airflow rate in cfm.
 j. Actual average velocity in fpm.
 k. Barometric pressure in psig.

G. **Fan Test Reports:** For supply, return, and exhaust fans, include the following:

1. **Fan Data:**
 a. System identification.
 b. Location.
 c. Make and type.
 d. Model number and size.
 e. Manufacturer's serial number.
 f. Arrangement and class.
 g. Sheave make, size in inches, and bore.
 h. Center-to-center dimensions of sheave and amount of adjustments in inches.

2. **Motor Data:**
 a. Motor make, and frame type and size.
 b. Horsepower and rpm.
 c. Volts, phase, and hertz.
 d. Full-load amperage and service factor.
 e. Sheave make, size in inches, and bore.
 f. Center-to-center dimensions of sheave, and amount of adjustments in inches.
 g. Number, make, and size of belts.

3. **Test Data (Indicated and Actual Values):**
 a. Total airflow rate in cfm.
 b. Total system static pressure in inches wg.
 c. Fan rpm.
 d. Discharge static pressure in inches wg.
 e. Suction static pressure in inches wg.

H. **Pump Test Reports:** Calculate impeller size by plotting the shutoff head on pump curves and include the following:

1. **Unit Data:**
 a. Unit identification.
b. Location.
c. Service.
d. Make and size.
e. Model number and serial number.
f. Water flow rate in gpm.
g. Water pressure differential in feet of head or psig.
h. Required net positive suction head in feet of head or psig.
i. Pump rpm.
j. Impeller diameter in inches.
k. Motor make and frame size.
l. Motor horsepower and rpm.
m. Voltage at each connection.
n. Amperage for each phase.
o. Full-load amperage and service factor.
p. Seal type.

2. Test Data (Indicated and Actual Values):
 a. Static head in feet of head or psig.
 b. Pump shutoff pressure in feet of head or psig.
 c. Actual impeller size in inches.
 d. Full-open flow rate in gpm.
 e. Full-open pressure in feet of head or psig.
 f. Final discharge pressure in feet of head or psig.
 g. Final suction pressure in feet of head or psig.
 h. Final total pressure in feet of head or psig.
 i. Final water flow rate in gpm.
 j. Voltage at each connection.
 k. Amperage for each phase.

I. Instrument Calibration Reports:
 1. Report Data:
 a. Instrument type and make.
 b. Serial number.
 c. Application.
 d. Dates of use.
 e. Dates of calibration.

3.18 VERIFICATION OF TAB REPORT

A. The TAB specialist's test and balance engineer shall conduct the inspection in the presence of Owner.

B. Owner shall randomly select measurements, documented in the final report, to be rechecked. Rechecking shall be limited to either 10 percent of the total measurements recorded or the extent of measurements that can be accomplished in a normal 8-hour business day.
C. If rechecks yield measurements that differ from the measurements documented in the final report by more than the tolerances allowed, the measurements shall be noted as "FAILED."

D. If the number of "FAILED" measurements is greater than 10 percent of the total measurements checked during the final inspection, the testing and balancing shall be considered incomplete and shall be rejected.

E. If TAB work fails, proceed as follows:
 1. TAB specialists shall recheck all measurements and make adjustments. Revise the final report and balancing device settings to include all changes; resubmit the final report and request a second final inspection.
 2. If the second final inspection also fails, Owner may contract the services of another TAB specialist to complete TAB work according to the Contract Documents and deduct the cost of the services from the original TAB specialist's final payment.
 3. If the second verification also fails, Owner may contact AABC Headquarters regarding the AABC National Performance Guaranty.

F. Prepare test and inspection reports.

3.19 ADDITIONAL TESTS

A. Within 90 days of completing TAB, perform additional TAB to verify that balanced conditions are being maintained throughout and to correct unusual conditions.

B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional TAB during near-peak summer and winter conditions.

END OF SECTION
SECTION 23 07 13

DUCT INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes insulating the following duct services:
 1. Indoor, exposed supply and outdoor air.
 2. Indoor, exposed return located in unconditioned space.

B. Related Sections:
 1. Section 23 07 19 "HVAC Piping Insulation."

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied if any).

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Detail insulation application at elbows, fittings, dampers, specialties and flanges for each type of insulation.
 2. Detail application of field-applied jackets.
 3. Detail application at linkages of control devices.

C. Samples: For each type of insulation and jacket indicated. Identify each Sample, describing product and intended use. Sample sizes are as follows:
 1. Sheet Form Insulation Materials: 12 inches square.
 2. Sheet Jacket Materials: 12 inches square.
 3. Manufacturer's Color Charts: For products where color is specified, show the full range of colors available for each type of finish material.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified Installer.
B. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.

C. Field quality-control reports.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.

B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.

1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.7 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 23 05 29 "Hangers and Supports for HVAC Piping and Equipment."

B. Coordinate clearance requirements with duct Installer for duct insulation application. Before preparing ductwork Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
C. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

D. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type I.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. CertainTeed Corporation.
 b. Johns Manville; a Berkshire Hathaway company.
 c. Knauf Insulation.
 d. Owens Corning.

E. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB. For duct and plenum applications, provide insulation with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. CertainTeed Corporation.
 b. Johns Manville; a Berkshire Hathaway company.
 c. Knauf Insulation.
 d. Owens Corning.

2.2 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand; H. B. Fuller Construction Products.
 b. Eagle Bridges - Marathon Industries.
 c. Foster Brand; H. B. Fuller Construction Products.
 d. Mon-Eco Industries, Inc.

C. PVC Jacket Adhesive: Compatible with PVC jacket.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Dow Corning Corporation.
 b. Johns Manville; a Berkshire Hathaway company.
 c. P.I.C. Plastics, Inc.
2.3 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.

B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below ambient services.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand; H. B. Fuller Construction Products.
 b. Foster Brand; H. B. Fuller Construction Products.
 c. Knauf Insulation.
 d. Vimasco Corporation.

2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness.
3. Service Temperature Range: Minus 20 to plus 180 deg F.
4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.

C. Breather Mastic: Water based; suitable for indoor and outdoor use on above ambient services.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand; H. B. Fuller Construction Products.
 b. Eagle Bridges - Marathon Industries.
 c. Foster Brand; H. B. Fuller Construction Products.
 d. Mon-Eco Industries, Inc.

2. Water-Vapor Permeance: ASTM F 1249, 1.8 perms at 0.0625-inch dry film thickness.
3. Service Temperature Range: Minus 20 to plus 180 deg F.
4. Solids Content: 60 percent by volume and 66 percent by weight.

2.4 SEALANTS

A. FSK and Metal Jacket Flashing Sealants:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand; H. B. Fuller Construction Products.
 b. Eagle Bridges - Marathon Industries.
 c. Foster Brand; H. B. Fuller Construction Products.
 d. Mon-Eco Industries, Inc.
2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Fire- and water-resistant, flexible, elastomeric sealant.
4. Service Temperature Range: Minus 40 to plus 250 deg F.
5. Color: Aluminum.

2.5 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 1. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.
 2. Vinyl Jacket: White vinyl with a permeance of 1.3 perms when tested according to ASTM E 96/E 96M, Procedure A, and complying with NFPA 90A and NFPA 90B.

2.6 TAPES

A. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Avery Dennison Corporation, Specialty Tapes Division.
 b. Compac Corporation.
 c. Ideal Tape Co., Inc., an American Biltrite Company.
 d. Venture Tape.
 2. Width: 3 inches.
 3. Thickness: 6.5 mils.
 5. Elongation: 2 percent.
 6. Tensile Strength: 40 lbf/inch in width.
 7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

2.7 SECUREMENTS

A. Insulation Pins and Hangers:
 1. Metal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 a. Manufacturers: Subject to compliance with requirements, provide products by the following:
 1) AGM Industries, Inc.
 2) Duro Dyne Corp.
2. Nonmetal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate fastened to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:

 a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 1) Duro Dyne Corp.
 2) Sheet Metal Connectors, Inc.
 3) Ductmate Industries, Inc.

 b. Baseplate: Perforated, galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.
 c. Spindle: Zinc-coated, low-carbon steel, fully annealed, 0.106-inch-diameter shank, length to suit depth of insulation indicated.
 d. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.

3. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-thick, galvanized-steel sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.

 a. Manufacturers: Subject to compliance with requirements, provide products by the following:

 1) Duro Dyne Corp.
 2) Sheet Metal Connectors, Inc.
 3) Ductmate Industries, Inc.

 b. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.

4. Nonmetal Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-thick nylon sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.

 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
PART 3 - EXECUTION

3.1 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.2 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of ducts and fittings.

B. Install insulation materials, vapor barriers or retarders, jackets, and thicknesses required for each item of duct system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Keep insulation materials dry during application and finishing.

G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

H. Install insulation with least number of joints practical.

I. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.

 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.

J. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

K. Install insulation with factory-applied jackets as follows:
1. Draw jacket tight and smooth.
2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
3. Overlap jacket longitudinal seams at least 1-1/2 inches. Clean and dry surface to receive self-sealing lap.
 a. For below ambient services, apply vapor-barrier mastic over staples.
4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.

L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

3.3 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

C. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches.
 1. Comply with requirements in Section 07 84 13 "Penetration Firestopping."

D. Insulation Installation at Floor Penetrations:
 1. Duct: For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least 2 inches.
2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 07 84 13 "Penetration Firestopping."

3.4 INSTALLATION OF MINERAL-FIBER INSULATION

A. Board Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.

1. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:

 a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 b. On duct sides with dimensions larger than 18 inches, space pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 d. Do not overcompress insulation during installation.
 e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.

2. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.

 a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches.

3. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.

3.5 FIELD-APPLIED JACKET INSTALLATION

A. Where FSK jackets are indicated, install as follows:

 1. Draw jacket material smooth and tight.
 2. Install lap or joint strips with same material as jacket.
3. Secure jacket to insulation with manufacturer's recommended adhesive.
4. Install jacket with 1-1/2-inch laps at longitudinal seams and 3-inch-wide joint strips at end joints.
5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.

B. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications, install with longitudinal seams along top and bottom of tanks and vessels. Seal with manufacturer's recommended adhesive.
1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.

3.6 FIELD QUALITY CONTROL
A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.
B. Perform tests and inspections.
C. Tests and Inspections:
1. Inspect ductwork, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each duct system defined in the "Duct Insulation Schedule, General" Article.
D. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.7 DUCT INSULATION SCHEDULE, GENERAL
A. Plenums and Ducts Requiring Insulation:
1. Indoor, exposed supply and outdoor air.
2. Indoor, exposed return located in unconditioned space.
B. Items Not Insulated:
1. Fibrous-glass ducts.
2. Factory-insulated flexible ducts.
3. Factory-insulated plenums and casings.
4. Flexible connectors.
5. Vibration-control devices.
6. Factory-insulated access panels and doors.

3.8 INDOOR DUCT AND PLENUM INSULATION SCHEDULE
A. Exposed, rectangular, supply-air duct insulation shall be one of the following:
1. Mineral-Fiber Blanket: 1-1/2 inches thick and 0.75-lb/cu. ft. nominal density. In shaft only.

B. Exposed, rectangular, return-air duct insulation shall be one of the following:

C. Exposed, rectangular, outdoor-air duct insulation shall be one of the following:

D. Exposed, rectangular, exhaust-air duct insulation shall be one of the following:

END OF SECTION
SECTION 23 07 19

HVAC PIPING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes insulating the following HVAC piping systems:

1. Condensate drain piping, indoors and outdoors.
2. Heating hot-water piping, indoors and outdoors.
3. Chilled Water piping, indoors and outdoors.

B. Related Sections:

1. Section 23 07 13 "Duct Insulation."

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory and field applied if any).

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.

1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
2. Detail attachment and covering of heat tracing inside insulation.
3. Detail insulation application at pipe expansion joints for each type of insulation.
4. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
5. Detail removable insulation at piping specialties.
6. Detail application of field-applied jackets.
7. Detail application at linkages of control devices.

C. Samples: For each type of insulation and jacket indicated. Identify each Sample, describing product and intended use.

1. Preformed Pipe Insulation Materials: 12 inches long by NPS 2.
1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified Installer.

B. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.

C. Field quality-control reports.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.

B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.7 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 23 05 29 "Hangers and Supports for HVAC Piping and Equipment."

B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

C. Coordinate installation and testing of heat tracing.

1.8 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.
PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

A. Comply with requirements in "Piping Insulation Schedule, General," "Indoor Piping Insulation Schedule," articles for where insulating materials shall be applied.

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

F. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type II with factory-applied vinyl jacket III with factory-applied FSP jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. CertainTeed Corporation.
 b. Johns Manville; a Berkshire Hathaway company.
 c. Knauf Insulation.
 d. Manson Insulation Inc.
 e. Owens Corning.

G. Mineral-Fiber, Preformed Pipe Insulation:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Johns Manville; a Berkshire Hathaway company.
 b. Knauf Insulation.
 c. Manson Insulation Inc.
 d. Owens Corning.

2. Type II, 1200 deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type II, Grade A, with factory-applied ASJ. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

H. Mineral-Fiber, Pipe Insulation: Mineral or glass fibers bonded with a thermosetting resin. Semirigid board material with factory-applied ASJ complying with ASTM C 1393, Type II or Type IIIA Category 2, or with properties similar to ASTM C 612, Type IB. Nominal density is 2.5 lb/cu. ft. or more. Thermal conductivity (k-value) at 100 deg F is 0.29 Btu x in./h x sq. ft. x
deg F or less. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. CertainTeed Corporation.
 b. Johns Manville; a Berkshire Hathaway company.
 c. Knauf Insulation.
 d. Manson Insulation Inc.
 e. Owens Corning.

2.2 INSULATING CEMENTS

 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Ramco Insulation, Inc.

 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Ramco Insulation, Inc.

2.3 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.

B. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand; H. B. Fuller Construction Products.
 b. Mon-Eco Industries, Inc.

2.4 MASTICS

A. Breather Mastic: Water based; suitable for indoor and outdoor use on above-ambient services.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand; H. B. Fuller Construction Products.
 b. Knauf Insulation.
 c. Mon-Eco Industries, Inc.
d. Vimasco Corporation.

2. Water-Vapor Permeance: ASTM F 1249, 1.8 perms at 0.0625-inch dry film thickness.
3. Service Temperature Range: Minus 20 to plus 180 deg F.
4. Solids Content: 60 percent by volume and 66 percent by weight.

2.5 SEALANTS

A. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Childers Brand; H. B. Fuller Construction Products.

2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Fire- and water-resistant, flexible, elastomeric sealant.
4. Service Temperature Range: Minus 40 to plus 250 deg F.

2.6 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.

B. FSK Jacket: Aluminum-foil-face, fiberglass-reinforced scrim with kraft-paper backing.

C. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Airex Manufacturing.
 b. Johns Manville; a Berkshire Hathaway company.
 c. P.I.C. Plastics, Inc.
 d. Proto Corporation.
 e. Speedline Corporation.

2. Adhesive: As recommended by jacket material manufacturer.
4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.
2.7 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Avery Dennison Corporation, Specialty Tapes Division.
 c. Knauf Insulation.

2. Width: 3 inches.
3. Thickness: 11.5 mils.
5. Elongation: 2 percent.
6. Tensile Strength: 40 lbf/inch in width.
7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.

1. Verify that systems to be insulated have been tested and are free of defects.
2. Verify that surfaces to be insulated are clean and dry.
3. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

B. Surface Preparation: Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:

C. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.
C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during application and finishing.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.

J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

L. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
 a. For below-ambient services, apply vapor-barrier mastic over staples.
 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.
M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

P. For above-ambient services, do not install insulation to the following:
 1. Vibration-control devices.
 2. Testing agency labels and stamps.
 3. Nameplates and data plates.
 5. Handholes.
 6. Cleanouts.

3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 4. Seal jacket to wall flashing with flashing sealant.

C. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

D. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
1. Comply with requirements in Section 07 84 13 "Penetration Firestopping" for firestopping and fire-resistive joint sealers.

E. Insulation Installation at Floor Penetrations:

1. Pipe: Install insulation continuously through floor penetrations.
2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 07 84 13 "Penetration Firestopping."

3.5 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:

1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.
6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.
7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and...
unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.

9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

D. Install removable insulation covers at locations indicated. Installation shall conform to the following:

1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.
2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.
3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.
4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.
5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.6 INSTALLATION OF MINERAL-FIBER INSULATION

A. Insulation Installation on Straight Pipes and Tubes:

1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward-clinched staples at 6 inches o.c.
4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:

1. Install preformed pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:
1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:
1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
4. Install insulation to flanges as specified for flange insulation application.

3.7 FIELD-APPLIED JACKET INSTALLATION

A. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications. Seal with manufacturer's recommended adhesive.
1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.

B. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with waterproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

3.8 FINISHES

A. Pipe Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Section 09 91 13 "Exterior Painting" and Section 09 91 23 "Interior Painting."
1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.

B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.
C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.

D. Do not field paint aluminum or stainless-steel jackets.

3.9 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.

B. Perform tests and inspections.

C. Tests and Inspections:

1. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, two locations of welded strainers, three locations of threaded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.

D. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.10 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

3.11 INDOOR PIPING INSULATION SCHEDULE

A. Condensate and Equipment Drain Water below 60 Deg F:

1. All Pipe Sizes: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

B. Chilled Water, above 40 Deg F:

1. NPS 12 and Smaller: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe, Type I thick.

C. Heating-Hot-Water Supply and Return, 200 Deg F and Below:

1. NPS 8’ and Smaller: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe, Type I: 2 inches thick.

END OF SECTION
SECTION 23 09 50

BUILDING AUTOMATION SYSTEM (BAS) GENERAL

PART 1 - GENERAL

1.1 SECTION INCLUDES

A. General Requirements
B. Description of Work
C. Quality Assurance
D. System Architecture
E. Distributed Processing Units/Quantity and Location
F. Demolition and Reuse of Existing Materials and Equipment
G. Sequence of Work

1.2 RELATED DOCUMENTS

A. Section 23 09 51 - Building Automation System (BAS) Basic Materials, Interface Devices, and Sensors
B. Section 23 09 53 - BAS Field Panels
C. Section 23 09 54 - BAS Communication Devices
D. Section 23 09 55 - BAS Software and Programming
E. Section 23 09 58 - Sequences of Operation
F. Section 23 09 59 - BAS Commissioning

1.3 DESCRIPTION OF WORK

A. The building automation system (BAS) defined in this specification shall interface with the Delaware's State Network, and shall utilize the BACnet communication requirements as defined by ASHRAE/ANSI 135 (current version and addendum) for all communication.

B. Contractor shall furnish and install a building automation system (BAS). The new BAS shall utilize electronic sensing, microprocessor-based digital control, and electronic actuation of dampers and valves to perform control sequences and functions specified. The BAS for this
project will generally consist of monitoring and control of systems listed below. Reference also control drawings, sequences of operation, and points lists.

C. The systems to be controlled under work of this section basically comprise of the new Split System Air Handling Unit with Hot Water Heating Coils, DX Cooling Coils, Condensing Unit and possibly VAV Units. The HVAC systems being controlled are (describe systems to be controlled). This Section defines the manner and method by which these controls function.

1.4 APPLICATION OF OPEN PROTOCOLS

A. Subject to the detailed requirements provided throughout the specifications, the BAS and digital control and communications components installed, as work of this contract shall be an integrated distributed processing system utilizing BACnet. System components shall communicate using native BACnet in accordance with ASHRAE Standard 135 and current addenda and annexes, including all workstations, all building controllers, and all application specific controllers. Gateways to other communication protocols are not acceptable.

1.5 QUALITY ASSURANCE

A. Product Line Demonstrated History: The product line being proposed for the project must have an installed history of demonstrated satisfactory operation for a length of 2 years since date of final completion in at least 10 installations of comparative size and complexity. Submittals shall document this requirement with references.

The following requirement relates to the actual installing contractor.

B. Installer's Qualifications: Firms specializing and experienced in control system installations for not less than 5 years. Firms with experience in BAS installation projects with point counts equal to this project and systems of the same character as this project. If installer is a Value Added Reseller (VAR) of a manufacturer's product, installer must demonstrate at least three years prior experience with that manufacturer's products. Experience starts with awarded Final Completion of previous projects. Submittals must document this experience with references.

C. Installer's Experience with Proposed Product Line: Firms shall have specialized in and be experienced with the installation of the proposed product line for not less than one year from date of final completion on at least 3 projects of similar size and complexity. Submittals shall document this experience with references.

D. Installer's Field Coordinator and Sequence Programmer Qualifications: Individual(s) shall specialize in and be experienced with control system installation for not less than 5 years. Proposed field coordinator shall have experience with the installation of the proposed product line for not less than 2 projects of similar size and complexity. Installer shall submit the names of the proposed individual and at least one alternate for each duty. Submittals shall document this experience with references. The proposed individuals must show proof of the following training:

1. Product Line Training: Individuals overseeing the installation and configuration of the proposed product line must provide evidence of the most advanced training offered by the Manufacturer on that product line for installation and configuration
2. Programming Training: Individuals involved with programming the site-specific sequences shall provide evidence of the most advanced programming training offered by the vendor of the programming application offered by the Manufacturer.

E. Installer's Service Qualifications: The installer must be experienced in control system operation, maintenance and service. Installer must document a minimum 5 year history of servicing installations of similar size and complexity. Installer must also document at least a one year history of servicing the proposed product line.

F. Installer's Response Time and Proximity

1. Installer must maintain a fully capable service facility within a 45 mile radius of the project site. Service facility shall manage the emergency service dispatches and maintain the inventory of spare parts.
2. Emergency response times are listed below in this section. Installer must demonstrate the ability to meet the response times.

1.6 CODES AND STANDARDS

A. American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE)

B. Electronics Industries Alliance

2. EIA-709.3-99: Free-Topology Twisted-Pair Channel Specification
3. EIA-232: Interface between Data Terminal Equipment and Data Circuit-Terminating Equipment Employing Serial Binary Data Interchange.
4. EIA-458: Standard Optical Fiber Material Classes and Preferred Sizes
6. EIA-472: General and Sectional Specifications for Fiber Optic Cable
7. EIA-475: Generic and Sectional Specifications for Fiber Optic Connectors and all Sectional Specifications
8. EIA-573: Generic and Sectional Specifications for Field Portable Polishing Device for Preparation Optical Fiber and all Sectional Specifications
9. EIA-590: Standard for Physical Location and Protection of Below-Ground Fiber Optic Cable Plant and all Sectional Specifications

C. Underwriters Laboratories

 The following rating is required only for devices used for smoke control purposes. If these are not intended, delete.
2. UUKL 864: UL Supervised Smoke Control
D. NEMA Compliance

1. NEMA 250: Enclosure for Electrical Equipment
2. NEMA ICS 1: General Standards for Industrial Controls.

E. NFPA Compliance

1. NFPA 90A "Standard for the Installation of Air Conditioning and Ventilating Systems" where applicable to controls and control sequences.
2. NFPA 70 National Electrical Code (NEC)

F. Institute of Electrical and Electronics Engineers (IEEE)

1. IEEE 142: Recommended Practice for Grounding of Industrial and Commercial Power Systems
2. IEEE 802.3: CSMA/CD (Ethernet - Based) LAN
3. IEEE 802.4: Token Bus Working Group (ARCNET - Based) LAN

1.7 DEFINITIONS

A. Advanced Application Controller (AAC): A device with limited resources relative to the Building Controller (BC). It may support a level of programming and may also be intended for application specific applications.

B. Application Protocol Data Unit (APDU): A unit of data specified in an application protocol and consisting of application protocol control information and possible application user data (ISO 9545).

C. Application Specific Controller (ASC): A device with limited resources relative to the Advanced Application Controller (AAC). It may support a level of programming and may also be intended for application-specific applications.

D. BACnet/BACnet Standard: BACnet communication requirements as defined by ASHRAE/ANSI 135 (Current edition and addendum).

E. BACnet Interoperability Building Blocks (BIBB): A BIBB defines a small portion of BACnet functionality that is needed to perform a particular task. BIBBS are combined to build the BACnet functional requirements for a device in a specification.

F. Binding: In the general sense, binding refers to the associations or mappings of the sources network variable and their intended opr required destinations.

G. Building Automation System (BAS): The entire integrated management and control system

H. Building Controller (BC): A fully programmable device capable of carrying out a number of tasks including control and monitoring via direct digital control (DDC) of specific systems, acting as a communications router between the controlled devices / equipment and the CSS, and temporary data storage for trend information, time schedules, and alarm data.
I. Change of Value (COV): An event that occurs when a measured or calculated analog value changes by a predefined amount (ASHRAE/ANSI 135 (current version and addendum)).

J. Client: A device that is the requestor of services from a server. A client device makes requests of and receives responses from a server device.

K. Continuous Monitoring: A sampling and recording of a variable based on time or change of state (e.g. trending an analog value, monitoring a binary change of state).

L. Controller or Control Unit (CU): Intelligent stand-alone control device. Controller is a generic reference and shall include BCs, AACs, and ASCs as appropriate.

M. Control Systems Server (CSS): A server class computer(s) that maintains the systems configuration and programming database. This server is located at the State of Delaware's data center in a virtual environment and serves as an access point to BAS.

N. Controlling LAN: High speed, peer-to-peer controller LAN connecting BCs, AACs and ASCs. Refer to System Architecture below.

O. Direct Digital Control (DDC): Microprocessor-based control including Analog/Digital conversion and program logic

P. Functional Profile: A collection of variables required to define a the key parameters for a standard application. As this applies to the HVAC industry, this would include applications like VAV terminal, fan coil units, and the like.

Q. Gateway (GTWY): A device, which contains two or more dissimilar networks/protocols, permitting information exchange between them.

R. Hand Held Device (HHD): Manufacturer's microprocessor based device for direct connection to a Controller.

S. LAN Interface Device (LANID): Device or function used to facilitate communication and sharing of data throughout the BAS

T. Local Area Network (LAN): General term for a network segment within the architecture. Various types and functions of LANs are defined herein.

U. Local Supervisory LAN: Also known as the State's Network: Ethernet-based network connecting Primary Controlling LANs with each other and OWSs and CSSs. See System Architecture below.

V. Master-Slave/Token Passing (MS/TP): Data link protocol as defined by the BACnet standard.

W. Open Database Connectivity (ODBC): An open standard application-programming interface (API) for accessing a database developed. ODBC compliant systems make it possible to access any data from any application, regardless of which database management system (DBMS) is handling the data.

X. Operator Interface (OI): A device used by the operator to manage the BAS including OWSs, POTs, and HHDs.
Y. Operator Workstation (OWS): The user's interface with the BAS system. As the BAS network devices are stand-alone, dedicated OWS is not required for communications to occur. The OWS can be any computer on the State's Network that has a compatible Web browser.

Z. Point-to-Point (PTP): Serial communication as defined in the BACnet standard.

AA. Portable Operators Terminal (POT): Mobile computer used both for direct connection to a controller as well as network connection.

BB. Protocol Implementation Conformance Statement (PICS): A written document, created by the manufacturer of a device, which identifies the particular options specified by BACnet that are implemented in the device (ASHRAE/ANSI 135 (current version and addendum)).

CC. Router: A device that connects two or more networks at the network layer.

DD. Secondary Controlling LAN: LAN connecting AACs and ASCs, generally lower speed and less reliable than the Controlling LAN. Refer to System Architecture below.

EE. Server: A device that is a provider of services to a client. A client device makes requests of and receives responses from a server device.

FF. Standardized Query Language (SQL): A database computer language designed for managing data in relational database management system (RDBMS). Its scope includes data insert, query, update and delete, schema creation and modification, and data access control.

GG. Smart Device: A control I/O device such as a sensor or actuator that can directly communicate with a controller through the network. This differs from an ASC in that it typically deals only with one variable.

HH. Extensible Markup Language (XML): A specification developed by the World Wide Web Consortium. XML is a pared-down version of SGML, designed especially for Web documents. It is a set of rules for encoding documents in machine-readable form that allows designers to create their own customized tags, enabling the definition, transmission, validation, and interpretation of data between applications and between organizations.

1.8 FUNCTIONAL INTENT

A. Throughout Sections 23 09 50 through 23 09 55, the Sequences of Operation, and Section 23 09 59 detailed requirements are specified, some of which indicate a means, method or configuration acceptable to meet that requirement. Contractor may submit products that utilize alternate means, methods, and configurations that meet the functional intent. However these will only be allowed with prior approval.

1.9 SUBMITTALS

A. Submit under provisions of Section 01 30 00.

B. Electronic Submittals: While all requirements for hard copy submittal apply, control submittals and O&M information shall also be provided in electronic format as follows.
1. Drawings and Diagrams: Shop drawings shall be provided on electronic media as an AutoCAD (current version) and/or Adobe Portable Document Format file. All 'X reference' and font files must be provided with AutoCAD files.

2. Other Submittals: All other submittals shall be provided in Adobe Portable Document Format (PDF).

C. Qualifications: Manufacturer, Installer, and Key personnel qualifications as indicated for the appropriate item above.

D. Product Data: Submit manufacturer's technical product data for each control device, panel, and accessory furnished, indicating dimensions, capacities, performance and electrical characteristics, and material finishes. Also include installation and start-up instructions.

E. Shop Drawings: Submit shop drawings for each control system, including a complete drawing for each air handling unit, system, pump, device, etc. with all point descriptors, addresses and point names indicated. Each shop drawing shall contain the following information:

1. System Architecture and System Layout:
 a. One-line diagram indicating schematic locations of all control units, workstations, LAN interface devices, gateways, etc. Indicate network number, device ID, instance number, MAC address, drawing reference number, and controller type for each control unit. Indicate media, protocol, baud rate, and type of each LAN. Indicate media, protocol, baud rate, and type of each LAN. All optical isolators, repeaters, end-of-line resistors, junctions, ground locations etc. shall be located on the diagram.
 b. Provide electronic floor plans locating all control units, workstations, LAN interface devices, gateways, etc. Include all network communication wiring routing, power wiring, power originating sources, and low voltage power wiring. Indicate network number, device ID, instance number, MAC address, drawing reference number, and controller type for each control unit. Indicate media, protocol, baud rate, and type of each LAN. All optical isolators, repeaters, end-of-line resistors, junctions, ground locations etc. shall be located on the floor plans. Wiring routing as-built conditions shall be maintained accurately throughout the construction period and the drawing shall be updated to accurately reflect accurate, actual installed conditions.

2. Schematic flow diagram of each air and water system showing fans, coils, dampers, valves, pumps, heat exchange equipment and control devices. Include verbal description of sequence of operation.

3. All physical points on the schematic flow diagram shall be indicated with names, descriptors, and point addresses identified as listed in the point summary table.

4. With each schematic, provide a point summary table listing building number and abbreviation, system type, equipment type, full point name, point description, Ethernet backbone network number, network number, device ID, object ID (object type, instance number). See Section 23 09 55 - Part III for additional requirements.

5. Label each control device with setting or adjustable range of control.

6. Label each input and output with the appropriate range.

7. Provide a Bill of Materials with each schematic. Indicate device identification to match schematic and actual field labeling, quantity, actual product ordering number, manufacturer, description, size, voltage range, pressure range, temperature range, etc. as applicable.
8. With each schematic, provide valve and actuator information including size, Cv, design flow, design pressure drop, manufacturer, model number, close off rating, etc. Indicate normal positions of spring return valves and dampers.
9. Indicate all required electrical wiring. Electrical wiring diagrams shall include both ladder logic type diagram for motor starter, control, and safety circuits and detailed digital interface panel point termination diagrams with all wire numbers and terminal block numbers identified. Provide panel termination drawings on separate drawings. Ladder diagrams shall appear on system schematic. Clearly differentiate between portions of wiring, which are existing, factory-installed and portions to be field-installed.
10. Details of control panels, including controls, instruments, and labeling shown in plan or elevation indicating the installed locations.
11. Sheets shall be consecutively numbered.
12. Each sheet shall have a title indicating the type of information included and the HVAC system controlled.
13. Table of Contents listing sheet titles and sheet numbers.
14. Legend and list of abbreviations.
15. Memory allocation projections.
16. Submit along with shop drawings but under separate cover calculated and guaranteed system response times of the most heavily loaded LAN in the system.

F. Open Protocol Information

1. BACnet Systems:
 a. BACnet object description, object ID, and device ID, for each I/O point.
 b. Documentation for any non-standard BACnet objects, properties, or enumerations used detailing their structure, data types, and any associated lists of enumerated values.
 c. Submit PICS indicating the BACnet functionality and configuration of each controller.

G. Framed Control Drawings: Laminated control drawings including system control schematics, sequences of operation and panel termination drawings, shall be provided in panels for major pieces of equipment. Terminal unit drawings shall be located in the central plant equipment panel or mechanical room panel.

H. Control Logic Documentation

1. Submit control logic program listings (for graphical programming) and logic flow charts (for line type programs) to document the control software of all control units.
2. Control logic shall be annotated to describe how it accomplishes the sequence of operation. Annotations shall be sufficient to allow an operator to relate each program component (block or line) to corresponding portions of the specified Sequence of Operation.
3. Include written description of each control sequence.
4. Include control response, settings, setpoints, throttling ranges, gains, reset schedules, adjustable parameters and limits.
5. Sheets shall be consecutively numbered.
6. Each sheet shall have a title indicating the controller designations and the HVAC system controlled.
7. Include Table of Contents listing sheet titles and sheet numbers
8. Submit one complete set of programming and operating manuals for all digital controllers concurrently with control logic documentation. This set will count toward the required number of Operation and Maintenance materials specified below and in Section 01 30 00.

I. Operation and Maintenance Materials:

1. Submit documents under provisions of Section 01 03 00. One copy of the materials shall be delivered directly to the State facilities operation staff, in addition to the copies required by other Sections.

2. Submit maintenance instructions and spare parts lists for each type of control device, control unit, and accessory.

3. Submit BAS User's Guides (Operating Manuals) for each controller type.

4. Submit BAS advanced Programming Manuals for each controller type.

5. Include all submittals (product data, shop drawings, control logic documentation, hardware manuals, software manuals, installation guides or manuals, maintenance instructions and spare parts lists) in maintenance manual; in accordance with requirements of Division 1.

J. Controls contractor shall provide the State with all product line technical manuals and technical bulletins, to include new and upgraded products, by the same distribution channel as to dealers or branches. This service will be provided for 5 years as part of the contract price, and will be offered to the State thereafter for the same price as to a dealer or branch.

K. Manufacturers Certificates: For all listed and/or labeled products, provide certificate of conformance.

L. Product Warranty Certificates: submit manufacturers product warranty certificates covering the hardware provided.

1.10 PROJECT RECORD DOCUMENTS

A. Submit documents under provisions of Section 01 30 00.

B. Record copies of product data and control shop drawings updated to reflect the final installed condition.

C. Record copies of approved control logic programming and database on paper and on CD's. Accurately record actual setpoints and settings of controls, final sequence of operation, including changes to programs made after submission and approval of shop drawings and including changes to programs made during specified testing.

D. Record copies of approved project specific graphic software on CDs.

E. Record copies shall include individual floor plans with controller locations with all interconnecting wiring routing including space sensors, LAN wiring, power wiring, low voltage power wiring. Indicate device instance, MAC address and drawing reference number.

F. Provide record riser diagram showing the location of all controllers.
G. Maintain project record documents throughout the warranty period and submit final documents at the end of the warranty period.

1.11 SYSTEM ARCHITECTURE

A. The system provided shall incorporate hardware resources sufficient to meet the functional requirements of these Specifications. The Contractor shall include all items not specifically itemized in these Specifications that are necessary to implement, maintain, and operate the system in compliance with the functional intent of these Specifications.

B. The system shall be configured as a distributed processing network(s) capable of expansion as specified below.

C. The system architecture shall consist of the Ethernet-based State Network, and Controlling LANs that support BCs, AACs, ASCs, Operator Workstations (OWS), Smart Devices (SD), and Remote Communication Devices (RCDs) as applicable. The following indicates a functional description of the BAS structure.

1. State Network: Internet-based network connecting multiple facilities with a central data and application server, accessible via standard web-browser. This is an existing infrastructure and contractor is not required to configure any components of this network. Refer to Section 23 09 54 for requirements. This contractor shall integrate the controlling devices and the CCS together.

2. Local Supervisory LAN: The Local Supervisory LAN shall be an Ethernet-based, 100 Mbps LAN connecting Primary Control LANs and OWSs. The LAN serves as the inter-BC gateway and OWS-to-BC gateway and communications path. Contractor shall provide this as a dedicated LAN for the control system. LAN shall be IEEE 802.3 Ethernet over Fiber or Category 5 cable with switches and routers that support 100 Mbps throughput. Power-line carrier communication shall not be acceptable for communications. The physical media will be that installed for the IT infrastructure of the facility and as such network drops will be provided under that scope of work to facilitate work of this scope. This network will be 100 Mbps and therefore all network interface cards shall support that speed. The higher level layers of this network shall be BACnet as described below:

 a. BACnet Supervisory LAN: Shall be BACnet/IP as defined in the BACnet standard, and shall share a common network number for the Ethernet backbone, as defined in the BACnet standard. Point/Object naming conventions are specified in 23 09 55 - Part III.

3. Controlling LAN: High-speed, peer-to-peer communicating LAN used to connect AACs, ASCs and Building Controllers (BCs) and communicate exclusively control information. Acceptable technologies include:

 a. Ethernet (IEEE802.3)
 b. ARCNET (IEEE802.4)
 c. Communication to/from building controller (BC) and the control system server (CSS) shall utilize standard TCP/IP, BACnet/IP ports (80and/or 47808)

4. Secondary Controlling LAN: Network used to connect AACs, ASCs or SDs. These can be Master Slave/ Token Passing or polling, in addition to those allowed for Primary
Controller LANs. Network speed vs. the number of controllers on the LAN shall be dictated by the response time and trending requirements.

D. Dynamic Data Access: Any data throughout any level of the network shall be available to and accessible by all other devices, Controllers and OWS, whether directly connected or connected remotely.

E. Remote Data Access: The system shall support the following methods of remote access to the building data.

1. Browser-based access: A remote user using a standard browser shall be able to access all control system facilities and graphics with proper authentication. The State shall maintain continuous network connection. The following paradigms are acceptable for browser-based access:
 a. Native Internet-based user interface (HTML, Java, XML, etc.) via a standard freely distributed web browser that does not require a Windows client software installation.

F. The communication speed between the controllers, LAN interface devices, and operator interface devices shall be sufficient to ensure fast system response time under any loading condition. Contractor shall submit guaranteed response times with shop drawings including calculations to support the guarantee. In no case shall delay times between an event, request, or command initiation and its completion be greater than those listed herein. Contractor shall recommend reconfiguring the LAN as necessary to accomplish these performance requirements:

1. 5 seconds between a Level 1 (critical) alarm occurrence and enunciation at operator workstation.
2. 10 seconds between a Level 2 alarm occurrence and enunciation at operator workstation.
3. 20 seconds between and a Level 3-5 alarm occurrence and enunciation at operator workstation.
4. 10 seconds between an operator command via the operator interface to change a setpoint and the subsequent change in the controller.
5. 5 seconds between an operator command via the operator interface to start/stop a device and the subsequent command to be received at the controller.
6. 10 seconds between a change of value or state of an input and it being updated on the operator interface.
7. 10 seconds between an operator selection of a graphic and it completely painting the screen and updating at least 10 points.

G. Control Systems Server (CSS): A server class computer(s) that maintains the systems configuration and programming database. This server is located at the State of Delaware's data center in a virtual environment and serves as an access point to BAS. It shall hold the backup files of the information downloaded into the individual controllers and as such support uploading and downloading that information directly to/from the controllers. It shall also act as a control information server to non-control system based programs. It shall allow secure multiple-access to the control information. Refer to Section 23 09 52 - BAS Operator Interfaces for its requirements.

H. The Operator Interface shall provide for overall system supervision, graphical user interface, management report generation, alarm annunciation, and remote monitoring. Refer to Section 23 09 52 - BAS Operator Interfaces.
I. The BCs, AACs, ASCs, and SDs shall monitor, control, and provide the field interface for all points specified. Each BC, AAC, or ASC shall be capable of performing all specified energy management functions, and all DDC functions, independent of other BCs, AACs, or ASCs and operator interface devices as more fully specified in Section 23 09 53 - BAS Field Panels.

J. Systems Configuration Database: The system architecture shall support maintaining the systems configuration database on the CSS. User tools provided to the State shall allow configuring, updating, maintaining, etc. current configurations and settings whether they are initiated at the server or the end device.

1. Database Schema shall be published and provided to the State to facilitate easy access to the data.
2. Database shall be ODBC compliant.

K. Interruptions or fault at any point on any Primary Controller LAN shall not interrupt communications between other nodes on the network. If a LAN is severed, two separate networks shall be formed and communications within each network shall continue uninterrupted.

L. All line drivers, signal boosters, and signal conditioners etc. shall be provided as necessary for proper data communication.

M. Anytime any controller's database or program is changed in the field, the controller shall be capable of automatically uploading the new data to the CSS.

1.12 WARRANTY MAINTENANCE

A. Contractor shall warrant all products and labor for a period of (insert warranty period) after Substantial Completion.

B. The State reserves the right to make changes to the BAS during the warranty period. Such changes do not constitute a waiver of warranty. The Contractor shall warrant parts and installation work regardless of any such changes made by the State, unless the Contractor provides clear and convincing evidence that a specific problem is the result of such changes to the BAS.

C. At no cost to the State, during the warranty period, the Contractor shall provide maintenance services for software and hardware components as specified below:

1. Maintenance services shall be provided for all devices and hardware specified in sections 23 09 51 through 23 09 59. Service all equipment per the manufacturer's recommendations. All devices shall be calibrated within the last month of the warranty period.

2. Emergency Service: Any malfunction, failure, or defect in any hardware component or failure of any control programming that would result in property damage or loss of comfort control shall be corrected and repaired following notification by the State to the Contractor.
 a. Response by telephone to any request for service shall be provided within two (2) hours of the State's initial telephone request for service.
b. In the event that the malfunction, failure, or defect is not corrected through the telephonic communication, at least one (1) hardware and software technician, trained in the system to be serviced, shall be dispatched to the State's site within eight (8) hours of the State's initial telephone request for such services, as specified.

3. Normal Service: Any malfunction, failure, or defect in any hardware component or failure of any control programming that would not result in property damage or loss of comfort control shall be corrected and repaired following telephonic notification by the State to the Contractor.
 a. Response by telephone to any request for service shall be provided within eight (8) working hours (contractor specified 40 hr per week normal working period) of the State's initial telephone request for service.
 b. In the event that the malfunction, failure, or defect is not corrected through the telephonic communication, at least one (1) hardware and software technician, trained in the system to be serviced, shall be dispatched to the State's site within three (3) working days of the State's initial telephone request for such services, as specified.

4. Telephonic Request for Service: Contractor shall specify a maximum of three telephone numbers for The State to call in the event of a need for service. At least one of the lines shall be attended at any given time at all times. Alternatively, pagers can be used for technicians trained in system to be serviced. One of the three paged technicians shall respond to every call within 15 minutes.

5. Technical Support: Contractor shall provide technical support by telephone throughout the warranty period.

6. Preventive maintenance shall be provided throughout the warranty period in accordance with the hardware component manufacturer's requirements.

1.13 DELIVERY, STORAGE, AND HANDLING

A. Provide factory-shipping cartons for each piece of equipment and control device. Maintain cartons during shipping, storage and handling as required to prevent equipment damage, and to eliminate dirt and moisture from equipment. Store equipment and materials inside and protect from weather.

1.14 LISTING AND LABELING

A. The BAS and components shall be listed by Underwriters Laboratories (UL 916) as an Energy Management System.

PART 2 - PRODUCTS

2.1 MANUFACTURERS (Pre-Approved by the State)

A. Johnson Controls by Modern Controls

B. Pre-Approved equivalents acceptable.
2.2 MATERIALS AND EQUIPMENT

A. Materials shall be new, the best of their respective kinds without imperfections or blemishes and shall not be damaged in any way. Used equipment shall not used in any way for the permanent installation except where drawings or specs specifically allow existing materials to remain in place.

2.3 UNIFORMITY

A. To the extent practical, all equipment of the same type serving the same function shall be identical and from the same manufacturer.

PART 3 - EXECUTION

3.1 INSPECTION

A. Examine areas and conditions under which control systems are to be installed. Do not proceed with work until unsatisfactory conditions have been corrected in manner acceptable to Installer.

3.2 INSTALLATION OF CONTROL SYSTEMS

A. General: Install systems and materials in accordance with manufacturer's instructions, roughing-in drawings and details shown on drawings.

B. Network Connectivity: The BAS contractor shall provide two network connections with Cat-6 cables from the Building Controller to the State's IT network.

1. The BAS contractor shall terminate one end of the two Cat-6 cables at or around the State's patch panel and make connections to the State's switch with green patch cables, following the instruction of the DFM's IT personnel.

2. The BAS contractor shall terminate the other end of the two Cat-6 cables near or within the building controller cabinet with dual RJ-45 terminal box and make connection of one cable to the building controller. Note: the second connection is for on-site operator interface through a mobile computer. Exposed cable shall be protected by conduit or wire mold.

3. The BAS contractor shall label the two network connections BAC-1 and BAC-2 on both ends.

C. Refer to additional requirements in other sections of this specification.

3.3 SURGE PROTECTION

A. The Contractor shall furnish and install any power supply surge protection, filters, etc. as necessary for proper operation and protection of all BCs, AAC/ASCS operator interfaces, printers, routers, gateways and other hardware and interface devices. All equipment shall be
capable of handling voltage variations 10% above or below measured nominal value, with no effect on hardware, software, communications, and data storage.

3.4 DEMOLITION AND REUSE OF EXISTING MATERIALS AND EQUIPMENT

A. Contractor shall assume that existing equipment that specifically is indicated to be reused is in good condition and is operable. Contractor, during the course of work, shall inspect these devices and determine if any devices are in need of replacement or repair. Contractor shall prepare an itemized list of suggested repairs/replacement. This repair/replacement will be at the discretion of the State and will be accomplished by expanding this contract.

B. Existing wire, conduit, and control panel cabinets may be reused at the State Project Engineer's discretion, but only if such materials or equipment comply with the applicable specification for new materials and equipment. Such materials shall not be reused if visibly damaged or otherwise unsuitable for the intended service.

C. Where such materials are reused, the contractor's shop drawings shall reflect the existing wiring designation. If existing labeling is illegible or otherwise does not comply with the applicable specification for labeling, wiring runs shall be relabeled in accordance with the requirements specified elsewhere.

D. Existing pneumatic tubing located between the existing BAS panels and the pneumatic operators shall not be reused; however, conduit for such tubing may be reused. All other pneumatic tubing may be reused, but only if such materials comply with the applicable specification for new materials. Materials shall not be reused if visibly damaged or otherwise unsuitable for the intended service. All pneumatic tubing to be reused shall be pressure tested and all leaks shall be repaired. All reused pneumatic tubing shall be purged with dry air or nitrogen.

E. The existing pneumatic main air supply system shall be modified as required and reused to serve existing pneumatic controls that are to remain, and shall be extended as necessary to serve new pneumatic controls. Where existing pneumatic controls are removed, main air piping shall be removed back to the point of connection to the main air supply which remains in use, and shall be capped or plugged.

F. Existing valves and dampers and their operators may be reused only when preapproved by the State. Contractor shall lubricate all damper linkages of dampers being controlled under this project.

G. Other materials and equipment not specifically mentioned herein may be reused only if specifically allowed by indications on the drawings.

H. For HVAC systems which are indicated to receive a new BAS, all existing materials and equipment associated with the existing pneumatic controls and EMCS shall be removed unless otherwise specified or indicated to remain, or unless reused in accordance with the above requirements, except for the following: 1) conduit and electrical boxes (but not wiring within conduit) may remain in place if not reused (leave a pull line); 2) inaccessible pneumatic tubing may remain in place if not reused. Existing materials and equipment to be removed shall be removed subject to the requirements in paragraph “Sequence of Work”. For HVAC systems, which are not to receive a new DDC BAS, the existing pneumatic control system shall remain fully functional.
3.5 SEQUENCE OF WORK For Existing Systems Conversion

A. General: All work involving changeover of control functions from existing pneumatic control system to the new DDC BAS shall be performed in accordance with the following sequence in order to minimize the duration of equipment outages. The following descriptions are intended to indicate the sequence in which the work shall be performed, not to define fully the scope of the work.

B. Install operator's terminal, peripherals, graphic software, and LAN prior to placing any equipment under the control of the new BAS.

C. Work which requires shutting down a pump motor, fan motor, or chiller shall be considered a utility shutdown and shall be subject to the restrictions specified in Division 0.1

D. The following sequence applies to an individually controlled HVAC subsystem, such as an air handling unit. Only one such system shall be placed under manual control (as described below) at any given time.

1. Install controllers adjacent to (or within) existing control panel. Programming shall be complete (except for loading and debugging) prior to installation. Install all field devices, which do not require interruption of the existing control system.
2. Install all conduit, wiring, and pneumatic tubing which does not require interruption of the existing control system.
3. Provide temporary variable pressure type hand pumps at each pneumatically controlled output, for temporary use by The State's maintenance and operation contractor personnel. Schedule this step at least 48 hours in advance with the Building Engineer.
4. Remove existing controls including wiring, conduit, and tubing (except materials to be reused in accordance with provisions specified elsewhere) which must be removed to facilitate installation of new BAS materials and equipment.
5. Remove existing digital control system points (if applicable). Install and calibrate remainder of new BAS materials and equipment for this subsystem. Load controller software. Connect controller(s) to LAN.
6. Perform all field testing and calibration that does not require connection of permanent pneumatic outputs.
7. Remove remaining existing pneumatic and digital control system materials and equipment (except materials to be reused in accordance with provisions specified elsewhere). All existing digital controls equipment for those subsystems that have not yet been converted shall remain intact, on-line, and fully functional.
8. Schedule work in The State's occupied spaces 3 days in advance with the State's representative.

3.6 CONTROL POWER SOURCE AND SUPPLY

A. Section 23 09 50 Contractor shall extend all power source wiring required for operation of all equipment and devices provided under Sections 23 09 50 through 23 09 55 and Sequences of Operation.

The following item will have to be customized for each system and project. The consideration is where to power controllers from. For distributed controllers that are associated with one unit, it is convenient to power them along with the system so the
controller can take action based on the presence of power. However on large centralized panels, it may be best to put these on the most reliable source of power that serves the equipment being controlled and then provide for individual monitoring of the various system's power sources by the controller. The object here is to make a robust system that does not interpret power failures as device failure and therefore in some instances have to take down the unit for manual acknowledged reset. This can compromise reliability.

B. General requirements for obtaining power include the following:

1. Obtain power from a source that feeds the equipment being controlled such that both the control component and the equipment are powered from the same panel. Where equipment is powered from a 460V source, obtain power from the electrically most proximate 120v source fed from a common origin.

2. Where control equipment is located inside a new equipment enclosure, coordinate with the equipment manufacturer and feed the control with the same source as the equipment. If the equipment's control transformer is large enough and of the correct voltage to supply the controls it may be used. If the equipment's control transformer is not large enough or of the correct voltage to supply the controls provide separate transformer

3. Where a controller controls multiple systems on varying levels of power reliability (normal, emergency, and/or interruptible), the controller shall be powered by the highest level of reliability served. Furthermore, the controller in that condition shall monitor each power type served to determine so logic can assess whether a failure is due to a power loss and respond appropriately. A three-phase monitor into a digital input shall suffice as power monitoring.

4. Standalone Functionality: Refer to Section 23 09 53.

3.7 BAS STARTUP, COMMISSIONING AND TRAINNING

A. Refer to Section 23 09 59

3.8 SEQUENCE OF OPERATION

A. Refer to Section 23 09 58 - Sequences of Operation

END OF SECTION
SECTION 23 09 51

BAS BASIC MATERIALS, INTERFACE DEVICES, AND SENSORS

PART 1 - GENERAL

1.1 SECTION INCLUDES

A. Wiring
B. Control Valves and Actuators
C. Control Dampers and Actuators
D. Control Panels
E. Sensors
F. Electric Control Components (Switches, EP Valves, Thermostats, Relays, Smoke Detectors, etc.)
G. Transducers
H. Air Flow Measuring Stations
I. Current Switches
J. Nameplates
K. Testing Equipment

1.2 RELATED DOCUMENTS

A. Section 23 09 50 - Building Automation System (BAS) General
B. Section 23 09 53 - BAS Field Panels
C. Section 23 09 54 - BAS Communications Devices
D. Section 23 09 55 - BAS Software
E. Section 23 09 58 - Sequences of Operation
F. Section 23 09 59 - BAS Commissioning
1.3 DESCRIPTION OF WORK

A. Refer to Section 23 09 50 for general requirements.

B. Refer to other Division 23 sections for installation of instrument wells, valve bodies, and dampers in mechanical systems; not work of this section.

C. Provide the following electrical work of this section, complying with requirements of Division 26 sections:

1. Control wiring between field-installed controls, indicating devices, and unit control panels.
2. Interlock wiring between electrically interlocked devices, sensors, and between a hand or auto position of motor starters as indicated for all mechanical and controls.
3. Wiring associated with indicating and alarm panels (remote alarm panels) and connections to their associated field devices.
4. All other necessary wiring for fully complete and functional control system as specified.

1.4 WORK BY OTHERS

A. Control Valves furnished under this section shall be installed under the applicable piping section under the direction of Section 23 09 51 Contractor who will be fully responsible for the proper operation of the valve.

B. Control Dampers furnished under this section shall be installed under the applicable air distribution or air handling equipment section under the direction of Section 23 09 51 Contractor who will be fully responsible for the proper operation of the damper.

C. Water Pressure Taps, Thermal Wells, Flow Switches, Flow Meters, etc. that will have wet surfaces, shall be installed under the applicable piping Section under the direction of Section 23 09 51 Contractor who will be fully responsible for the proper installation and application.

D. Controlled Equipment Power Wiring shall be furnished and installed under Division 26. Where control involves 120V control devices controlling 120V equipment, Division 26 Contractor shall extend power wiring to the equipment. Section 23 09 51 Contractor shall extend it from the equipment to the control device.

PART 2 - PRODUCTS

2.1 MATERIALS AND EQUIPMENT

A. General: Provide electronic control products in sizes and capacities indicated, consisting of valves, dampers, thermostats, clocks, controllers, sensors, and other components as required for complete installation and reviewed and approved by the State. Except as otherwise indicated, provide manufacturer's standard materials and components as published in their product information; designed and constructed as recommended by manufacturer, and as required for application indicated.
B. Communication Wiring: All wiring shall be in accordance with National Electrical Codes and Division 26 of this specification.

1. Contractor shall supply all communication wiring between Building Controllers, Routers, Gateways, AAC's, ASC's and local and remote peripherals (e.g., operator workstations, printers, and modems).

2. Local Supervisory LAN: For any portions of this network required under this section of the specification, contractor shall use Fiber or Category 6 of standard TIA/EIA (100/1000BaseT). Network shall be run with no splices and separate from any wiring over thirty (30) volts.

3. Primary and Secondary Controller LANs: Communication wiring shall be individually 100% shielded pairs per manufacturers recommendations for distances installed, with overall PVC cover, Class 2, plenum-rated run with no splices and separate from any wiring over thirty (30) volts. Shield shall be terminated and wiring shall be grounded as recommended by BC manufacturer.

C. Signal Wiring: Contractor shall run all signal wiring in accordance with National Electric Codes and Division 26 of this Specification.

1. Signal wiring to all field devices, including, but not limited to, all sensors, transducers, transmitters, switches, etc. shall be twisted, 100% shielded pair, minimum 18-gauge wire, with PVC cover. Signal wiring shall be run with no splices and separate from any wiring above thirty (30) volts.

2. Signal wiring shield shall be grounded at controller end only unless otherwise recommended by the controller manufacturer.

D. Low Voltage Analog Output Wiring: Contractor shall run all low voltage control wiring in accordance with National Electric Codes and Division 16 of this Specification.

1. Low voltage control wiring shall be minimum 16-gauge, twisted pair, 100% shielded, with PVC cover, Class 2 plenum-rated. Low voltage control wiring shall be run with no splices separate from any wiring above thirty (30) volts.

E. Control Panels: Provide control panels with suitable brackets for wall mounting for each control system. Locate panel adjacent to systems served.

1. Fabricate panels of 16-gage furniture-grade steel, or 6063-T5 extruded aluminum alloy, totally enclosed on four sides, with hinged door and keyed lock, with manufacturer's standard shop- painted finish and color.

2. Provide UL-listed cabinets for use with line voltage devices.

3. Control panel shall be completely factory wired and piped, and all electrical connections made to a terminal strip. Control panel shall have standard manufacturer's color.

4. All gauges and control components shall be identified by means of nameplates.

5. All control tubing and wiring shall be run neatly and orderly in open slot wiring duct with cover.

6. Complete wiring and tubing termination drawings shall be mounted in or adjacent to panel.
2.2 CONTROL VALVES

A. General: Provide factory fabricated control valves of type, body material and pressure class indicated. Where type or body material is not indicated, provide selection as determined by manufacturer for installation requirements and pressure class, based on maximum pressure and temperature in piping system. Provide valve size in accordance with scheduled or specified maximum pressure drop across control valve. Control valves shall be equipped with heavy-duty actuators, and with proper close-off rating for each individual application. Minimum close-off rating shall be as scheduled and adequate for each application, and shall generally be considered at dead head rating of the pump.

B. Plug-Type Globe Pattern for Water Service:

1. Valve Sizing: Where not specifically indicated on the control drawings, modulating valves shall be sized for maximum full flow pressure drop between 50% and 100% of the branch circuit it is controlling unless scheduled otherwise. Two-position valves shall be same size as connecting piping.

2. Single Seated (Two-way) Valves: Valves shall have equal-percentage characteristic for typical heat exchanger service and linear characteristic for building loop connections to campus systems unless otherwise scheduled on the drawings. Valves shall have cage-type trim, providing seating and guiding surfaces for plug on 'top-and-bottom' guided plugs.

3. Double Seated (Three-way) Valves: Valves shall have linear characteristic. Valves shall be balanced-plug type, with cage-type trim providing seating and guiding surfaces on 'top-and-bottom' guided plugs.

4. Temperature Rating: 25°F minimum, 250°F maximum

5. Body: Bronze, screwed, 250 psi maximum working pressure for 1/2” to 2”; Cast Iron, flanged, 125 psi maximum working pressure for 2-1/2” and larger.

8. Plug: Brass, bronze or stainless steel, Seat: Brass

9. Disc: Replaceable Composition or Stainless Steel Filled PTFE.

10. Acceptable Operating Temperature Limits: -10 to 150°F (-12.2 to 66 °C)

11. Acceptable Manufacturers: Subject to compliance with requirements approved manufacturers are as follows:

 a. Johnson Controls
 b. Invensys
 c. Warren
 d. Delta
 e. Belimo
 f. Substitutions: See Section 01 60 00 - Product Requirements.

C. Ball Type

1. Body: Brass or bronze; one-, two-, or three-piece design; threaded ends.

2. Seat: Reinforced Teflon

4. Port: Standard or 'V' style.

5. Stem: Stainless steel, blow-out proof design, extended to match thickness of insulation.
6. Cold Service Pressure: 600 psi WOG
7. Steam working Pressure: 150 psi
8. Acceptable Manufacturers: Subject to compliance with requirements approved manufacturers are as follows:
 a. Conbraco
 b. Worcester
 c. Nibco
 d. Jamesbury
 e. PBM
 f. Delta
 g. Belimo
 h. Substitutions: See Section 01 60 00 - Product Requirements

D. Segmented or Characterized Ball Type

1. Body: Carbon Steel (ASTM 216), one-piece design with wafer style ends.
2. Seat: Reinforced Teflon (PTFE).
3. Ball: Stainless steel ASTM A351
4. Port: Segmented design with equal-percentage characteristic.
5. Stem: Stainless steel.
6. Cold Service Pressure: 200 psi WOG
7. Cavitation Trim: Provide cavitation trim where indicated and/or required, designed to eliminate cavitation and noise while maintaining an equal percentage characteristic. Trim shall be a series of plates with orifices to break the pressure drop into multi-stages.
8. Acceptable Manufacturers: Subject to compliance with requirements approved manufacturers are as follows:
 a. Jamesbury R-Series
 b. Fisher
 c. Belimo
 d. Substitutions: See Section 01 60 00 - Product Requirements

2.3 CONTROL DAMPERS

A. General: Provide factory fabricated automatic control dampers of sizes, velocity and pressure classes as required for smooth, stable, and controllable air flow. Provide parallel or opposed blade dampers as recommended by manufacturers sizing techniques. For dampers located near fan outlets, provide dampers rated for fan outlet velocity and close-off pressure, and recommended by damper manufacturer for fan discharge damper service. Control dampers used for smoke dampers shall comply with UL 555S. Control Dampers used for fire dampers shall comply with UL 555.

B. For general isolation and modulating control service in rectangular ducts at velocities not greater than 1500 fpm (7.62 m/s), differential pressure not greater than 2.5” w.c. (622 Pa):

1. Performance: Test in accordance with AMCA 500.
2. Frames: Galvanized steel, 16-gauge minimum thickness, welded or riveted with corner reinforcement.
3. Blades: Stainless steel in lab exhausts and galvanized steel elsewhere, maximum blade size 8 inches (200 mm) wide by 48 inches (1219 mm) long, attached to minimum 1/2 inch (12.7 mm) shafts with set screws, 16 gauge minimum thickness.

6. Shaft Bearings: Oil impregnated sintered bronze, graphite impregnated nylon sleeve or other molded synthetic sleeve, with thrust washers at bearings.

7. Linkage: Concealed in frame.

8. Linkage Bearings: Oil impregnated sintered bronze or graphite impregnated nylon.

9. Leakage: Less than one percent based on approach velocity of 1500 ft./min. (7.62 m/s) and 1 inches wg. (249Pa).

10. Maximum Pressure Differential: 2.5 inches wg. (622 Pa)

11. Temperature Limits: -40 to 200 °F (-40 to 93 °C).

12. Where opening size is larger than 48 inches (1219 mm) wide, or 72 inches (1829 mm) high, provide dampers in multiple sections, with intermediate frames and jackshafts appropriate for installation.

C. For general isolation and modulating control service in rectangular ducts at velocities not greater than 4000 fpm (20.3 m/s), differential pressure not greater than 6” w.c. (1493 Pa):

1. Performance: Test in accordance with AMCA 500.

2. Frames: Galvanized steel, 16-gauge minimum thickness, welded or riveted with corner reinforcement.

3. Blades: extruded aluminum hollow airfoil shape, maximum blade size 8 inches (200 mm) wide by 48 inches (1219 mm) long, attached to minimum 1/2 inch (12.7 mm) shafts, 14 gauge minimum extrusion thickness.

6. Shaft Bearings: Oil impregnated sintered bronze sleeve, graphite impregnated nylon sleeve, molded synthetic sleeve, or stainless steel sleeve, with thrust washers at bearings.

7. Linkage: Concealed in frame.

8. Linkage Bearings: Oil impregnated sintered bronze or graphite impregnated nylon.

9. Leakage: Less than 0.1 percent based on approach velocity of 4000 ft./min. (20.3 m/s) and 1 inches wg. (249Pa).

10. Maximum Pressure Differential: 6 inches wg. (622 Pa)

11. Temperature Limits: -40 to 200 °F (-40 to 93 °C).

12. Where opening size is larger than 48 inches (1219 mm) wide, or 72 inches (1829 mm) high, provide dampers in multiple sections, with appropriately intermediate frames, and jackshafts.

2.4 ACTUATORS

A. General: Size actuators and linkages to operate their appropriate dampers or valves with sufficient reserve torque or force to provide smooth modulating action or 2-position action as specified. Select spring-return actuators with manual override to provide positive shut-off of devices as they are applied.

B. Damper Actuators

1. Ambient Operating Temperature Limits: -10 to 150°F (-12.2 to 66 °C)
2. Two Position Electric Actuators: Line voltage with spring return
3. Electronic Actuators: Provide actuators with spring return for two-position (24v), 0-5 Vdc, 0-10 Vdc, 2-10Vdc, 4-20 mA, or PWM input (subject to restrictions) as required. Actuators shall travel full stroke in less than [90] seconds. Actuators shall be designed for a minimum of 60,000 full cycles at full torque and be UL 873 listed. Provide stroke indicator. Actuators shall have positive positioning circuit. Where two actuators are required in parallel or in sequence provide an auxiliary actuator driver. Actuators shall have current limiting motor protection. Actuators shall have manual override where indicated. Modulating actuators for valves shall have minimum rangeability of 40 to 1.

a. Close-Off Pressure: Provide the minimum torque required, and spring return for fail positioning (unless otherwise specifically indicated) sized for required close-off pressure. Required close-off pressure for two-way water valve applications shall be the shutoff head of associated pump. Required close-off rating of steam valve applications shall be design inlet steam pressure plus 50 percent for low pressure steam, and 10 percent for high pressure steam. Required close-off rating of air damper applications shall be shutoff pressure of associated fan, plus 10 percent.

b. Acceptable Manufacturers: Subject to compliance with requirements approved manufacturers are as follows:

1) Belimo
2) Johnson Controls
3) Delta
4) Invensys
5) Substitutions: See Section 01 60 00 - Product Requirements

C. Quarter-Turn Actuators (for ball and butterfly valves):

1. Electric

a. Motor: Suitable for 120 or 240 Volt single-phase power supply. Insulation shall be NEMA Class F or better. Motor shall be rated for 100 percent duty cycle. Motors shall have inherent overload protection.
b. Gear Train. Motor output shall be directed to a self locking gear drive mechanism. Gears shall be rated for torque input exceeding motor locked rotor torque.
c. Wiring: Power and control wiring shall be wired to a terminal strip in the actuator enclosure
d. Failsafe Positioning: Actuators shall be spring return type for failsafe positioning.
e. Enclosure: Actuator enclosure shall be NEMA-4 rated, and shall have a minimum of two threaded conduit entries. Provide an enclosure heater for actuators located outside of buildings.
f. Limit Switches: Travel limit switches shall be UL and CSA approved. Switches shall limit actuator in both open and closed positions.
g. Mechanical Travel Stops: The actuator shall include mechanical travel stops of stainless steel construction to limit actuator to specific degrees of rotation.
h. Manual Override: Actuators shall have manual actuator override to allow operation of the valve when power is off. For valves 4 inches and smaller the override may be a removable wrench or lever or geared handwheel type. For larger valves, the override shall be a fixed geared handwheel type. An automatic power cut-off switch
shall be provided to disconnect power from the motor when the handwheel is engaged for manual operation.

i. Valve Position Indicator: A valve position indicator with arrow and open and closed position marks shall be provided to indicate valve position.

j. Torque Limit Switches: Provide torque limit switches to interrupt motor power when torque limit is exceeded in either direction of rotation.

k. Position Controller: For valves used for modulating control, provide an electronic positioner capable of accepting 4-20 mA, 0-10 Vdc, 2-10 Vdc, and 135 Ohm potentiometer.

l. Ambient Conditions: Actuator shall be designed for operation from -140 to 150 °F ambient temperature with 0 to 100 percent relative humidity.

2.5 GENERAL FIELD DEVICES

A. Provide field devices for input and output of digital (binary) and analog signals into controllers (BCs, AACs, ASCs). Provide signal conditioning for all field devices as recommended by field device manufacturers, and as required for proper operation in the system.

B. It shall be the Contractor's responsibility to assure that all field devices are compatible with controller hardware and software.

C. Field devices specified herein are generally 'two-wire' type transmitters, with power for the device to be supplied from the respective controller. If the controller provided is not equipped to provide this power, or is not designed to work with 'two-wire' type transmitters, or if field device is to serve as input to more than one controller, or where the length of wire to the controller will unacceptably affect the accuracy, the Contractor shall provide 'four-wire' type equal transmitter and necessary regulated DC power supply or 120 VAC power supply, as required.

D. For field devices specified hereinafter that require signal conditioners, signal boosters, signal repeaters, or other devices for proper interface to controllers, Contractor shall furnish and install proper device, including 120V power as required. Such devices shall have accuracy equal to, or better than, the accuracy listed for respective field devices.

E. Accuracy: As stated in this Section, accuracy shall include combined effects of nonlinearity, nonrepeatability and hysteresis.

2.6 TEMPERATURE SENSORS (TS)

A. Sensor range: When matched with A/D converter of BC, AAC/ASC, or SD, sensor range shall provide a resolution of no worse than 0.3°F (0.16 °C) (unless noted otherwise). Where thermistors are used, the stability shall be better than 0.25°F over 5 years.

B. Matched Sensors: The following applications shall require matched sensors:

1. Building Loop Connections: Provide matched loop and building supply sensors where control sequence requires controlling to a temperature rise (differential).

2. Hydronic Temperature Difference Calculations: Provide matched supply and return temperature sensors where the pair is used for calculating temperature difference for use in load calculations or sequencing such as across chillers and plants.
3. Air Handling Unit Sequencing: Provide matched pair for the cooling and heating coil leaving sensors where the sequence includes calculating an offset from the supply air setpoint to maintain a leaving heating coil temperature.

C. Room Temperature Sensor: Shall be an element contained within a ventilated cover, suitable for wall mounting. Provide insulated base. Following sensing elements are acceptable:

 1. Sensing element shall be platinum RTD, thermistor, or integrated circuit, +/- 0.4°F accuracy at calibration point.
 2. Provide setpoint adjustment where indicated. The setpoint adjustment shall be a warmer/cooler indication that shall be scalable via the BAS.
 3. Provide an occupancy override button on the room sensor enclosure where indicated. This shall be a momentary contact closure.
 4. Provide current temperature indication via an LCD or LED readout where indicated.

D. Single-Point Duct Temperature Sensor: Shall consist of sensing element, junction box for wiring connections and gasket to prevent air leakage or vibration noise. Temperature range as required for resolution indicated in paragraph A. Sensor probe shall be 304 stainless steel.

 1. Sensing element shall be platinum RTD, thermistor, or integrated circuit, +/- 0.2°F accuracy at calibration point.

E. Averaging Duct Temperature Sensor: Shall consist of an averaging element, junction box for wiring connections and gasket to prevent air leakage. Provide sensor lengths and quantities to result in one lineal foot of sensing element for each three square feet of cooling coil/duct face area. Temperature range as required for resolution indicated in paragraph A.

 1. Sensing element shall be platinum RTD, or thermistor, +/- 0.2°F accuracy at calibration point.

F. Liquid immersion temperature sensor shall include [brass] thermowell, sensor and connection head for wiring connections. Temperature range shall be as required for resolution of 0.15°F.

 1. Sensing element (chilled water/glycol systems) shall be platinum RTD +/- 0.2°F accuracy at calibration point. Temperature range shall be as required for resolution of 0.15°F.
 2. Sensing element (other systems) shall be platinum RTD, thermistor, or integrated circuit, +/- 0.4°F accuracy at calibration point. Temperature range shall be as required for resolution of 0.3°F.

G. Pipe Surface-Mount Temperature Sensor: Shall include metal junction box and clamps and shall be suitable for sensing pipe surface temperature and installation under insulation. Provide thermally conductive paste at pipe contact point. Temperature range shall be as require for resolution indicated in paragraph A.

 1. Sensing element shall be platinum RTD, thermistor, or integrated circuit, +/- 0.4°F accuracy at calibration point.

H. Outside air sensors shall consist of a sensor, sun shield, utility box, and watertight gasket to prevent water seepage. Temperature range shall be as require for resolution indicated in Paragraph A.
1. Sensing element shall be platinum RTD, thermistor, or integrated circuit, +/- 0.4°F accuracy at calibration point.

2.7 TEMPERATURE TRANSMITTERS

A. Where required by Controller, or where wiring runs are over 50 feet, sensors as specified above may be matched with transmitters outputting 4-20 mA linearly across the specified temperature range. Transmitters shall have zero and span adjustments, an accuracy of 0.1°F when applied to the sensor range.

2.8 HUMIDITY TRANSMITTERS

A. Units shall be suitable for duct, wall (room) or outdoor mounting. Unit shall be two-wire transmitter utilizing bulk polymer resistance change or thin film capacitance change humidity sensor. Unit shall produce linear continuous output of 4-20 mA for percent relative humidity (% RH). A combination temperature and humidity sensor may be used for zone level monitoring. Sensors shall have the following minimum performance and application criteria:

1. Input Range: 0 to 100% RH.
2. Accuracy(% RH): +/- 2% (when used for enthalpy calculation, dewpoint calculation or humidifier control) or +/- 3% (monitoring only) between 20-90% RH at 77°F, including hysteresis, linearity, and repeatability.
3. Sensor Operating Range: As required by application
4. Long Term Stability: Less than 1% drift per year.

B. Acceptable Manufacturers: Units shall be Vaisala HM Series, General Eastern, Microline, or Hy-Cal HT Series. Substitutions shall be allowed per Division 1.

2.9 DIFFERENTIAL PRESSURE TRANSMITTERS (DP)

A. General Purpose - Water: Two-wire transmitter, 4-20 mA output with zero and span adjustments. Plus or minus 0.5% overall accuracy, 450 psig (3103 KPa) maximum static pressure rating, 200 psid maximum overpressure rating for 6 through 60 psid range, 450 psid for 100 through 300 psid range. Acceptable units shall be Kele & Associates Model 360 C. Substitutions shall be allowed per Division 1.

B. Industrial Application, Liquid, Steam and Gas:

1. General: Two-wire smart DP cell type transmitter, 4-20 mA or 1-5 Vdc user-selectable linear or square root output, adjustable span and zero, stainless steel wetted parts.
2. Environmental limits: -40 to 250 ºF (-40 to 121°C), 0 to 100% RH.
3. Accuracy: less than 0.1 percent of span.
4. Output Damping: Time constant user selectable from 0 to 36 seconds.
5. Vibration Effect: Less than ±0.1% of upper range limit from 15 to 2000 Hz in any axis relative to pipe mounted process conditions.
7. Approvals: FM, CSA.
8. Acceptable Manufacturers: Rosemount Inc. 3051 Series, Foxboro, Johnson-Yokagawa, Setra, or Mamac. Substitutions shall be allowed per Division 1.

C. General Purpose Low Pressure Air: Generally for use in static measurement of duct pressure or constant volume air velocity pressure measurement where the range is applicable.

1. General: Loop powered two-wire differential capacitance cell-type transmitter.
2. Output: Two-wire 4-20 mA output with zero adjustment.
3. Overall Accuracy: Plus or minus 1%.
4. Minimum Range: 0.1 in. w.c.
5. Maximum Range: 10 inches w.c.
6. Housing: Polymer housing suitable for surface mounting.
7. Acceptable Manufacturers: Modus T30. Substitutions shall be allowed per Division 1.
8. Static Sensing Element: Pitot-type static pressure sensing tips similar to Dwyer model A-301 and connecting tubing.
9. Range: Select for specified setpoint to be between 25% and 75% full-scale.

D. General Purpose Low Pressure/Low Differential Air: Generally for use in static measurement of space pressure or constant volume air velocity pressure measurement where the range is applicable.

1. General: Loop powered, two-wire differential capacitance cell type transmitter.
2. Output: Two-wire 4-20 mA output with zero adjustment.
3. Overall Accuracy: Plus or minus 1%.
4. Minimum Range: 0 in. w.c.
5. Maximum Range: 0.1, 0.25, or 0.5 inches w.c.
6. Housing: Polymer housing suitable for surface mounting.
7. Acceptable Manufacturers: Modus T30. Substitutions shall be allowed per Division 1.
8. Static Sensing Element: Pitot-type static pressure sensing tips similar to Dwyer model A-301 and connecting tubing.
9. Range: Select for specified setpoint to be between 25% and 75% full-scale.

E. VAV Velocity Pressure: Generally for use in variable volume air velocity pressure measurement where the range is applicable.

1. General: Loop powered two-wire differential capacitance cell type transmitter.
2. Output: Two-wire, 4-20 mA output with zero adjustment.
3. Overall Accuracy: Plus or minus 0.25%
4. Minimum Range: 0 in. w.c.
5. Maximum Range: 1 inch w.c.
6. Housing: Polymer housing suitable for surface mounting.
7. Acceptable Manufacturers: Setra. Substitutions shall be allowed per Division 1.
8. Range: Select for minimum range that will accept the maximum velocity pressure expected.

2.10 VALVE BYPASS FOR DIFFERENTIAL PRESSURE SENSORS

A. Provide a five valve bypass kit for protection of DP sensors where the static on the pipe can cause on over pressure when connected to one port with the other at atmospheric pressure. Kit
shall include high and low pressure isolation valves, high and low pressure vent valves, and a bypass valve contained in a NEMA-1 enclosure.

2.11 DIFFERENTIAL PRESSURE SWITCHES (DPS)

A. General Service - Air: Diaphragm with adjustable setpoint and differential and snap acting form C contacts rated for the application. Provide manufacturer's recommended static pressure sensing tips and connecting tubing

B. General Service - Water: Diaphragm with adjustable setpoint, 2 psig or adjustable differential, and snap-acting Form C contacts rated for the application. 60 psid minimum pressure differential range. 0°F to 160°F operating temperature range.

2.12 PRESSURE SWITCHES (PS)

A. Diaphragm or bourdon tube with adjustable setpoint and differential and snap-acting Form C contacts rated for the application. Pressure switches shall be capable of withstanding 150% of rated pressure.

B. Acceptable Manufacturers: Square D, ITT Neo-Dyn, ASCO, Penn, Honeywell, and Johnson Controls. Substitutions shall be allowed per Division 1.

2.13 TRANSDUCERS

A. Binary to Analog Transducers ([Pulse Width Modulating] or Tri-State-to-Voltage or -Current):

1. Adjustable zero and span.
2. Failure Mode on Power Loss: Shall be provided with memory feature to allow the transducer to return to last value on power failure.
3. Accuracy: ± 1% of span
4. Output Span: 4-20 mA, 0-5 Vdc, 1-5 Vdc, 0-10Vdc, 2-10Vdc, 0-15Vdc, 3-15Vdc
5. Input: 4-20 mA, pulse width modulated or tri-state input.
7. Enclosure: Polymer designed for surface or panel mount.
8. Failure Mode on Power Loss: Non-failsafe transducers shall have no output air loss. Failsafe transducers shall exhaust output upon power loss.

B. Electronic-to Electronic (Voltage or Current to Current or Voltage):

1. Adjustable zero and span.
2. Failure Mode on Power Loss: Memory feature to allow the transducer to return to last value on power failure.
3. Accuracy: ± 1% of span.
4. Output Span: 4-20 mA, 0-5 Vdc, 1-5 Vdc, 0-10 Vdc, 2-10 Vdc, 0-15 Vdc, 3-15 Vdc.
5. Input: 0-20 Vdc, 0-20 ma, 0-10 kOhm.
6. Pulse Width Modulated] and Tri-state Input Time Base: Dip switch selectable
7. Enclosure: Polymer enclosure designed for surface or panel mount.

2.14 CURRENT SWITCHES (CS)

A. Clamp-On or Solid-Core Design Current Operated Switch (for Constant Speed Motor Status Indication)

1. Range: 1.5 to 150 amps.
2. Trip Point: Adjustable.
3. Switch: Solid state, normally open, 1 to 135 Vac or Vdc, 0.3 Amps. Zero off state leakage.
4. Lower Frequency Limit: 6 Hz.
5. Trip Indication: LED
6. Approvals: UL, CSA
7. Max. Cable Size: 350 MCM

B. Clamp-on or Solid-Core Wire Through Current Switch (CS/CR) (for Constant Speed Motors): Same as CS with 24v command relay rated at 5A @ 240 Vac resistive, 3A @ 240 Vac inductive, load control contact power shall be induced from monitored conductor (minimum conductor current required to energize relay 5A, max. rating of 135A). Acceptable Manufacturers shall be Veris Industries, Inc., Model # H938/735; or RE Technologies RCS 1150. Substitutions shall be allowed per Division 1.

1. Where used for single-phase devices, provide the CS/CR in a self-contained unit in a housing similar with override switch to Kele RIBX. Substitutions shall be allowed per Division 1.

C. Clamp-On Design Current Operated Switch for Variable Speed Motor Status Indication

1. Range: 1.5 to 135 Amps.
2. Trip Point: Self-calibrating based on VA memory associated with frequency to detect loss of belt with subsequent increase of control output to 60 Hz.
3. Switch: Solid state, normally open, 1 to 135 Vac or Vdc, 0.3 Amps. Zero off state leakage.
4. Frequency Range: 5-75 Hz
5. Trip Indication: LED
6. Approvals: UL, CSA
7. Max. Cable Size: 350 MCM

D. Clamp-On Wire Through Current Switch (CS/CR) (for Variable Speed Motors): Same as CS with 24v command relay rated at 5A @ 240 Vac resistive, 3A @ 240 Vac inductive, load control contact power shall be induced from monitored conductor (minimum conductor current required to energize relay 5A, max. rating of 135A). Acceptable manufacturer shall be Veris Industries, Inc., Model # H934. Substitutions shall be allowed per Division 1.
E. Variable Speed Status: Where current switches are used to sense the status for variable speed devices, the CT shall include on-board VA/Hz memory to allow distinction between a belt break and subsequent ramp up to 60 Hz, versus operation at low speed. The belt break scenario shall be indicated as a loss of status and the operation at low speed shall indicate normal status.

2.15 CURRENT TRANSFORMERS (CT)

A. Clamp-On Design Current Transformer (for Motor Current Sensing)

1. Range: 1-10 amps minimum, 20-200 amps maximum
2. Trip Point: Adjustable
3. Output: 0-5 VDC.
4. Accuracy: ±0.2% from 20 to 100 Hz.
5. Acceptable Manufacturers: KELE SA100. Substitutions shall be allowed per Division 1.

2.16 AIRFLOW MEASURING STATIONS (AFMS)

A. Pitot Tube Grids: Provide an array of velocity pressure sensing elements with averaging manifolds and air straightening vanes packaged in a sheet metal casing. Distribute sensing elements in accordance with ASHRAE for traversing ducts. Provide taps to connect tubing from instrumentation. Label AFM with drawing number designation, design flow, velocity pressure, and pressure drop. Application of pitot grids shall be allowed only where minimum expected flow is greater than 30% or maximum flow

B. Hot Wire Grid: Provide an array of hot wire anemometer with air straightening package in a sheet metal casing. Provide averaging circuitry and transmitter to transmit a linear signal proportional to airflow.

C. Vortex Shedding Grid: Provide an array of vortex shedding elements designed to produce stable 'Karmen Vortices' that are linear with air velocity. Provide the electronics to totalize the pulses and output average velocity proportional to an output signal of 4-20ma.

1. Sensor Accuracy: ±1.5%
2. Electronics Accuracy: ±0.5%
3. Range: Select minimum range to accommodate the expected flow range of the project
4. Temperature Limits: 20-140°F
5. Acceptable Manufacturer: Tek-Air Systems Inc. 'Vortek' Model. Ebtron 'Gold Series' Model. Substitutions shall be allowed per Division 1.

2.17 AIR VELOCITY PRESSURE SENSORS (INSERTION TYPE)

A. Single or Multi-Point Averaging (as indicated): Sensing tip shall be for insertion into duct with mounting flange and push on tube connections. Material shall be suitable to the application.
2.18 CO2 SENSORS/TRANSMITTERS (CO2)

A. CO2 sensors shall use silicon based, diffusion aspirated, infrared single beam, dual-wavelength sensor.

B. Accuracy: ±36ppm at 800 ppm and 68°F.

C. Stability: 5% over 5 years.

D. Output: 4-20 mA, 0-10 Vdc or relay.

E. Mounting: Duct or Wall as indicated.

F. Acceptable Manufacturer: Vaisala, Inc. GMD20 (duct) or GMW20 (wall).

2.19 ELECTRIC CONTROL COMPONENTS

A. Limit Switches (LS): Limit switches shall be UL listed, SPDT or DPDT type, with adjustable trim arm. Limit switches shall be as manufactured by Square D, Allen Bradley. Substitutions shall be allowed per Division 1.

B. Low Temperature Detector ('Freezestat') (FZ): Low temperature detector shall consist of a 'cold spot' element which responds only to the lowest temperature along any one foot of entire element, minimum bulb size of 1/8" x 20' (3.2mm x 6.1m), junction box for wiring connections and gasket to prevent air leakage or vibration noise, DPST (4 wire, 2 circuit) with manual reset. Temperature range 15 to 55°F (-9.4 to 12.8°C), factory set at 38°F.

C. High Temperature Detectors ('Firestat') (FS): High temperature detector shall consist of 3-pole contacts, a single point sensor, junction box for wiring connections and gasket to prevent air leakage of vibration noise, triple-pole, with manual reset. Temperature range 25 to 215°F (-4 to 102°C).

D. Surface-Mounted Thermostat: Surface-mounted thermostat shall consist of SPDT contacts, operating temperature range of 50 to 150°F (10 to 65°C), and a minimum 10°F fixed setpoint differential.

E. Low Voltage Wall Thermostat: Wall-mounted thermostat shall consist of SPDT sealed mercury contacts, operating temperature range of 50 to 90°F (10 to 32°C), switch rating of 24 Vac (30 Vac max.), and both manual and automatic fan operation in both the heat and cool modes.

F. Control Relays: All control relays shall be UL listed, with contacts rated for the application, and mounted in minimum NEMA-1 enclosure for indoor locations, NEMA-4 for outdoor locations.

1. Control relays for use on electrical systems of 120 volts or less shall have, as a minimum, the following:

 a. AC coil pull-in voltage range of +10%, -15% or nominal voltage.
 b. Coil sealed volt-amperes (VA) not greater than four (4) VA.
 c. Silver cadmium Form C (SPDT) contacts in a dustproof enclosure, with 8 or 11 pin type plug.
d. Pilot light indication of power-to-coil and coil retainer clips.
e. Coil rated for 50 and 60 Hz service.
f. Acceptable Manufacturers: Relays shall be Potter Brumfield, Model KRPA.
Substitutions shall be allowed per Division 1.
g. Relays used for across-the-line control (start/stop) of 120V motors, 1/4 HP, and 1/3
HP, shall be rated to break minimum 10 Amps inductive load. Relays shall be
IDEC. Substitutions shall be allowed per Division 1.
h. Relays used for stop/start control shall have low voltage coils (30 VAC or less), and
shall be provided with transient and surge suppression devices at the controller
interface.

G. General Purpose Power Contactors: NEMA ICS 2, AC general-purpose magnetic contactor.
ANSI/NEMA ICS 6, NEMA type 1 enclosure. Manufacturer shall be Square 'D', Cutler-Hammer
or Westinghouse.

H. Control Transformers: Furnish and install control transformers as required. Control
transformers shall be machine tool type, and shall be US and CSA listed. Primary and secondary
sides shall be fused in accordance with the NEC. Transformer shall be proper size for
application, and mounted in minimum NEMA-1 enclosure.

1. Transformers shall be manufactured by Westinghouse, Square 'D', or Jefferson.
Substitutions shall be allowed per Division 1.

I. Time Delay Relays (TDR): TDRs shall be capable of on or off delayed functions, with adjustable
timing periods, and cycle timing light. Contacts shall be rated for the application with a
minimum of two (2) sets of Form C contacts, enclosed in a dustproof enclosure.

1. TDRs shall have silver cadmium contacts with a minimum life span rating of one million
operations. TDRs shall have solid state, plug-in type coils with transient suppression
devices.
2. TDRs shall be UL and CSA listed, Crouzet type. Substitutions shall be allowed per
Division 1.

J. Electric Push Button Switch: Switch shall be momentary contact, oil tight, push button, with
number of N.O. and/or N.C. contacts as required. Contacts shall be snap-action type, and rated
for minimum 120 Vac operation. Switch shall be 800T type, as manufactured by Allen Bradley.
Substitutions shall be allowed per Division 1.

K. Pilot Light: Panel-mounted pilot light shall be NEMA ICS 2 oil tight, transformer type, with
screw terminals, push-to-test unit, LED type, rated for 120 VAC. Unit shall be 800T type, as
manufactured by Allen-Bradley. Substitutions shall be allowed per Division 1.

L. Alarm Horn: Panel-mounted audible alarm horn shall be continuous tone, 120 Vac Sonalert
solid-state electronic signal, as manufactured by Mallory. Substitutions shall be allowed per
Division 1.

M. Electric Selector Switch (SS): Switch shall be maintained contact, NEMA ICS 2, oil-tight
selector switch with contact arrangement, as required. Contacts shall be rated for minimum 120
Vac operation. Switch shall be 800T type, as manufactured by Allen-Bradley. Substitutions
shall be allowed per Division 1.
2.20 REFRIGERANT MONITOR

A. General: Contractor shall provide a refrigerant sensitive infrared-based stationary refrigerant gas leak monitor system designed to continuously measure refrigerants. Refrigerant monitor shall be coordinated to detect refrigerant type on project. The alarm system shall comply with ANSI/ASHRAE 15-2007 and local code requirements.

B. The refrigerant monitor shall be capable of monitoring multiple refrigerant gas compounds at multiple locations in concentrations of 0 PPM to a minimum of 1000 PPM. The Monitor shall have a low range resolution of 1 PPM in the range of 1 PPM through 100 PPM. Readings above 100 PPM must be accurate to within ±5% of reading. Accuracy shall be maintained within ambient environmental ranges of 0°C. through 50°C., (32°F. through 122°F.) and 5% through 90% relative humidity, non-condensing.

C. The refrigerant monitor shall automatically and continuously monitor the areas through a sample draw type tubular pick up system with an internal pump and filter. The installation of the monitoring control and the tubing shall be in strict accordance with the manufactures instructions. The location, routing, and final position of the sample tubes shall be submitted to the engineer with all necessary shop drawings and monitor specifications and installation instructions. Tubing size, tubing material, and tube length limitations shall be within the specifications of the monitor manufacture. The location and method of tube support and hangers must be identified on the shop drawings. Each of the sampling tubes shall have end of line filters.

D. The analyzer will be based on infrared detection technology, and will be factory tested and calibrated for the specified refrigerant or refrigerants. Factory certification of the calibrations shall be provided with the O&M manuals. The analyzer shall provide a menu driven or automatic method of checking both zero, span calibration for each sensor, and allow for adjustment.

E. The monitor shall be equipped with 4 outputs. Three relays shall energize at an adjustable user defined set point based on refrigerant concentration levels. The relay threshold adjustment shall be protected by keyed or password access controls. Adjustments and observations shall be made at the front panel operator interface. The relay threshold values can be viewed without a password. The digital display will continuously display the refrigerant concentration level and alarm status. The fourth output shall indicate a monitor malfunction alarm. The monitor shall also have an analog output that will provide a liner scaled reference to the refrigerant concentration in parts per million. The analog output signal shall be an industry standard DC voltage, or mA current signal.

F. The monitor shall have a NEMA-4 moisture resistant enclosure with a gasketed, hinged front cover. Conduits and tube connections shall be located on the bottom of the enclosure. The enclosure shall have a rust and corrosion resistant finish.

G. The following alarm modes will be provided by the refrigerant monitor:

1. ALARM LEVEL ONE - Low level of refrigerant concentration at one of the sampling points has detected the presence of a possible refrigerant leak. The initial alarm threshold shall be set to 5 PPM (adj.) and increased if there are nuisance alarms. This alarm level shall be displayed on the refrigerant monitor interface panel, indicating which sensor has triggered the alarm, and the associated concentration of refrigerant in PPM. This event will also send an Alarm Level One signal to the BAS through a digital output from the

Tetra Tech BAS BASIC MATERIALS, INTERFACE DEVICES & SENSORS
200-35157-19001 23 09 51 - 17
monitor relay. This alarm will remain active until the refrigerant concentration is reduced below set point.

2. **ALARM LEVEL TWO** - This alarm shall indicate that one of the sensors has detected a refrigerant concentration that is approaching dangerous levels in the area being monitored. This alarm shall be set to 25% below the maximum calculated refrigerant level specified in ANSI/ASHRAE 15-1994 and ASHRAE 34-1992. This alarm will be displayed on the monitor interface, and will indicate which of the sensors has caused the alarm, and the highest concentration in PPM. This event will also activate the beacon and audible alarm mounted on the refrigerant monitoring enclosure. This alarm will also be sent to the BAS through the digital output of the relay. In this mode the audible alarm can be silenced, but the beacon shall remain active until the fault is cleared.

3. **ALARM LEVEL THREE** - This alarm shall be set at the maximum calculated refrigerant level specified in ANSI/ASHRAE 15-1994 and ASHRAE 34-1992 whichever is the lowest concentration. The refrigerant monitor interface will display which sensor has caused the alarm, and the associated concentration in PPM. This event will also activate the beacon and audible alarm mounted on the refrigerant monitoring enclosure. If the audible alarm had been silenced by an earlier alarm, the activation of this level three alarm will cause the audible alarm to be activated again. The relay in the refrigerant monitoring panel shall activate the space ventilation system, and will disable all combustion or flame-producing equipment via hardwired control interlocks. In addition, this event and will de-energize the energy source for any hot surface (850°F or 454°C) located in the space. Interlocks must also be provided to close any normally open doors or openings to the space for proper ventilation and isolation during this alarm condition. This alarm level will also signal the BAS through the digital output through the same relay. In this mode, the audible alarm can be silenced, but the beacon shall remain active until the fault is cleared.

H. All alarm conditions shall be report to the BAS system as follows:

1. **ALARM LEVEL ONE** - The lowest refrigerant alarm level shall detect the presence of refrigerant in low concentrations and energize a relay to signal a low level alarm to the BAS operator terminal(s). The alarm shall display an alarm message stating that there is a potential refrigerant leak in the designated area.

2. **ALARM LEVEL TWO** - The second refrigerant level alarm shall be a high refrigerant alarm alert. This alarm shall energize a relay to signal the BAS system indicating a high level alarm on the BAS operator terminal(s). This BAS alarm shall state that high levels of refrigerant have been detected in the designated area.

3. **FAULT ALARM** - Reports a high level alarm to the BAS operator terminal(s) that there is a fault in the refrigerant monitoring alarm system.

2.21 **NAMEPLATES**

A. Provide engraved phenolic or micarta nameplates for all equipment, components, and field devices furnished. Nameplates shall be 1/8" thick, black, with white center core, and shall be minimum 1" x 3", with minimum 1/4" high block lettering. Nameplates for devices smaller than 1" x 3" shall be attached to adjacent surface.

B. Each nameplate shall identify the function for each device.
2.22 TESTING EQUIPMENT

A. Contractor shall test and calibrate all signaling circuits of all field devices to ascertain that required digital and accurate analog signals are transmitted, received, and displayed at system operator terminals, and make all repairs and recalibrations required to complete test. Contractor shall be responsible for test equipment required to perform these tests and calibrations. Test equipment used for testing and calibration of field devices shall be at least twice as accurate as respective field device (e.g., if field device is $\pm 0.5\%$ accurate, test equipment shall be $\pm 0.25\%$ accurate over same range).

PART 3 - EXECUTION

3.1 INSPECTION

A. Examine areas and conditions under which control systems are to be installed. Do not proceed with work until unsatisfactory conditions have been corrected in manner acceptable to Installer.

3.2 INSTALLATION OF CONTROL SYSTEMS

A. General: Install systems and materials in accordance with manufacturer's instructions, roughing-in drawings and details shown on drawings. Install electrical components and use electrical products complying with requirements of National Electric Code and all local codes.

B. Control Wiring: The term "control wiring" is defined to include providing of wire, conduit and miscellaneous materials as required for mounting and connection of electric control devices.

1. Wiring System: Install complete wiring system for electric control systems. Conceal wiring except in mechanical rooms and areas where other conduit and piping are exposed. Installation of wiring shall generally follow building lines. Install in accordance with National Electrical Code and Division 16 of this Specification. Fasten flexible conductors bridging cabinets and doors, neatly along hinge side, and protect against abrasion. Tie and support conductors neatly.

2. Control Wiring Conductors: Install control wiring conductors, without splices between terminal points, color-coded. Install in neat workmanlike manner, securely fastened. Install in accordance with National Electrical Code and Division 16 of this Specification.

3. Communication wiring, signal wiring and low voltage control wiring shall be installed separate from any wiring over thirty (30) volts. Signal wiring shield shall be grounded at controller end only, unless otherwise recommended by the controller manufacturer.

4. All WAN and LAN Communication wiring shield shall be terminated as recommended by controller manufacturer. All WAN and LAN Communication wiring shall be labeled with a network number, device ID at each termination and shall correspond with the WAN and LAN system architecture and floor plan submittals.

5. Install all control wiring external to panels in electric metallic tubing or raceway. However, communication wiring, signal wiring and low voltage control wiring may be run without conduit in concealed, accessible locations if noise immunity is ensured. Contractor will be fully responsible for noise immunity and rewire in conduit if electrical or RF noise affects performance. Accessible locations are defined as areas inside
mechanical equipment enclosures, such as heating and cooling units, instrument panels etc.; in accessible pipe chases with easy access, or suspended ceilings with easy access. Installation of wiring shall generally follow building lines. Run in a neat and orderly fashion, bundled where applicable, and completely suspended (strapped to rigid elements or routed through wiring rings) away from areas of normal access. Tie and support conductors neatly with suitable nylon ties. Conductors shall not be supported by the ceiling system or ceiling support system. Conductors shall be pulled tight and be installed as high as practically possible in ceiling cavities. Wiring shall not be laid on the ceiling or duct. Conductors shall not be installed between the top cord of a joist or beam and the bottom of roof decking. Contractor shall be fully responsible for noise immunity and rewire in conduit if electrical or RF noise affects performance.

6. Number-code or color-code conductors appropriately for future identification and servicing of control system. Code shall be as indicated on approved installation drawings.

C. Control Valves: Install so that actuators, wiring, and tubing connections are accessible for maintenance. Where possible, install with valve stem axis vertical, with operator side up. Where vertical stem position is not possible, or would result in poor access, valves may be installed with stem horizontal. Do not install valves with stem below horizontal, or down.

D. Freezestats: Install freezestats in a serpentine fashion where shown on drawing. Provide one foot of element for each square foot of coil face area. Where coil face area exceeds required length of element, provide multiple devices, wired in parallel for normally open close on trip application, wired in series for normally closed, open on trip application. Adequately support with coil clips.

E. Averaging Temperature Sensors: Cover no more than two square feet per linear foot of sensor length except where indicated. Generally where flow is sufficiently homogeneous/adaptably mixed at sensing location, consult AE for requirements.

AE must specifically show locations of all flow meters and design in the straight length of duct or pipe required for accurate sensors. This length must be specifically shown on the drawing.

F. Airflow Measuring Stations: Install per manufacturer's recommendations in an unobstructed straight length of duct (except those installations specifically designed for installation in fan inlet). For installations in fan inlets, provide on both inlets of double inlet fans and provide inlet cone adapter as recommended by AFM station manufacturer.

G. Fluid Flow Sensors: Install per manufacturer's recommendations in an unobstructed straight length of pipe.

H. Relative Humidity Sensors: Provide element guard as recommended by manufacturer for high velocity installations. For high limit sensors, position remote enough to allow full moisture absorption into the air stream before reaching the sensor.

I. Differential Pressure Transmitters: Provide valve bypass arrangement to protect against over pressure damaging the transmitter.

J. Flow Switches: Where possible, install in a straight run of pipe at least 15 diameters in length to minimize false indications.
K. Current Switches for Motor Status Monitoring: Adjust so that setpoint is below minimum operating current and above motor no load current.

L. Cutting and Patching Insulation: Repair insulation to maintain integrity of insulation and vapor barrier jacket. Use hydraulic insulating cement to fill voids and finish with material matching or compatible with adjacent jacket material.

END OF SECTION
SECTION 23 09 53
BAS FIELD PANELS

PART 1 - GENERAL

1.1 SECTION INCLUDES:
A. Building Controller (BC)
B. Advance Application Specific Controller (AAC)
C. Application Specific Controller (ASC)

1.2 RELATED DOCUMENTS:
A. Section 23 09 50 - Building Automation System (BAS) General - Refer to this section for definitions of terminology
B. Section 23 09 51 - BAS Basic Materials, Interface Devices, and Sensors
C. Section 23 09 54 - BAS Communications Devices
D. Section 23 09 55 - BAS Software
E. Section 23 09 58 - Sequence of Operation
F. Section 23 09 59 - BAS Commissioning

1.3 DESCRIPTION OF WORK:
A. Furnish and install DDC Control units and/or Smart Devices required to support specified building automation system functions.
B. Refer to Section 23 09 50 for general requirements.

PART 2 - PRODUCTS

2.1 Stand-Alone Functionality
A. General: These requirements clarify the requirement for stand-alone functionality relative to packaging I/O devices with a controller. Stand-alone functionality is specified with the controller and for each Application Category specified in Part 3. This item refers to acceptable paradigms for associating the points with the processor.
B. Functional Boundary: Provide controllers so that all points associated with and common to one unit or other complete system/equipment shall reside within a single control unit. The boundaries of a standalone system shall be as dictated in the contract documents. Generally systems specified for the Application Category will dictate the boundary of the standalone control functionality. See related restrictions below. When referring to the controller as pertains to the standalone functionality, reference is specifically made to the processor. One processor shall execute all the related I/O control logic via one operating system that uses a common programming and configuration tool.

C. The following configurations are considered acceptable with reference to a controller's standalone functionality:

1. Points packaged as integral to the controller such that the point configuration is listed as an essential piece of information for ordering the controller (having a unique ordering number).
2. Controllers with processors and modular back planes that allow plug in point modules as an integral part of the controller.
3. I/O point expander boards, plugged directly into the main controller board to expand the point capacity of the controller.
4. I/O point expansion devices connected to the main controller board via wiring and as such may be remote from the controller and that communicate via a sub LAN protocol. These arrangements to be considered standalone shall have a sub LAN that is dedicated to that controller and include no other controller devices (AACs or ASCs). All wiring to interconnect the I/O expander board shall be:
 a. Contained in the control panel enclosure;
 b. Or run in conduit. Wiring shall only be accessible at the terminations.

D. The following configurations are considered unacceptable with reference to a controller's standalone functionality:

1. Multiple controllers enclosed in the same control panel to accomplish the point requirement.

2.2 Building Controller (BC)

A. General Requirements:

1. The BC(s) shall provide fully distributed control independent of the operational status of the OWSs and CSS. All necessary calculations required to achieve control shall be executed within the BC independent of any other device. All control strategies performed by the BC(s) shall be both operator definable and modifiable through the Operator Interfaces.
2. BCs shall perform overall system coordination, accept control programs, perform automated HVAC functions, control peripheral devices and perform all necessary mathematical and logical functions. BCs shall share information with the entire network of BCs and AACs/ASCs for full global control. Each controller shall be accessed through the CSS in normal operations. In the event that the CSS is not available, the controller shall permit multi-user operation from multiple OWS and mobile computers connected either locally or over the network. Each unit shall have its own internal RAM, non-volatile
memory, microprocessor, battery backup, regulated power supply, power conditioning equipment, ports for connection of operating interface devices, and control enclosure. BCs shall be programmable from the CSS, OWS, mobile computer, or hand held device. BC shall contain sufficient memory for all specified global control strategies, user defined reports and trending, communication programs, and central alarming.

3. BCs shall be connected to a controller network that qualifies as a controlling LAN.
4. All BCs shall be provided with a UPS to protect against memory loss and allow for continuous communication with the CSS in the event of a loss of power.

a. The UPS shall be a 500 VA UPS equal to APC Back-UPS CS, 300 Watts / 500 VA, Input 120V / Output 120V, Interface Port DB-9 RS-232, USB

5. In addition BCs may provide intelligent, standalone control of BAS functions. Each BC may be capable of standalone direct digital operation utilizing its own processor, non-volatile memory, input/output, wiring terminal strips, A/D converters, real-time clock/calendar and voltage transient and lightning protection devices. Refer to standalone functionality specified above.

6. The BC may provide for point mix flexibility and expandability. This requirement may be met via either a family of expander boards, modular input/output configuration, or a combination thereof. Refer to stand alone functionality specified above.

7. All BC point data, algorithms and application software shall be modifiable from the CSS and OWS.

8. Each BC shall execute application programs, calculations, and commands via a microprocessor resident in the BC. The database and all application programs for each BC shall be stored in non-volatile or battery backed volatile memory within the BC and will be able to upload/download to/from the CSS.

9. BC shall provide buffer for holding alarms, messages, trends etc.

10. Each BC shall include self-test diagnostics, which allow the BC to automatically alarm any malfunctions, or alarm conditions that exceed desired parameters as determined by programming input.

11. Each BC shall contain software to perform full DDC/PID control loops.
12. For systems requiring end-of-line resistors those resistors shall be located in the BC.

13. Input-Output Processing

a. Digital Outputs (DO): Outputs shall be rated for a minimum 24 Vac or Vdc, 1 amp maximum current. Each shall be configurable as normally open or normally closed. Each output shall have an LED to indicate the operating mode of the output and a manual hand off or auto switch to allow for override. Each DO shall be discrete outputs from the BC's board (multiplexing to a separate manufacturer's board is unacceptable). Provide suppression to limit transients to acceptable levels.

b. Analog Inputs (AI): AI shall be 0-5 Vdc, 0-10 Vdc, 0-20 Vdc, and 0-20 mA. Provide signal conditioning, and zero and span calibration for each input. Each input shall be a discrete input to the BC's board (multiplexing to a separate manufacturers board is unacceptable unless specifically indicated otherwise). A/D converters shall have a minimum resolution of 12 bits.

c. Digital Inputs (DI): Monitor dry contact closures. Accept pulsed inputs of at least one per second. Source voltage for sensing shall be supplied by the BC and shall be isolated from the main board. Software multiplexing of an AI and resistors may only be done in non-critical applications and only with prior approval of Architect/Engineer.
d. Universal Inputs (UI-AI or DI): To serve as either AI or DI as specified above.
e. Electronic Analog Outputs (AO): Voltage mode: 0-5 Vdc and 0-10 Vdc; Current mode: 4-20 mA. Provide zero and span calibration and circuit protection. Pulse Width Modulated (PWM) analog via a DO [and transducer] is acceptable only with State approval (Generally these will not be allowed on loops with a short time constant such as discharge temperature loops, economizer loops, pressure control loops and the like. They are generally acceptable for standard room temperature control loops.). Where these are allowed, transducer/actuator shall be programmable for normally open, normally closed, or hold last position and shall allow adjustable timing. Each DO shall be discrete outputs from the BC’s board (multiplexing to a separate manufacturers board is unacceptable). D/A converters shall have a minimum resolution of 10 bits.
f. Pulsed Inputs: Capable of counting up to 8 pulses per second with buffer to accumulate pulse count. Pulses shall be counted at all times.

14. A communication port for operator interface through a mobile computer shall be provided in each BC. It shall be possible to perform all program and database back-up, system monitoring, control functions, and BC diagnostics through this port. Standalone BC panels shall allow temporary use of portable devices without interrupting its normal operation.

15. Each BC shall be equipped with loop tuning algorithm for precise proportional, integral, derivative (PID) control. Loop tuning tools provided with the CSS software is acceptable. In any case, tools to support loop tuning must be provided such that P, I, and D gains are automatically calculated.

16. All analog output points shall have a selectable failure setpoint. The BC shall be capable of maintaining this failure setpoint in the event of a system malfunction, which causes loss of BC control, or loss of output signal, as long as power is available at the BC. The failure setpoint shall be selectable on a per point basis.

17. Slope intercepts and gain adjustments shall be available on a per-point basis.

18. BC Power Loss:

a. Upon a loss of power to any BC, the other units on the controlling LAN shall not in any way be affected.
b. Upon a loss of power to any BC, the battery backup shall ensure that the energy management control software, the Direct Digital Control software, the database parameters, and all other programs and data stored in the RAM are retained for a minimum of fifty (50) hours. An alarm diagnostic message shall indicate that the BC is under battery power.
c. Upon restoration of power within the specified battery backup period, the BC shall resume full operation without operator intervention. The BC shall automatically reset its clock such that proper operation of any time dependent function is possible without manual reset of the clock. All monitored functions shall be updated.
d. Should the duration of a loss of power exceed the specified battery back-up period or BC panel memory be lost for any reason, the panel shall automatically report the condition (upon resumption of power) and be capable of receiving a download via the network from the CSS or a mobile computer. In addition, the State shall be able to upload the most current versions of all energy management control programs, Direct Digital Control programs, database parameters, and all other data and programs in the memory of each BC to the CSS or a mobile computer via the network or the local USB or RS-232C port.
19. BC Failure:
 a. Building Controller LAN Data Transmission Failure: BC shall continue to operate in stand-alone mode. BC shall store loss of communication alarm along with the time of the event. All control functions shall continue with the global values programmable to either the last value or a specified value. Peer BCs shall recognize the loss and report alarm.
 b. BC Hardware Failure: BC shall cease operation and terminate communication with other devices. All outputs shall go to their specified fail position.

20. Each BC shall be equipped with firmware resident self-diagnostics for sensors and be capable of assessing an open or shorted sensor circuit and taking an appropriate control action (close valve, damper, etc.).

21. BCs may include network communications interface functions for controlling secondary controlling LANs. Refer to Section 23 09 54 - BAS System Communications Devices for requirements if this function is packaged with the BC.

22. A minimum of four levels of privileges shall be provided at each BC.
23. All local user accounts shall be password protected. Strong password shall be used and complies with the State security standard.
24. BCs shall be mounted on equipment, in packaged equipment enclosures, or locking wall mounted in a NEMA 1 enclosure, as specified elsewhere.

B. BACnet Building Controller Requirements:
 1. The BC(s) shall support all BIBBs defined in the BACnet-IP (B-BC) device profile as defined in the BACnet standard.
 2. BCs shall communicate over the BACnet-IP LAN.
 3. Each BC shall be connected to the BACnet-IP LAN communicating to/from other BCs.

2.3 Advanced Application Specific Controller (AAC) and Application Specific Controller (ASC)

A. General Requirements:
 1. AACs and ASCs shall provide intelligent, standalone control of HVAC equipment. Each unit shall have its own internal RAM, non-volatile memory and will continue to operate all local control functions in the event of a loss of communications on the ASC LAN or sub-LAN. Refer to standalone requirements by application specified in Part 3 of this section. In addition, it shall be able to share information with every other BC and AAC /ASC on the entire network.
 2. Each AAC and ASC shall include self-test diagnostics that allow the AAC /ASC to automatically relay to the BC, or LAN Interface Device, any malfunctions or abnormal conditions within the AAC /ASC or alarm conditions of inputs that exceed desired parameters as determined by programming input.

 a. AACs and ASCs shall include sufficient memory to perform the specific control functions required for its application and to communicate with other devices.
3. Each AAC and ASC must be capable of stand-alone direct digital operation utilizing its own processor, non-volatile memory, input/output, minimum 8 bit A to D conversion, voltage transient and lightning protection devices. All volatile memory shall have a battery backup of at least fifty- (50) hrs with a battery life of (5) five years.
4. All point data; algorithms and application software within an AAC /ASC shall be modifiable from the OWS.
5. AAC and ASC Input-Output Processing
 a. Digital Outputs (DO): Outputs shall be rated for a minimum 24 VAC or VDC, 1 amp maximum current. Each shall be configurable as normally open or normally closed. Each output shall have an LED to indicate the operating mode of the output and a manual hand off or auto switch to allow for override (Only AAC requires HOA). Each DO shall be discrete outputs from the AAC/ASC's board (multiplexing to a separate manufacturer's board is unacceptable). Provide suppression to limit transients to acceptable levels.
 b. Analog Inputs (AI): AI shall be 0-5 Vdc, 0-10Vdc, 0-20Vdc, and 0-20 mA. Provide signal conditioning, and zero and span calibration for each input. Each input shall be a discrete input to the BC's board (multiplexing to a separate manufacturers board is unacceptable unless specifically indicated otherwise). A/D converters shall have a minimum resolution of 8-10 bits depending on application.
 c. Digital Inputs (DI): Monitor dry contact closures. Accept pulsed inputs of at least one per second. Source voltage for sensing shall be supplied by the BC and shall be isolated from the main board. Software multiplexing of an AI and resistors may only be done in non-critical applications and only with prior approval of Architect/Engineer
 d. Universal Inputs (UI-AI or DI): To serve as either AI or DI as specified above.
 e. Electronic Analog Outputs (AO) as required by application: voltage mode, 0-5VDC and 0-10VDC; current mode (4-20 mA). Provide zero and span calibration and circuit protection. Pulse Width Modulated (PWM) analog via a DO [and transducer] is acceptable only with State approval (Generally, PWM will not be allowed on loops with a short time constant such as discharge temperature loops, economizer loops, pressure control loops and the like. They are generally acceptable for standard room temperature control loops.). Where PWM is allowed, transducer/actuator shall be programmable for normally open, normally closed, or hold last position and shall allow adjustable timing. Each DO shall be discrete outputs from the BC's board (multiplexing to a separate manufacturers board is unacceptable). D/A converters shall have a minimum resolution of 8 bits.

B. BACnet AAC(s) and ASC(s) Requirements:
 1. The AAC(s) and ASC(s) shall support all BIBBs defined in the BACnet Building Controller (B-AAC and B-ASC) device profile as defined in the BACnet standard.
 2. AAC(s) and ASC(s) shall communicate over the BACnet Building Controller LAN or the ASC LAN or sub-LAN.
 3. Each BC shall be connected to the BACnet Building Controller LAN communicating to/from other BCs.

C. Terminal Box Controllers:
1. Terminal box controllers controlling damper positions to maintain a quantity of supply or exhaust air serving a space shall have an automatically initiated function that resets the volume regulator damper to the fully closed position on a scheduled basis. The controllers shall initially be set up to perform this function once every 24 hours. The purpose of this required function is to reset and synchronize the actual damper position with the calculated damper position and to assure the damper will completely close when commanded. The software shall select scheduled boxes randomly and shall not allow more than 5% of the total quantity of controllers in a building to perform this function at the same time. This reset shall be performed while the AHU is operating. The BAS shall send an alarm for any terminal box that has been reset and does not indicate 0 cfm flow with the damper commanded closed.

PART 3 - EXECUTION

3.1 INSPECTION:

A. Examine areas and conditions under which control systems are to be installed. Do not proceed with work until unsatisfactory conditions have been corrected in manner acceptable to Installer.

3.2 INSTALLATION OF CONTROL SYSTEMS:

A. General: Install systems and materials in accordance with manufacturer's instructions, specifications roughing-in drawings and details shown on drawings. Contractor shall install all controllers in accordance with manufacturer's installation procedures and practices.

3.3 HARDWARE APPLICATION REQUIREMENTS

A. General: The functional intent of this specification is to allow cost effective application of manufacturers standard products while maintain the integrity and reliability of the control functions. A BC as specified above is generally fully featured and customizable whereas the AAC/ASC refers to a more cost-effective unit designed for lower-end applications. Specific requirements indicated below are required for the respective application. Manufacturer may apply the most cost-effective unit that meets the requirement of that application.

B. Standalone Capability: Each Control Unit shall be capable of performing the required sequence of operation for the associated equipment. All physical point data and calculated values required to accomplish the sequence of operation shall originate within the associated CU with only the exceptions enumerated below. Refer to Item 2.01 above for physical limitations of standalone functionality. Listed below are functional point data and calculated values that shall be allowed to be obtained from or stored by other CUs or SDs via LAN.

C. Where associated control functions involve functions from different categories identified below, the requirements for the most restrictive category shall be met.

D. Application Category 0 (Distributed monitoring)

1. Applications in this category include the following:
a. Monitoring of variables that are not used in a control loop, sequence logic, or safety.
2. Points on BCs, AACs, and ASCs may be used in these applications as well as SDs and/or
general-purpose I/O modules.
3. Where these points are trended, contractor shall verify and document that the network
bandwidth is acceptable for such trends and is still capable of acceptable and timely
control function.

E. Application Category 1 (Application Specific Controller):

1. Applications in this category include the following:
 a. Fan Coil Units
 b. Airflow Control Boxes (VAV and Constant Volume Terminal Units)
 c. Misc. Heaters
 d. Unitary equipment <15 tons (Package Terminal AC Units, Package Terminal Heat
 Pumps, Split-System AC Units, Split-System Heat Pumps, Water-Source Heat
 Pumps)
 e. Induction Units
 f. Variable Speed Drive (VSD) controllers not requiring safety shutdowns of the
 controlled device.

2. ASCs may be used in these applications.
3. Standalone Capability: Provide capability to execute control functions for the application
 for a given setpoint or mode, which shall generally be occupied mode control. Only the
 following data (as applicable) may be acquired from other controllers via LANs. In the
 event of a loss of communications with any other controller, or any fault in any system
 hardware that interrupts the acquisition of any of these values, the ASC shall use the last
 value obtained before the fault occurred. If such fault has not been corrected after the
 specified default delay time, specified default value(s) shall then be substituted until such
 fault has been corrected.

<table>
<thead>
<tr>
<th>Physical/Virtual Point</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheduling Period</td>
<td>Normal</td>
</tr>
<tr>
<td>Morning Warm-Up</td>
<td>Off (cold discharge air)</td>
</tr>
<tr>
<td>Load Shed</td>
<td>Off (no shedding)</td>
</tr>
<tr>
<td>Summer/Winter</td>
<td>Winter</td>
</tr>
<tr>
<td>[Trend Data]</td>
<td>N/A</td>
</tr>
<tr>
<td>[Smoke Pressurization Mode]</td>
<td>Normal Mode</td>
</tr>
</tbody>
</table>

4. Mounting:
 a. ASCs that control equipment located above accessible ceilings shall be mounted on
 the equipment in an accessible enclosure that does not hinder maintenance of
 mechanical equipment and shall be rated for plenum use.
 b. ASCs that control equipment mounted in a mechanical room may either be mounted
 in, on the equipment, or on the wall of the mechanical room at an adjacent,
 accessible location.
 c. ASCs that control equipment located in occupied spaces or outside shall either be
 mounted within the equipment enclosure (responsibility for physical fit remains with
the contractor) or in a nearby mechanical/utility room in which case it shall be
enclosed in a NEMA 1, locking enclosure.

d. Section 23 09 53 contractor may furnish ASCs to the terminal unit manufacturer for
factory mounting.

5. Programmability: Operator shall be able to modify all setpoints (temperature and airflow),
scheduling parameters associated with the unit, tuning and set up parameters, interstage
timing parameters, and mode settings. Application-specific block control algorithms may
be used to meet the sequence of operations. The ability to customize the control algorithm
is not required unless specifically indicated otherwise.

6. LAN Restrictions: Limit the number of nodes on the network to the maximum
recommended by the manufacturer.

F. Application Category 2 (General Purpose Terminal Controller)

1. Applications in this category include the following:

a. Unitary Equipment >= 15 tons (Air Conditioners, Heat Pumps, Packaged
 Heating/Cooling Units, and the like)<

b. Small, Constant Volume Single Zone Air Handling Units

c. Constant Volume Pump Start/Stop

d. Misc. Equipment (Exhaust Fan) Start/Stop

e. Misc. Monitoring (not directly associated with a control sequence and where
trending is not critical)

f. Steam Converter Control

2. BCs may be used in these applications.

3. ASC’s may be used in these applications provided the ASC meets all requirements
specified below. This category requires a general-purpose ASC to which application-
specific control algorithms can be attached.

4. Standalone Capability: Only the following data (as applicable) may be acquired from other
ASCs via LANs. In the event of a loss of communications with any other ASCs, or any
fault in any system hardware that interrupts the acquisition of any of these values, the
AAC/ASC shall use the last value obtained before the fault occurred. If such fault has not
been corrected after the specified default delay time, specified default value(s) shall
then be substituted until such fault has been corrected.

<table>
<thead>
<tr>
<th>Physical/Virtual Point</th>
<th>Default Delay Time</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outside Air Temperature</td>
<td>3 minutes</td>
<td>80°F</td>
</tr>
<tr>
<td>Outside Air Humidity</td>
<td>3 minutes</td>
<td>60%RH</td>
</tr>
<tr>
<td>Outside Air Enthalpy</td>
<td>3 minutes</td>
<td>30 Btu/lb.</td>
</tr>
<tr>
<td>Trend Data</td>
<td>3 minutes</td>
<td>N/A</td>
</tr>
<tr>
<td>Cooling/Heating Requests</td>
<td>3 minutes</td>
<td>None</td>
</tr>
<tr>
<td>Smoke Pressurization Mode</td>
<td>3 minutes</td>
<td>Normal Mode</td>
</tr>
<tr>
<td>Smoke Exhaust Command</td>
<td>3 minutes</td>
<td>Normal Mode</td>
</tr>
</tbody>
</table>
5. Mounting:
 a. ASCs that control equipment located above accessible ceilings shall be mounted on the equipment so as not to hinder mechanical maintenance and shall be rated for plenum use.
 b. ASCs that control equipment located in occupied spaces or outside shall either be mounted within the equipment enclosure (responsibility for physical fit remains with the contractor) or in a nearby mechanical/utility room in which case it shall be enclosed in a NEMA 1, locking enclosure.

6. Programmability: Operator shall be able to modify all setpoints (temperature and airflow), scheduling parameters associated with the unit, tuning and set up parameters, interstage timing parameters, and mode settings. Operator shall be able to address and configure spare inputs for monitoring. [Operator shall be able to address and configure spare outputs for simple single loop control actions or event initiated actions.] Application-specific block control algorithms shall used to meet the sequence of operations. The ability to customize the control algorithm is not required unless specifically indicated otherwise.

7. LAN Restrictions: Limit the number of nodes servicing any one of these applications on the AAC/ASC LAN to 32.

3.4 CONTROL UNIT REQUIREMENTS

A. Refer to Section 23 09 50 for requirements pertaining to control unit quantity and location.

END OF SECTION
SECTION 23 09 54

BAS COMMUNICATION DEVICES

PART 1 - GENERAL

1.1 SECTION INCLUDES

A. Network Integration Devices

1.2 RELATED DOCUMENTS:

A. Section 23 09 50 - Building Automation System (BAS) General
B. Section 23 09 51 - BAS Basic Materials, Interface Devices, and Sensors
C. Section 23 09 53 - BAS Field Panels
D. Section 23 09 55 - BAS Software
E. Section 23 09 58 - Sequences of Operation
F. Section 23 09 59 - BAS Commissioning

1.3 DESCRIPTION OF WORK

A. Contractor shall provide all interface devices and software to provide an integrated system connecting BCs, AACs, ASCs and Gateways to the State network.

PART 2 - PRODUCTS

2.1 NETWORK CONNECTION

B. The following BIBBs must be supported on the Local Supervisory LAN using Ethernet either directly or through a gateway:

1. BACnet Data Sharing Objects (DS-):
 a. Read Property (RP-A) Initiate
 b. Read Property (RP-B) Execute
 c. Read Property Multiple (RPM-A) Initiate
 d. Read Property Multiple (RPM-B) Execute
 e. Write Property (WP-A) Initiate
2.2 BACNET GATEWAYS

A. Gateways shall be provided to link non-BACnet control products to the BACnet inter-network. All of the functionality described in this section is to be provided by using the BACnet capabilities. Each Gateway shall have the ability to expand the number of BACnet objects of each type supported by 20% to accommodate future system changes.

B. Each Gateway shall provide values for all points on the non-BACnet side of the Gateway to BACnet devices as if the values were originating from BACnet objects. The Gateway shall also provide a way for BACnet devices to modify (write) all points specified by the AOC using standard BACnet services. All points are required to be writable for each site.

C. The Gateway shall implement BACnet schedule objects and permit both read and write access to the schedules from the BC.

D. Each Gateway shall provide a way to collect and archive or trend (time, value) data pairs.

E. Each Gateway and any devices that the Gateway represents which have time-of-day information shall respond to workstation requests to synchronize the date and time. Each Gateway and any devices that the Gateway represents shall support dynamic device binding and dynamic object binding.

F. All points in the system shall be made network visible through the use of standard BACnet objects or through proprietary BACnet extensions that the workstation also supports. All points shall be writable using standard BACnet services.

G. All devices have a Device Object instance number that is unique throughout the entire internetwork. All BACnet devices shall be configured with a Device Object instance number that is based on the format specified (shown in decimal notation). This includes all physical devices as well as any logical BACnet devices that are physically represented by Gateways.

H. All BACnet Interoperability Building Blocks (BIBBs) are required to be supported for each native BACnet device or Gateway. The Gateway shall support all BIBBs defined in the BACnet Gateway's device profile as defined in the BACnet standard.
2.3 CONTROLLER LOCAL AREA NETWORK INTERFACE DEVICES (LANID)

A. The LANID shall be a microprocessor-based communications device which acts as a gateway/router between the Primary Controlling LAN and the Secondary Controlling LAN. It provides an operator interface. These may be provided within a BC or as a separate device.

B. The LANID shall perform information translation between the Primary Controlling LAN and the Secondary Controlling LAN, supervise communications on a polling Secondary Controlling LAN, and be applicable to systems in which the same functionality is not provided in the BC. In systems where the LANID is a separate device, it shall contain its own microprocessor, RAM, battery, real-time clock, communication ports, and power supply as specified for a BC in Section 23 09 53. Each LANID shall be mounted in a lockable enclosure.

C. Each LANID shall support interrogation, full control, and all utilities associated with all BCs on the Primary Controlling LAN, all AACs and ASCs connected to all Secondary Controlling LANs under the Primary Controlling LAN, and all points connected to those PCUs and SCUs.

D. Upon loss of power to a LANID, the battery shall provide for minimum 100-hour backup of all programs and data in RAM. The battery shall be sealed and self-charging.

E. The LANID shall be transparent to control functions and shall not be required to control information routing on the Primary Controlling LAN,Controlling LAN,Controlling LAN,Controlling LAN

F. All BACnet Interoperability Building Blocks (BIBBs) are required to be supported for each native BACnet device or Gateway. The Gateway shall support all BIBBs defined in the BACnet Gateway's device profile as defined in the BACnet standard.

2.4 LOCAL SUPERVISORY LAN GATEWAYS/ROUTERS

A. The gateway/router shall be a microprocessor-based communications device that acts as a gateway/router between the Supervisory LAN CSSs or OWS and the Controlling LAN.

B. The gateway/router shall perform information translation between the Controlling LAN and the Local Supervisory LAN, and shall use BACnet over IP. When BACnet is used, refer to the requirements of the BACnet Gateways specified herein.

C. The gateway/router shall contain its own microprocessor, RAM, battery, real-time clock, communication ports, and power supply as specified for a BC in Section 23 09 53. Each gateway/router shall be mounted in a lockable enclosure.

D. The gateway/router shall allow centralized overall system supervision, operator interface, management report generation, alarm annunciation, acquisition of trend data, and communication with control units. It shall allow system operators to perform the following functions from the CSS, and OWSs:

1. Configure systems.
2. Monitor and supervise control of all points.
3. Change control setpoints.
4. Override input values.
5. Override output values
6. Enter programmed start/stop time schedules.
7. View and acknowledge alarms and messages.
8. Receive, store and display trend logs and management reports.
9. Upload/Download programs, databases, etc. as specified.

E. Upon loss of power to the gateway/router, the battery shall provide for minimum 100 hour backup of all programs and data in RAM. The battery shall be sealed and self-charging.

F. The gateway/router shall be transparent to control functions and shall not be required to control information routing on the Controlling LAN

PART 3 - EXECUTION

3.1 INSPECTION:
A. Examine areas and conditions under which control systems are to be installed. Do not proceed with work until unsatisfactory conditions have been corrected in manner acceptable to Installer.

3.2 INSTALLATION OF CONTROL SYSTEMS:
A. General: Install systems and materials in accordance with manufacturer's instructions, roughing-in drawings and details shown on drawings.
B. Contractor shall provide all interface devices and software to provide an integrated system.
C. Contractor shall closely coordinate with the State, or designated representative, to establish IP addresses and communications to assure proper operation of the building control system on the State (DE) network.

END OF SECTION
PART 1 - GENERAL

1.1 SECTION INCLUDES

A. System Software
B. Programming Description
C. Control Algorithms
D. Energy Management Applications
E. Password Protection
F. Alarm Reporting
G. Trending
H. Data Acquisition and Storage
I. Point Structuring
J. Dynamic Color Graphics

1.2 RELATED DOCUMENTS:

A. Section 23 09 50 - Building Automation System (BAS) General
B. Section 23 09 51 - BAS Basic Materials, Interface Devices, and Sensors
C. Section 23 09 53 - BAS Field Panels
D. Section 23 09 54 - BAS Communications Devices
E. Section 23 09 58 - Sequences of Operation
F. Section 23 09 59 - BAS Commissioning

1.3 DESCRIPTION OF WORK:

A. Fully configure systems and furnish and install all software, programming and dynamic color graphics for a complete and fully functioning system as specified.
B. Refer to Section 23 09 50 - Building Automation System (BAS) for general requirements

C. Refer to 23 09 58 - Sequence of Operation for specific sequences of operation for controlled equipment.

1.4 LICENSING

A. Include licensing for all software packages at all required workstations.

B. All operator interface, programming environment, networking, database management and any other software used by the Contractor to install the system or needed to operate the system to its full capabilities shall be licensed and provided to the State.

C. All BAS software should be available on CSS(s) provided, and on all Portable Operator Terminals. All software keys to provide all rights shall be installed on CSS. At least 2 sets of media (CD or DVD) shall be provided with backup software and configurations for all software provided, so that the State may reinstall any software as necessary.

D. Provide licensing and original software media for each device. Include all BAS software licenses and all required third party software licenses.

E. Upgrade all software packages to the release (version) in effect at the end of the Warranty Period.

F. Refer to Section 23 09 50 - Building Automation System (BAS) General for further requirements.

PART 2 - PRODUCTS

2.1 SYSTEM SOFTWARE-GENERAL

A. Functionality and Completeness: The Contractor shall furnish and install all software and programming necessary to provide a complete and functioning system as specified. The Contractor shall include all software and programming not specifically itemized in these Specifications, which is necessary to implement, maintain, operate, and diagnose the system in compliance with these Specifications.

B. Configuration: The software shall support the system as a distributed processing network configuration.

2.2 CONTROLLER SOFTWARE

A. BC Software Residency: Each BC as defined below shall be capable of controlling and monitoring of all points physically connected to it. All software including the following shall reside and execute at the BC:

1. Real-Time Operating System software
2. Real-Time Clock/Calendar and network time synchronization
3. BC diagnostic software
4. LAN Communication software/firmware
5. Direct Digital Control software
6. Alarm Processing and Buffering software
7. Energy Management software
8. Data Trending, Reporting, and Buffering software
9. I/O (physical and virtual) database
10. Remote Communications software

B. AAC/ASC Software Residency: Each AAC/ASC as defined below shall be capable of controlling and monitoring of all points physically connected to it. As a minimum, software including the following shall reside and execute at the AAC/ASC. Other software to support other required functions of the AAC/ASC may reside at the BC or LAN interface device (specified in Section 23 09 54) with the restrictions/exceptions per application provided in Section 23 09 53:

1. Real-Time Operating System software
2. AAC/ASC diagnostic software
3. LAN Communications software
4. Control software applicable to the unit it serves that will support a single mode of operation
5. I/O (physical and virtual) database to support one mode of operation

C. Standalone Capability: BC shall continue to perform all functions independent of a failure in other BC/AAC/ASC, CSS, or other communication links to other BCs/AACs/ASCs or CSSs. Trends and runtime totalization shall be retained in memory. Runtime totalization shall be available on all digital input points that monitor electric motor status. Refer also to Section 23 09 53 for other aspects of standalone functionality.

D. Operating System: Controllers shall include a real-time operating system resident in ROM. This software shall execute independently from any other devices in the system. It shall support all specified functions. It shall provide a command prioritization scheme to allow functional override of control functions. Refer also to Section 23 09 53 for other aspects of the controller's operating system.

E. Network Communications: Each controller shall include software/firmware that supports the networking of CUs on a common communications trunk that forms the respective LAN. Network support shall include the following:

1. Controller communication software shall include error detection, correction, and re-transmission to ensure data integrity.
2. Operator/System communication software shall facilitate communications between other BCs, all subordinate AACS/ASCs, Gateways and LAN Interface Devices or CSS. Software shall allow point interrogation, adjustment, addition/deletion, and programming while the controller is online and functioning without disruption to unaffected points. The software architecture shall allow networking controllers to share selected physical and virtual point information throughout the entire system.
F. Diagnostic Software: Controller software shall include diagnostic software that checks memory and communications and reports any malfunctions.

G. Alarm/Messaging Software: Controller software shall support alarm/message processing and buffering software as more fully specified below.

H. Application Programs: CUs shall support and execute application programs as more fully specified below:

1. All Direct Digital Control software, Energy Management Control software, and functional block application programming software templates shall be provided in a 'ready-to-use' state, and shall not require (but shall allow) user programming.

I. Security: Controller software shall support multiple level privileges access restriction as more fully specified below.

J. Direct Digital Control: Controller shall support application of Direct Digital Control Logic. All logic modules shall be provided pre-programmed with written documentation to support their application. Provide the following logic modules as a minimum:

1. Proportional-Integral-Derivative (PID) control with analog, PWM and floating output
2. Two Position control (Hi or Low crossing with deadband)
3. Single-Pole Double-Throw relay
4. Delay Timer (delay-on-make, delay-on-break, and interval)
5. Hi/Low Selection
6. Reset or Scaling Module
7. Logical Operators (AND, OR, NOT, XOR)

K. Psychrometric Parameters: Controller software shall provide preprogrammed functions to calculated and present psychrometric parameters (given temperature and relative humidity) including the following as a minimum: Enthalpy, Wet Bulb Temperature.

L. Updating/Storing Application Data: Site-specific programming residing in volatile memory shall be uploadable/downloadable from an OWS or CSS using BACnet services connected locally or through the network. Initiation of an upload or download shall include all of the following methods: Manual, Scheduled, and Automatic upon detection of a loss or change.

M. Restart: System software shall provide for orderly shutdown upon loss of power and automatic restart upon power restoration. Volatile memory shall be retained; outputs shall go to programmed fail-safe (open, closed, or last) position. Equipment restart shall include a user definable time delay on each piece of equipment to stagger the restart. Loss of power shall be alarmed at operator interface indicating date and time.

N. Time Synchronization: Automatic time synchronization shall be provided using BACnet services. Operators shall be able to set the time and date in any device on the network that supports time-of-day functionality. The operator shall be able to select to set the time and date for an individual device, devices on a single network, or all devices simultaneously.

O. Misc. Calculations: System software shall automate calculation of psychrometric functions, calendar functions, kWh/kW, and flow determination and totalization from pulsed or analog
inputs, curve-fitting, look-up table, input/output scaling, time averaging of inputs and A/D conversion coefficients.

2.3 APPLICATION PROGRAMMING DESCRIPTION

A. The application software shall be user programmable.

B. This specification generally requires a programming convention that is logical, easy to learn, use, and diagnose. General approaches to application programming shall be provided by one, or a combination, of the following conventions:

1. Point Definition: Provide templates customized for point type, to support input of individual point information. Use standard BACnet Objects as applicable.

2. Graphical Block Programming: Manipulation of graphic icon 'blocks', each of which represents a subroutine, in a functional/logical manner forming a control logic diagram. Blocks shall allow entry of adjustable settings and parameters via pop-up windows. Provide a utility that shall allow the graphic logic diagrams to be directly compiled into application programs. Logic diagrams shall be viewable either off-line, or on-line with real-time block output values.

3. Functional Application Programming: Pre-programmed application specific programs that allow/require limited customization via 'fill-in-the-blanks' edit fields. Typical values would be setpoints gains, associated point names, alarm limits, etc.

C. Provide a means for testing and/or debugging the control programs both off-line and on-line.

2.4 ENERGY MANAGEMENT APPLICATIONS

A. System shall have the ability to perform all of the following energy management routines via preprogrammed function blocks or template programs. As a minimum provide the following whether or not required in the software:

1. Time-of-Day Scheduling
2. Calendar-Based Scheduling
3. Holiday Scheduling
4. Temporary Schedule Overrides
5. Optimal Start / Optimal Stop based on space temperature offset, outdoor air temperature, and building heating and cooling capacitance factors as a minimum
6. Night Setback and Morning Recovery Control, with ventilation only during occupancy
7. Economizer Control (enthalpy or dry-bulb)
8. Peak Demand Limiting / Load Shedding
9. Dead Band Control

B. All programs shall be executed automatically without the need for operator intervention, and shall be flexible enough to allow operator customization. Programs shall be applied to building equipment as described in Section 23 09 58 - Sequence of Operation.
2.5 ACCESS PRIVILEGES

A. Multiple-level access privileges shall be provided. A minimum of four (4) levels of access shall be supported.

B. The highest level of access, Administrator Level access, shall allow the BAS administrator to perform application, database, and user management functions.

C. Each login credentials shall be assigned to a pre-defined level of access. Alternately, a comprehensive list of accessibility/functionality items shall be provided, to be enabled or disabled for each user according to the level of access granted.

D. Operators shall be able to perform only those commands available for the access level assigned to their login credentials.

E. Login credentials are stored in the BC's local database. A minimum of 20 user names shall be supported and programmed per the State's direction.

F. Login credentials can be looked up using the Lightweight Directory Access (LDAP) through the BAS server.

G. Strong password shall be used on all login credentials.

H. User-definable, automatic log-off timers from 1 to 60 minutes shall be provided to prevent users from inadvertently leaving interface device unattended.

I. At system handover, all default and Contractor created login credentials for the system shall be provided to the State and all temporary login credentials shall be removed.

2.6 ALARM AND EVENT MANAGEMENT REPORTING

A. Alarm management shall be provided to monitor, buffer, and direct alarms and messages to operator devices and memory files. Each BC shall perform distributed, independent alarm analysis and filtering to minimize operator interruptions due to non-critical alarms, minimize network traffic, and prevent alarms from being lost. At no time shall a BCs ability to report alarms be affected by either operator activity at an OWS or local handheld device, or by communications with other panels on the network.

1. Alarm Descriptor: Each alarm or point change shall include that point's English language description, and the time and date of occurrence. In addition to the alarm's descriptor and the time and date, the user shall be able to print, display and store an alarm message to more fully describe the alarm condition or direct operator response.

2. Alarm Prioritization: The software shall allow users to define the handling and routing of each alarm by their assignment to discrete priority levels. A minimum of five (5) priority levels shall be provided - Level 1 Life Safety (i.e. smoke detector), Level 2 Critical (i.e. controller failure), Level 3 Abnormal (i.e. out-of-range temperature), Level 4 Energy Waste (i.e. fighting valves), Level 5 Maintenance Message (i.e. runtime monitor, filter status). For each priority level, users shall have the ability to enable or disable an audible tone whenever an alarm is reported and whenever an alarm returns to normal condition. Users shall have the ability to manually inhibit alarm reporting for each individual alarm.
and for each priority level. Contractor shall coordinate with the State on establishing alarm priority definitions.

3. Alarm Report Routing: Each alarm priority level shall be associated with a unique user-defined list of operator devices including any combination of local or remote workstations, printers and workstation disk files. All alarms associated with a given priority level shall be routed to all operator devices on the user-defined list and/or email to designated State email address (mailbox resource) associated with that priority level. For each priority level, alarms shall be automatically routed to a default operator device in the event that alarms are unable to be routed to any operator device assigned to the priority level.

4. Auto-Dial Alarm Routing: For alarm priority levels that include a mobile device as one of the listed reporting destinations, the BC shall initiate a call to report the alarm, and shall terminate the call after alarm reporting is complete. System shall be capable of multiple retries and buffer alarms until a connection is made. If no connection is made, system shall attempt connection to an alternate mobile device. System shall also be able to dial multiple mobile devices upon alarm activation.

5. Alarm Acknowledgment: For alarm priority levels that are directed to a OWS, an indication of alarm receipt shall be displayed immediately regardless of the application is in use at the OWS, and shall remain on the screen until acknowledged by a user having a privilege that allows alarm acknowledgment. Upon acknowledgment, the complete alarm message string (including date, time, and user name of acknowledging operator) shall be stored in a selected file on the BC or CSS.

B. It shall be possible for any operator to receive a summary of all alarms regardless of acknowledgement status; for which a particular recipient is enrolled for notification; based on current event state; based on the particular BACnet event algorithm (e.g., change of value, change of state, out of range, and so on); alarm priority; and notification class.

C. BACnet Alarming Services: All alarms and events shall be implemented using standard BACnet event detection and notification mechanisms. The workstation shall receive BACnet alarm and event notifications from any gateway or BACnet controller in the system and display them to an operator. Either intrinsic reporting or algorithmic change reporting may be used but the intrinsic reporting method is preferred. The workstation shall also log alarms and events, provide a way for an operator with sufficient privilege to acknowledge alarms, and log acknowledgements of alarms. It shall be possible for an operator to receive, at any time, a summary of all alarms that are currently in effect at any site whether or not they have been acknowledged. Operators shall also be able to view and change alarm limits for any alarm at the appropriate access level.

D. Alarm Historical Database: The database shall store all alarms and events object occurrences in an ODBC or an OLE database-compliant relational database. Provide a commercially available ODBC driver or OLE database data provider, which would allow applications to access the data using standard Microsoft Windows data access services.

2.7 TRENDING

A. The software shall display historical data in both a tabular and graphical format. The requirements of this trending shall include the following:

1. Provide trends for all physical points, virtual points and calculated variables.
2. BACnet Trend Objects are preferred but where not possible trend data shall be stored in relational database format as specified in herein under Data Acquisition and Storage.

3. In the graphical format, the trend shall plot at least 4 different values for a given time period superimposed on the same graph. The 4 values shall be distinguishable by using unique colors. In printed form the 4 lines shall be distinguishable by different line symbology. Displayed trend graphs shall indicate the engineering units for each trended value.

4. The sample rate and data selection shall be selectable by the operator.

5. The trended value range shall be selectable by the operator.

6. Where trended values on one table/graph are COV, software shall automatically fill the trend samples between COV entries.

B. Control Loop Performance Trends: Controllers incorporating PID control loops shall also provide high resolution sampling in less than six second increments for verification of control loop performance.

C. Data Buffering and Archiving: Trend data shall be buffered at the BC, and uploaded to hard disk storage when archival is desired. All archived trends shall be transmitted to the CSS. Uploads shall occur based upon a user-defined interval, manual command, or automatically when the trend buffers become full.

D. Time Synchronization: Provide a time master that is installed and configured to synchronize the clocks of all BACnet devices supporting time synchronization. Synchronization shall be done using Coordinated Universal Time (UTC). All trend sample times shall be able to be synchronized. The frequency of time synchronization message transmission shall be selectable by the operator.

2.8 DYNAMIC PLOTTING

A. Provide a utility to dynamically plot in real-time at least four (4) values on a given 2-dimensional dynamic plot/graph with at least two Y-axes. At least five (5) dynamic plots shall be allowed simultaneously.

2.9 DATA ACQUISITION AND STORAGE

A. All points included in the typical equipment point list must be represented in a common, open or accessible format. All points should be provided as BACnet standard analog, binary, schedule, or trend objects when possible. Naming conventions for these points and network addressing are discussed in the 'Point Naming Conventions' paragraph below.

B. Non-BACnet data from the BAS shall be stored in relational database format. The format and the naming convention used for storing the database files shall remain consistent across the database and across time. The relational structure shall allow for storage of any additional data points, which are added to the BAS in future. The metadata/schema or formal descriptions of the tables, columns, domains, and constraints shall be provided for each database.

C. The database shall allow applications to access the data while the database is running. The database shall not require shutting down in order to provide read-write access to the data. Data
shall be able to be read from the database without interrupting the continuous storage of trend data being carried by the BAS.

D. The database shall be ODBC or OLE database compliant. Provide a commercially-available ODBC driver or OLE database data provider, which would allow applications to access the data using standard Microsoft Windows data access services.

2.10 TOTALIZATION

A. The software shall support totalizing analog, digital, and pulsed inputs and be capable of accumulating, storing, and converting these totals to engineering units used in the documents. These values shall generally be accessible to the Operator Interfaces to support management-reporting functions.

B. Totalization of electricity use/demand shall allow application of totals to different rate periods, which shall be user definable.

C. When specified to provide electrical or utility Use/Demand, the Contractor shall obtain from the local utility all information required to obtain meter data, including k factors, conversion constants, and the like.

2.11 EQUIPMENT SCHEDULING

A. Provide a graphic utility for user-friendly operator interface to adjust equipment-operating schedules.

B. All schedules shall be implemented using BACnet objects and messages. All building systems with date and time scheduling requirements shall have schedules represented by the BACnet Schedule object. All operators shall be able to view the entries for a schedule. Operators with sufficient privilege shall be able to modify schedule entries from any BACnet workstation.

C. Scheduling feature shall include multiple seven-day master schedules, plus holiday schedule, each with start time and stop time. Master schedules shall be individually editable for each day and holiday.

D. Scheduling feature shall allow for each individual equipment unit to be assigned to one of the master schedules.

E. Timed override feature shall allow an operator to temporarily change the state of scheduled equipment. An override command shall be selectable to apply to an individual unit, all units assigned to a given master schedule, or to all units in a building. Timed override shall terminate at the end of an operator selectable time, or at the end of the scheduled occupied/unoccupied period, whichever comes first. A privilege level that does not allow assignment of master schedules shall allow a timed override feature.

F. A yearly calendar feature shall allow assignment of holidays, and automatic reset of system real time clocks for transitions between daylight savings time and standard time.
2.12 POINT STRUCTURING AND NAMING

A. General: The intent of this section is to require a consistent means of naming points across all State facilities. Contractor shall configure the systems from the perspective of the Enterprise, not solely the local project. The following requirement establishes a standard for naming points and addressing Buildings, Networks, Devices, Instances, and the like. The convention is tailored towards the BACnet-based format and as such, the interface shall always use this naming convention. Native BACnet systems shall also use this naming convention. For non-BACnet systems, the naming convention shall be implemented as much as practical, and any deviations from this naming convention shall be approved by the State. The Contractor shall contact the State to determine the Building number and abbreviation.

B. Point Summary Table

1. The term 'Point' is a generic description for the class of object represented by analog and binary inputs, outputs, and values in accordance with ASHARE 135 standard.
2. With each schematic, Contractor shall provide a Point Summary Table listing:
 a. Building number and abbreviation
 b. System type
 c. Equipment type
 d. Point suffix
 e. Full point name (see Point Naming Convention paragraph)
 f. Point description
 g. Ethernet backbone network number
 h. Network number
 i. Device ID
 j. Device MAC address
 k. Object ID (object type, instance number)
 l. Engineering units.

3. Additional fields for non-BACnet systems shall be appended to each row. Point Summary Table shall be provided in both hard copy and in electronic format (ODBC-compliant).
4. Point Summary Table shall also illustrate Network Variables/BACnet Data Links Bindings.
5. The Contractor shall coordinate with the State's representative and compile and submit a proposed Point Summary Table for review prior to any object programming or project startup.
6. The Point Summary Table shall be kept current throughout the duration of the project by the Contractor as the Master List of all points for the project. Project closeout documents shall include an up-to-date accurate Point Summary Table. The Contractor shall deliver to the State the final Point Summary Table prior to Substantial Completion of the system. The Point Summary Table shall be used as a reference and guide during the commissioning process.
7. The Point Summary Table shall contain all data fields on a single row per point. The Point Summary Table is to have a single master source for all point information in the building that is easily sorted and kept up-to-date. Although a relational database of Device ID-to-point information would be more efficient, the single line format is required as a single master table that will reflect all point information for the building. The point description shall be an easily understandable English-language description of the point.
Point Summary Table Example

Row Headers and Examples
(Transpose for a single point per row format)

<table>
<thead>
<tr>
<th>Campus</th>
<th>RK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Number</td>
<td>006</td>
</tr>
<tr>
<td>Building Association</td>
<td>ZZ = no association (default to ZZ)</td>
</tr>
<tr>
<td>System Type</td>
<td>Cooling</td>
</tr>
<tr>
<td>Equipment Type</td>
<td>Chiller</td>
</tr>
<tr>
<td>Point Suffix</td>
<td>CHLR1KW</td>
</tr>
<tr>
<td>*Point Name (Object Name)</td>
<td>CA0006ZZ.COOLING.CHILLER.CHLR1KW</td>
</tr>
<tr>
<td>*Point Description (Object Description)</td>
<td>Chiller 1 kW</td>
</tr>
<tr>
<td>Ethernet Network Number</td>
<td>600</td>
</tr>
<tr>
<td>Network Number</td>
<td>610</td>
</tr>
<tr>
<td>Device ID</td>
<td>1024006</td>
</tr>
<tr>
<td>Device MAC address</td>
<td>24</td>
</tr>
<tr>
<td>Object Type</td>
<td>AI</td>
</tr>
<tr>
<td>Instance Number</td>
<td>4</td>
</tr>
<tr>
<td>Engineering Units</td>
<td>KW</td>
</tr>
<tr>
<td>Network Variable?</td>
<td>True</td>
</tr>
<tr>
<td>Server Device</td>
<td>1024006</td>
</tr>
<tr>
<td>Client Devices</td>
<td>1028006</td>
</tr>
<tr>
<td>Included with Functional</td>
<td></td>
</tr>
</tbody>
</table>

*Represents information that shall reside in the relevant BACnet property for the object

C. Point Naming Convention

1. All point names shall adhere to the format as established below. Said objects shall include all physical I/O points, calculated points used for standard reports, and all application program parameters. For each BAS object, a specific and unique BACnet object name shall be required.

2. For each point, four (4) distinct descriptors shall be linked to form each unique object name: Building, System, Equipment, and Point. Use alphanumeric characters. Space and special characters are not allowed. Each of the four descriptors must be bound by a period to form the entire object name. Reference the paragraphs below for an example of these descriptors.

3. The State shall designate the Building descriptor. The System descriptor shall further define the object in terms of air handling, cooling, heating, or other system. The Equipment descriptor shall define the equipment category; e.g., Chiller, Air Handler, or other equipment. The Point descriptor shall define the hardware or software type or function associated with the equipment; e.g., supply temperature, water pressure, alarm, mixed air temperature setpoint, etc. and shall contain any numbering conventions.
for multiples of equipment; e.g., CHLR1KW, CHLR2KW, BLR2AL (Boiler 2 Alarm), HWP1ST (Hot Water Pump 1 Status).

4. A consistent object (point) naming convention shall be utilized to facilitate familiarity and operational ease across the BAS network. Inter-facility consistency shall be maintained to ensure transparent operability to the greatest degree possible. The table below details the object naming convention and general format of the descriptor string.

BACnet Object Name Requirements

<table>
<thead>
<tr>
<th>Descriptors</th>
<th>RK0006Z AZ0134ZZ</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campus, Building Number & Building Association</td>
<td>AIRHANDLING - EXHAUST - HEATING - COOLING - UTILITY - ENDUSE - MISC</td>
<td>Boilers and ancillary equipment</td>
</tr>
<tr>
<td>System</td>
<td></td>
<td>Chillers and ancillary equipment Main electrical and gas meters Specific building loads by type</td>
</tr>
<tr>
<td>Equipment</td>
<td>BOILERS - CHILLERS - FACILITY - TOWERS - WEATHER</td>
<td>Non-specific boiler system points - Non-specific chiller system points</td>
</tr>
<tr>
<td>Point Suffix</td>
<td>See Input/Output point for summary table for conventions</td>
<td></td>
</tr>
</tbody>
</table>

5. Examples: Within each object name, the descriptors shall be bound by a period. Within each descriptor, words shall not be separated by dashes, spaces, or other separators as follows:

 a. RK0006ZZ.COOLING.CHILLERS.CHWP1ST
 b. RK0006ZZ.HEATING.BOILERS.BLR1CFH

D. Device Addressing Convention:

1. BACnet network numbers and Device Object IDs shall be unique throughout the network.
2. All assignment of network numbers and Device Object IDs shall be coordinated with the State.
3. Each Network number shall be unique throughout all facilities and shall be assigned in the following manner unless specified otherwise:
 a. BBBFF, where: BBB = 1-655 assigned to each building, FF = 00 for building backbone network, 1-35 indicating floors or separate systems in the building.
4. Each Device Object Identifier property shall be unique throughout the system and shall be assigned in the following manner unless specified otherwise:
 a. XXFFBBB, where: XX = number 0 to 40, FF = 00 for building backbone network, 1-35 indicating floors or separate systems in the building. BBB = 1-655 assigned to each building.
5. The BAS Contractor shall coordinate with designated State representative to ensure that no duplicate Device Object IDs occur.
6. Alternative Device ID schemes or cross project Device ID duplication if allowed shall be approved before project commencement by the State.

2.13 OPERATOR INTERFACE GRAPHIC SOFTWARE

A. Graphic software shall facilitate user-friendly interface to all aspects of the System Software specified above. The intent of this specification is to require a graphic package that provides for intuitive operation of the systems without extensive training and experience. It shall facilitate logical and simple system interrogation, modification, configuration, and diagnosis.

B. Graphic software shall support multiple simultaneous screens to be displayed and resizable in a web-based environment. All functions excepting text entry functions shall be executable with a mouse.

C. Graphic software shall display current operating mode (i.e. warm-up, dehumidification, et al) for equipment with multiple modes of operation.

D. Graphic software shall provide for multitasking such that other application can be used while the operator is accessing the BAS. Software shall provide the ability to alarm graphically even when operator is in another software package.

E. The software shall be compatible to the current and current minus one versions of Microsoft Windows operating system. The software shall allow for the State's creation of user-defined, color graphic displays of geographic maps, building plans, floor plans, and mechanical and electrical system schematics. These graphics shall be capable of displaying all point information from the database including any attributes associated with each point (i.e., engineering units, etc.). In addition, operators shall be able to command equipment or change setpoints from a graphic through the use of a pointing device; e.g. mouse and touch screen.

F. Screen Penetration: The operator interface shall allow users to access the various system graphic screens via a graphical penetration scheme by using the pointing device to select from menus or 'button' icons. Each graphic screen shall be capable of having a unique list of other graphic screens that are directly linked through the selection of a menu item or button icon.

G. Dynamic Data Displays: Dynamic physical point values shall automatically updated at a minimum frequency of 6 updates per minute without operator intervention. Point value fields shall be displayed with a color code depicting normal, abnormal, override and alarm conditions.

H. Point Override Feature: Each displayed point shall be individually enabled/disabled to allow pointing device driven override of digital points or changing of analog points. Such overrides or changes shall occur in the control unit, not just in the BAS software. The graphic point override feature shall be subject to privilege level protection. Points that are overridden shall be reported as an alarm, and shall be displayed in a coded color. The alarm message shall include the operator's login name. A list of points that are currently in an override state shall be available through menu selection and include the time/date of the override along with the operator's login name that initiated that override.
I. Dynamic Symbols: Provide a selection of standard symbols that change in appearance based on the value of an associated point.

1. Analog symbol: Provide a symbol that represents the value of an analog point as the length of a line or linear bar.
2. Digital symbol: Provide symbols such as switches, pilot lights, rotating fan wheels, etc. to represent the value of digital input and output points.
3. Point Status Color: Graphic presentations shall indicate different colors for different point statuses. (For instance, green = normal, red = alarm, gray (or ‘???) for non-response.

J. Graphics Development Package: Graphic development and generation software shall be provided to allow the user to add, modify, or delete system graphic displays.

1. The Contractor shall provide libraries of pre-engineered screens and symbols depicting standard air handling unit components (e.g. fans, cooling coils, filters, dampers, etc.), mechanical system components (e.g., pumps, chillers, cooling towers, boilers, etc.), complete mechanical systems (e.g. constant volume-terminal reheat, VAV, etc.) and electrical symbols.
2. The Graphic Development Package shall use a pointing device to allow the user to perform the following:
 a. Define symbols
 b. Position items on graphic screens
 c. Attach physical or virtual points to a graphic
 d. Define background screens
 e. Define connecting lines and curves
 f. Locate, orient and size descriptive text
 g. Define and display colors for all elements
 h. Establish correlation between symbols or text and associated system points or other displays
 i. Create hot spots or link triggers to other graphic displays or other functions in the software

K. Graphic images shall reside on the CSS.

L. The software shall be capable of initiating communication between the BC and the CSS:

1. Upon user command, to perform all specified functions.
2. In accordance with user-programmed time schedules to report alarms and upload trend and report data to the CSS.

M. The software shall automatically terminate the communication when all specified functions are completed.

PART 3 - EXECUTION

3.1 SYSTEM CONFIGURATION

A. Contractor shall thoroughly and completely configure BAS system software, supplemental software, network communications, BC and CSS, if necessary.
3.2 SITE-SPECIFIC APPLICATION PROGRAMMING

A. Provide all database creation and site-specific application control programming as required by these Specifications, national and local standards and for a fully functioning system. Contractor shall provide all initial site-specific application programming and thoroughly document programming. Generally meet the intent of the written sequences of operation. It is the Contractor's responsibility to request clarification on sequence issues that require such clarification.

B. All site-specific programming shall be fully documented and submitted for review and approval, both prior to downloading into the panel, at the completion of functional performance testing, and at the end of the warranty period.

C. All programming, graphics and data files must be maintained in a logical system of directories with self-explanatory file names. All files developed for the project will be the property of the State and shall remain on the BC and CSS at the completion of the project.

3.3 PRIVILEGE LEVELs SETUP

A. Set up the following privilege levels to include the specified capabilities:

1. Level 1: (State's BAS Administrator)
 a. Level 2 capabilities
 b. Configure system software
 c. Modify graphic software
 d. View, add, change and delete user login credentials and privilege levels
 e. All unrestricted system capabilities including all network management functions.

2. Level 1a (Contractor Technician)
 a. Level 2 capabilities
 b. Configure system software
 c. Modify graphic software

3. Level 2: (Maintenance Manager)
 a. Level 3 capabilities
 b. Modify control unit programs

4. Level 3: (Senior BAS Technician)
 a. Level 4 capabilities
 b. Override output points
 c. Change setpoints
 d. Change equipment schedules

5. Level 4: (Junior BAS Technician and Trainee)
 a. Level 5 capabilities
 b. Acknowledge alarms

Tetra Tech BAS SOFTWARE AND PROGRAMMING
200-35157-19001 23 09 55 - 15
c. Temporarily override equipment schedules

6. Level 5: (Read Only)
 a. Display all graphic data
 b. Trend point data

B. Contractor shall assist:

1. State's BAS Administrator with assigning user login credentials and privilege levels, configure system software and modify graphic software.
2. Maintenance Manger with modifying control unit programs.

3.4 POINT PARAMETERS

A. Provide the following minimum programming for each analog input:

1. Name
2. Address
3. Scanning frequency or COV threshold
4. Engineering units
5. Offset calibration and scaling factor for engineering units
6. High and low alarm values and alarm differentials for return to normal condition
7. High and low value reporting limits (reasonableness values), which shall prevent control logic from using shorted or open circuit values.
8. Default value to be used when the actual measured value is not reporting. This is required only for points that are transferred across the primary and/or secondary controlling networks and used in control programs residing in control units other than the one in which the point resides. Events causing the default value to be used shall include failure of the control unit in which the point resides, or failure of any network over which the point value is transferred.
9. Selectable averaging function that shall average the measured value over a user selected number of scans for reporting.

B. Provide the following minimum programming for each analog output:

1. Name
2. Address
3. Output updating frequency
4. Engineering units
5. Offset calibration and scaling factor for engineering units
6. Output Range
7. Default value to be used when the normal controlling value is not reporting.

C. Provide the following minimum programming for each digital input:

1. Name
2. Address
3. Engineering units (on/off, open/closed, freeze/normal, etc.)
4. Debounce time delay
5. Message and alarm reporting as specified
6. Reporting of each change of state, and memory storage of the time of the last change of state
7. Totalization of on-time (for all motorized equipment status points), and accumulated number of off-to-on transitions.

D. Provide the following minimum programming for each digital output:

1. Name
2. Address
3. Output updating frequency
4. Engineering units (on/off, open/closed, freeze/normal, etc.)
5. Direct or Reverse action selection
6. Minimum on-time
7. Minimum off-time
8. Status association with a DI and failure alarming (as applicable)
9. Reporting of each change of state, and memory storage of the time of the last change of state.
10. Totalization of on-time (for all motorized equipment status points), and accumulated number of off-to-on transitions.
11. Default value to be used when the normal controlling value is not reporting.

3.5 TRENDS

A. Contractor shall establish and store trend logs. Trend logs shall be prepared for each physical input and output point, and all dynamic virtual points such as setpoints subject to a reset schedule, intermediate setpoint values for cascaded control loops, and the like as directed by the State.

B. The State will analyze trend logs of the system operating parameters to evaluate normal system functionality. Contractor shall establish these trends and ensure they are being stored properly.

1. Data shall include a single row of field headings and the data thereafter shall be contiguous. Each record shall include a date and time field or single date stamp. Recorded parameters for a given piece of equipment or component shall be trended at the same intervals and be presented in a maximum of two separate 2-dimensional formats with time being the row heading and field name being the column heading.

C. Sample times indicated as COV (±) or change-of-value mean that the changed parameter only needs to be recorded after the value changes by the amount listed. When output to the trending file, the latest recorded value shall be listed with any given time increment record. The samples shall be filled with the latest values also if the points include different time intervals. If the BAS does not have the capability to record based on COV, the parameter shall be recorded based on the interval common to the unit.

D. Trending intervals or COV thresholds shall be dictated by the State upon system start-up.

E. The Contractor shall demonstrate functional trends as specified for a period of 30 days after successful system demonstration before Substantial Completion of the system.
3.6 TREND GRAPHS

A. Prepare controller and graphic software to display graphical format trends. Trended values and intervals shall be the same as those specified.

B. Lines shall be labeled and shall be distinguishable from each other by using either different line types, or different line colors.

C. Indicate engineering units of the y-axis values; e.g. degrees F., inches w.g., Btu/lb, percent open, etc.

D. The y-axis scale shall be chosen so that all trended values are in a readable range. Do not mix trended values on one graph if their unit ranges are incompatible.

E. Trend outside air temperature, humidity, and enthalpy during each period in which any other points are trended.

F. All points trended for one subsystem (e.g. air handling unit, chilled water system, etc.) shall be trended during the same trend period.

G. Each graph shall be clearly labeled with the subsystem title, date, and times.

3.7 ALARMS

A. Override Alarms: Any point that is overridden through the override feature of the graphic software shall be reported as a Level 3 alarm.

B. Analog Input Alarms: For each analog input, program an alarm message for reporting whenever the analog value is outside of the programmed alarm limits. Report a 'Return-to-Normal' message after the analog value returns to the normal range, using a programmed alarm differential. The alarm limits shall be individually selected by the Contractor based on the following criteria:

1. Space temperature, except as otherwise stated in sequence of operation: Level 3
 a. Low alarm: 64°F
 b. Low return-to-normal: 68°F
 c. High alarm: 85°F
 d. High return-to-normal: 80°F

2. Controlled media temperature other than space temperature (e.g. AHU discharge air temperature, steam converter leaving water temperature, condenser water supply, chilled water supply, etc.): Level 3 (If controlled media temperature setpoint is reset, alarm setpoints shall be programmed to follow setpoint)
 a. Low alarm: 3°F below setpoint
 b. Low return-to-normal: 2°F below setpoint
 c. High alarm: 3°F above setpoint
 d. High return-to-normal: 2°F above setpoint.
3. AHU mixed air temperature: Level 4
 a. Low alarm: 45°F
 b. Low return-to-normal: 46°F
 c. High alarm: 90°F
 d. High return-to-normal: 89°F

4. Duct Pressure:
 a. Low alarm: 0.5”w.g. below setpoint
 b. Low return-to-normal: 0.25”w.g. below setpoint
 c. High alarm: 0.5”w.g. above setpoint
 d. High return-to-normal: 0.25”w.g. above setpoint

5. Space humidity:
 a. Low alarm: 35%
 b. Low return-to-normal: 40%
 c. High alarm: 75%
 d. High return-to-normal: 70%

C. HOA Switch Tampering Alarms: The Sequences of Operation are based on the presumption that motor starter Hand-Off-Auto (HOA) switches are in the 'Auto' position. [If a motorized equipment unit starts without a prior start command from the FMS, (as sensed by status sensing device), then FMS shall perform the remaining sequence as specified.] BAS shall also enunciate the following Level 5 alarm message if status indicates a unit is operational when the run command is not present:

1. DEVICE XXXX FAILURE: Status is indicated on the device even though it has been commanded to stop. Check the HOA switch, control relay, status sensing device, contactors, and other components involved in starting the unit. Acknowledge this alarm when the problem has been corrected.

D. Maintenance Alarms: Enunciate Level 5 alarms when runtime accumulation exceeds a value specified by the operator

1. DEVICE XXXX REQUIRES MAINTENANCE. Runtime has exceeded specified value since last reset.

E. See requirements for additional equipment-specific alarms specified in Section 23 09 59 - Sequences of Operation.

3.8 GRAPHIC SCREENS

A. Floor Plan Screens: The contract document drawings will be made available to the Contractor in AutoCAD (current version) format upon request. These drawings may be used only for developing backgrounds for specified graphic screens; however the State does not guarantee the suitability of these drawings for the Contractor's purpose.
1. Provide graphic floor plan screens for each [floor] [wing] [tower] [other] of the building. Indicate the location of all equipment that is not located on the equipment room screens. Indicate the location of temperature sensors associated with each temperature-controlled zone (i.e., VAV terminals, fan-coils, single-zone AHUs, etc.) on the floor plan screens. [Zone background color shall change based on the temperature offset from setpoint]. Display the space temperature point adjacent to each temperature sensor symbol. Use a distinct line symbol to demarcate each terminal unit zone boundary. Use distinct colors to demarcate each air handling unit zone. [Mechanical floor plan drawings will be made available to the contractor upon request for the purpose of determining zone boundaries.] Indicate room numbers as provided by the State. Provide a drawing link from each space temperature sensor symbol and equipment symbol shown on the graphic floor plan screens to each corresponding equipment schematic graphic screen.

2. Provide graphic floor plan screens for each mechanical equipment room and a plan screen of the roof. Indicate the location of each item of mechanical equipment. Provide a drawing link from each equipment symbol shown on the graphic plan view screen to each corresponding mechanical system schematic graphic screen.

3. If multiple floor plans are necessary to show all areas, provide a graphic building key plan. Use elevation views and/or plan views as necessary to graphically indicate the location of all of the larger scale floor plans. Link graphic building key plan to larger scale partial floor plans. Provide links from each larger scale graphic floor plan screen to the building key plan and to each of the other graphic floor plan screens.

4. Provide a graphic site plan with links to and from each building plan.

B. System Schematic Screens: Provide graphic system schematic screen for each subsystem controlled with each I/O point in the project appearing on at least one graphic screen. System graphics shall include flow diagrams with status, setpoints, current analog input and output values, operator commands, etc. as applicable. General layout of the system shall be schematically correct. Input/output devices shall be shown in their schematically correct locations. Include appropriate engineering units for each displayed point value. Verbose names (English language descriptors) shall be included for each point on all graphics; this may be accomplished by the use of a hover box when the operator moves the cursor over the displayed point. Indicate all adjustable setpoints on the applicable system schematic graphic screen or, if space does not allow, on a supplemental linked-setpoint screen.

1. Provide graphic screens for each air handling system. Indicate outside air temperature and enthalpy, and mode of operation as applicable (i.e., occupied, unoccupied, warm-up, cool-down). Link screens for air handlers to the heating system and cooling system graphics. Link screens for supply and exhaust systems if they are not combined onto one screen.

2. Provide a graphic screen for each zone. Provide links to graphic system schematic screens of air handling units that serve the corresponding zone.

3. Provide a cooling system graphic screen showing all points associated with the chillers, cooling towers and pumps. Indicate outside air dry-bulb temperature and calculated wet-bulb temperature. Link screens for chilled water and condenser water systems if they cannot fit onto one cooling plant graphic screen.

4. Link screens for heating and cooling system graphics to utility history reports showing current and monthly electric uses, demands, peak values, and other pertinent values.

C. Bar Chart Screens: On each graphic Bar Chart Screen, provide drawing links to the graphic air handling unit schematic screens.
1. Provide a graphic chilled water valve screen showing the analog output signal of all chilled water valves in a bar chart format, with signals expressed as percentage of fully open valve (percentage of full cooling). Indicate the discharge air temperature and setpoint of each air handling unit, cooling system chilled water supply and return temperatures and the outside air temperature and humidity on this graphic. Provide drawing links between the graphic cooling plant screen and this graphic screen.

2. Provide a graphic heating water valve screen showing the analog output signal of all air handling unit heating water valves in a bar chart format, with signals expressed as percentage of fully open valve (percentage of full heating). Indicate the temperature of the controlled medium (such as AHU discharge air temperature or zone hot water supply temperature) and the associated setpoint and the outside air temperature and humidity.

D. Alarms: Each programmed alarm shall appear on at least one graphic screen. In general, alarms shall be displayed on the graphic system schematic screen for the system that the alarm is associated with (for example, chiller alarm shall be shown on graphic cooling system schematic screen). For all graphic screens, display analog values that are in a 'high alarm' condition in a red color, 'low alarm' condition in a blue color. Indicate digital values that are in alarm condition in a red color.

END OF SECTION
SECTION 23 09 58

SEQUENCE OF OPERATION

PART 1 - GENERAL

1.1 SECTION INCLUDES
 A. Air Handling Units
 B. Chilled Water System
 C. Terminal Units
 D. Exhaust Fans

1.2 Related Documents:
 A. Section 23 09 50 - Building Automation System (BAS) General
 B. Section 23 09 51 - BAS Basic Materials, Interface Devices, and Sensors
 C. Section 23 09 53 - BAS Field Panels
 D. Section 23 09 54 - BAS Communications Devices
 E. Section 23 09 55 - BAS Software
 F. Section 23 09 59 - BAS Commissioning

1.3 System Description
 A. The systems to be controlled under work of this section basically comprise (describe the scope of the project). The systems being controlled are (describe the configuration of and the type of systems included in the project).
 B. This Section defines the manner and method by which controls function.

1.4 Submittals
 A. Refer to Section 23 09 50 and Division 1 for requirements for control shop drawings, product data, User Manual, etc.
 B. Programming Manual: Provide BAS system programming manual as well as documentation of site-specific programming prior to the start of Acceptance Phase.

1.5 Project Record Documents
 A. Within two weeks of the completion of commissioning, provide record documents to represent the final control configuration with actual setpoints and tuning parameters as existed at acceptance.
 B. Record documents shall be modified control drawings with the actual installed information.
Drawings shall be delivered in both reproducible hard copy and electronic format in AutoCAD (current version) drawing files. Provide all supporting files, blocks, fonts, etc. required by the drawings.

C. Provide final points list as described above.

D. Provide final detailed wiring diagrams with all wire numbers and termination points indicated.

E. Accurately record final sequences and control logic made after submission of shop drawings.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 GENERAL

A. Sequences specified herein indicate the functional intent of the systems operation and may not fully detail every aspect of the programming that may be required to obtain the indicated operation. Contractor shall provide all programming necessary to obtain the sequences/system operation indicated.

B. When an air handling unit is not in operation, control devices shall remain in their “off” positions. “Off” positions may differ from the “normal” (meaning failed) position. Except as specified otherwise, “off” and “normal” positions of control devices shall be as follows:

<table>
<thead>
<tr>
<th>Device</th>
<th>"Off Position"</th>
<th>"Normal"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heating coil valves</td>
<td>closed</td>
<td>open</td>
</tr>
<tr>
<td>Cooling coil valves</td>
<td>closed</td>
<td>closed</td>
</tr>
<tr>
<td>Outside air damper</td>
<td>closed</td>
<td>closed</td>
</tr>
<tr>
<td>Return air damper</td>
<td>open</td>
<td>open</td>
</tr>
<tr>
<td>Exhaust/relief air damper</td>
<td>closed</td>
<td>closed</td>
</tr>
<tr>
<td>Var. Freq. Drive</td>
<td>off</td>
<td>Min. speed</td>
</tr>
</tbody>
</table>

C. Except as specified otherwise, throttling ranges, proportional bands, and cycle differentials shall be centered on the associated setpoint. All modulating feedback control loops shall include the capability of having proportional, integral, and derivative action. Unless the loop is specified “proportional only” or “P+I”, Contractor shall apply appropriate elements of integral and derivative gain to each control loop which shall result in stable operation, minimum settling time, and shall maintain the primary variable within the specified maximum allowable variance.

D. Scheduling Terminology: When air handlers are scheduled throughout the day, the following defines the terminology used (Designer coordinate with The State regarding actual occupancy schedules and initial setpoints):
1. Occupied Period: Period of time when the building is in use and occupied. Unless indicated otherwise, this period is defined as X:XX AM - X:XX PM weekdays and X:XX AM to 12:00PM (noon) Saturdays. Exclude all national holidays. Generally systems will be fully operational throughout this period and ventilation air shall be continuously introduced. Space temperature setpoints will generally be in the “normal” range of 69-77°F.

2. Unoccupied period: Period of time when the building or zone is not in use and unoccupied. Ventilation air shall not be introduced.

3. Preoccupancy Period: Time prior to the Occupied period when the systems are returning the space temperatures from setback to “normal” or occupied setpoints (warm-up and cool-down). Ventilation air shall not be introduced unless outside air conditions permit free-cooling. Time period shall be determined by an optimum start strategy unless otherwise specified.

4. Setback Period: Setback will typically coincide start with the end of the occupied period and end with the start of the preoccupancy period, however it shall be provided with its own schedule. Generally systems will be off except to maintain a “setback” temperature.

E. Where any sequence or occupancy schedule calls for more than one motorized unit to start simultaneously, the BAS start commands shall be staggered by 5 second (adj.) intervals to minimize inrush current.

F. Alarm messages specified throughout the sequences are assigned to discrete priority levels. Priority levels dictate the handling and destination of alarm reports, and are defined in Section 23 09 55 - ATC System Software and Programming.

G. Wherever a value is indicated as adjustable (adj.), it shall be modifiable, with the proper privilege level, from the operator interface or via a function block menu. For these points, it is unacceptable to have to modify programming statements to change the setpoint.

H. When a power failure is detected in any phase, the BAS start commands shall be retracted immediately from all electrically powered units served by the failed power source. If the associated primary control unit (PCU) is powered by normal or emergency power, it may monitor its own power source as an indication of power status. If the PCU is powered by uninterruptable power supply (UPS), or if PCU is not capable of monitoring its own power for use in sequences, Contractor shall provide at least one voltage monitor (three phase when applicable) per building. When the BAS detects that power has been restored, all equipment for which the BAS start command had been retracted shall be automatically restarted on staggered 5 second intervals to minimize inrush current. When loss of equipment status coincides with a power failure, system shall not alarm individual equipment failures. Instead, only a single Level 2 alarm shall be enunciated as follows:

1. BUILDING XXXX POWER FAILURE: Notify electric shop. Acknowledge alarm when power is restored.

I. Where reset action is specified in a sequence of operation, but a reset schedule is not indicated on the drawings, one of the following methods shall be employed:

1. Contractor shall determine a fixed reset schedule which shall result in stable operation and shall maintain the primary variable within the specified maximum allowable variance.

2. A floating reset algorithm shall be used which increments the secondary variable setpoint (setpoint of control loop being reset) on a periodic basis to maintain primary variable
setpoint. The recalculation time and reset increment shall be chosen to maintain the primary variable within the specified maximum allowable variance.

3. Primary variable shall control the devices directly using a PID feedback control loop without resetting the secondary variable. However, the control devices shall still modulate as necessary to maintain upper and lower limits on the secondary variable. Proportional band, integral gain, and derivative term shall be selected to maintain the primary variable within the specified maximum allowable tolerance while minimizing overshoot and settling time. Contractor shall gain prior approval for implementing this method of reset.

J. Where a supply air temperature or duct pressure setpoint is specified to be reset by the space temperature of the zones calling for the most cooling/heating, the following method shall be employed:

1. A floating reset algorithm shall be used which increments the secondary variable (e.g., supply air temperature or duct pressure) setpoint on a periodic basis to maintain primary variable (e.g. space temperature) setpoint. The reset increment shall be determined by the quantity of “need heat” or “need cool” requests from individual SCU’s. A SCU’s “need heat” virtual point shall activate whenever the zone’s space temperature falls below the currently applicable (occupied or unoccupied) heating setpoint throttling range. A SCU’s “need cool” virtual point shall activate whenever the zone’s space temperature rises above the currently applicable (occupied, unoccupied, or economy) cooling setpoint throttling range. The recalculation time and reset increment shall be chosen to maintain the primary variable within the specified maximum allowable variance while minimizing overshoot and settling time. Reset range maximum and minimum values shall limit the setpoint range.

K. Where “prove operation” of a device (generally controlled by a digital output) is indicated in the sequence, it shall require that the BAS shall, after an adjustable time delay after the device is commanded to operate (feedback delay), confirm that the device is operational via the status input. If the status point does not confirm operation after the time delay or anytime thereafter for an adjustable time delay (debounce delay) while the device is commanded to run, an alarm shall be enunciated audibly and via an alarm message at the operator interface and print at the alarm printers. A descriptive message shall be attached to the alarm message indicating the nature of the alarm and actions to be taken. Contractor shall provide messages to meet this intent.

[Upon failure of equipment with redundant backup, run command shall be removed from equipment and the device shall be locked out until the alarm is manually acknowledged. Upon failure of equipment without redundant backup, run command shall remain energized and the alarm shall be latched until reset by an operator.BAS shall provide for adjustable maximum rates of change for increasing and decreasing output from the following analog output points:

1. Speed control of variable speed drives
2. Chiller supply water temperature setpoint reset
3. Chiller demand limit
4. Travel rate of tower isolation and chiller isolation valves

L. Wherever a value is indicated to be dependent on another value (i.e. setpoint plus 5°F) BAS shall use that equation to determine the value. Simply providing a virtual point that the operator must set is unacceptable. In this case three virtual points shall be provided. One to store the parameter (5°F), one to store the setpoint, and one to store the value which is the result of the equation.
3.2 AIR HANDLING UNITS - GENERAL

A. Logic Strategies: The BAS shall fully control the air handlers. Generally the BAS shall energize the AH (start the fans and activate control loops) as dictated for each air handle. The following indicates when and how the BAS shall energize the AHs and control various common aspects of them. The following “logic strategies” shall be included by reference with each air handler with any specific clarifications required:

1. Scheduled Occupancy: BAS shall determine the occupancy periods (occupied, unoccupied, preoccupancy, and setback) as defined above. The following details the common control aspects related to the scheduled occupancy.

 a. Occupied Period: BAS shall energize the AH during all occupied periods. Note that the beginning of the occupancy period shall be set sufficiently before the actual start of occupancy to obtain the required building component of ventilation per ASHREA 62. Specific times shall be as directed by the A/E. Minimum OA flow setpoint shall be as scheduled on the drawings. “Normal” setpoints shall apply.

 b. Unoccupied Period: Minimum OA flow shall be 0 CFM or the minimum OA damper position shall be 0%. If during the unoccupied period there is a request for occupancy override, the occupancy mode shall become active for an adjustable period. The unoccupied period and the preoccupancy period will typically overlap.

 c. Setback Period: BAS shall deenergize the unit except as required to maintain a setback temperature as indicated in the individual sequences with a 5°F cycle differential. Generally, where setback temperatures apply in multiple zones, the worst zone shall control the system. Setback setpoints generally apply except during preoccupancy [and night purge]. If during the unoccupied period there is a request for occupancy override, the occupancy mode shall become active for an adjustable period.

 d. Preoccupancy: BAS shall energize the AH continuously during the preoccupancy period. Minimum OA flow shall be 0 CFM or the minimum OA damper position shall be 0%. “Normal” setpoints shall apply. Preoccupancy duration shall be one of the following as specified by reference:

 1) Fixed: The duration of the preoccupancy period shall be fixed as scheduled by the operator.

 2) Optimum: The duration of the morning warm-up period shall vary according to outside air temperature and space temperature such that the space temperature rises to occupied period heating setpoint at the beginning of, but not before, the scheduled occupied period. The duration of the cool-down period shall vary according to outside air temperature and space temperature such that the space temperature falls to the occupied period cooling setpoint at the beginning of, but not before, the scheduled occupied period.

2. Minimum OA Control: BAS shall maintain minimum ventilation during the occupied period. The following strategies may apply:

 a. Balanced Position: During the occupied period, applicable mixing and OA dampers shall never be positioned less than the position set for the required minimum OA ventilation rate. If the air handler has a single OA damper that is capable of
economizer, the minimum position output shall be determined by the balancer. If the AH has a two position minimum OA damper, that position shall be fully open to its balanced position. This logic strategy is only applicable to constant volume Ahs.

b. Reset Balanced Position: During the occupied period, applicable mixing and OA dampers shall never be positioned less than the minimum position. Minimum position shall be reset between limits of a position delivering system exhaust make-up air CFM and the design minimum position delivering design minimum CFM to maintain a CO2 setpoint of 900 ppm (adj.). Loop shall be a “sample and bump” or dynamic proportional only loop tuned for the slow response. The balancer shall determine the minimum position outputs at both extreme points. This logic strategy is only applicable to constant volume AHS.

c. Damper Controlled Fixed: During the occupied period, applicable mixing dampers shall be modulated to maintain an OA flow rate of no less than the MVR as dictated in the design and required by ASHRAE 62. Setpoint flow rates shall be provided by the A/E. Flow rate shall be determined in any of the following ways as specified for the particular AH:

1) Measured directly by an OA flow station
2) As determined by CO2 mixing equations using the SA, OA, and RA CO2 sensors

d. Damper Controlled Reset: During the occupied period, applicable mixing dampers shall be modulated to maintain an OA flow rate setpoint. Setpoint shall be reset between limits of system exhaust make-up air CFM and the design minimum CFM to maintain an RA CO2 setpoint of 900 ppm (adj.). Loop shall be a “sample and bump” or dynamic proportional only loop tuned for the slow response. Setpoint flow rates shall be provided by the A/E. Flow rate shall be determined in any of the following ways as specified for the particular AH:

1) Measured directly by an OA flow station
2) As determined by CO2 mixing equations using the SA, OA, RA, and/or Space CO2 sensors

e. Mixed Air Plenum Pressure Control: Minimum position of the OA damper shall be set to obtain the design required minimum OA. This balanced position shall remain fixed whenever to minimum loop is active BAS shall control the return air damper to maintain a mixed air plenum pressure (relative to outside) setpoint which will be specified by the balancer (−.5”). Ensure the OA reference pressure is adequately dampened against wind fluctuations using a wind resistance static tip, restrictors, and air volume capacitance.

3. VAV Return Fan Capacity Control: BAS shall control the output of the return fan as follows:

a. Flow Tracking: The return air fan shall run to maintain a return flow setpoint of the supply flow minus an offset value. The offset value shall be determined as follows:

1) Fixed Differential: It shall be fixed at the design minimum OA value.
2) Differential Reset from RA CO2:::It shall be reset between limits of system exhaust make-up air CFM and the design minimum CFM to maintain an RA CO2 setpoint of 900 ppm (adj.). Loop shall be a “sample and bump” or dynamic proportional only loop tuned for the slow response. Setpoint flow rates shall be provided by the A/E.

3) Differential Reset from Measured OA to Maintain Fixed OA: It shall be reset to maintain the measured minimum OA flow at the design value any time the economizer mode is inactive. Whenever it is inactive, it shall be set to the value that existed when the unit became active.

4) Differential Reset from Measured OA to Maintain Reset OA When the economizer mode is inactive, it shall be reset to maintain the measured OA flow setpoint. The OA setpoint shall be reset between limits of system exhaust make-up air CFM and the design minimum CFM to maintain a CO2 setpoint of 900 ppm (adj.). Loop shall be a “sample and bump” or dynamic proportional only loop tuned for the slow response. Setpoint flow rates shall be provided by the A/E. Whenever the economizer is active, it shall be set to the value that existed when the unit became active.

b. Rescaled Output Capacity Control: The output for the return fan capacity control shall be rescaled from the output of the to the supply device such that the design minimum OA temperature is maintained at both maximum and 50% flow conditions. The balancing contractor shall determine the coordinated output.

4. Airside Economizer: BAS shall modulate the mixing dampers to provide “free cooling” when conditions merit. The free cooling shall generally be staged before any mechanical cooling. While conditions merit, dampers shall be modulated in a DA PID loop to maintain mixed air temperature at a setpoint as specified for the individual unit. Economizer logic shall remain enabled during setback cooling where applicable. One of the following strategies shall be used to enable the economizer mode:

a. Dry Bulb Comparison: Economizer mode shall be active while the unit is energized AND when OA enthalpy fall below 28 btu/# AND outside air temperature falls below return air temperature (with 2°F cycle differential). Economizer mode shall be inactive when OA enthalpy rises above 29 btu/# OR outside air temperature rises above return air temperature (with 2°F cycle differential), dampers shall return to their scheduled minimum positions as specified above. Economizer shall remain enabled during setback cooling.

b. Dry Bulb Switch: Economizer mode shall be active while the unit is energized AND when OA enthalpy fall below 28 btu/# AND outside air temperature falls below the switching setpoint of 70°F (adj.) (with 5°F cycle differential). Economizer mode shall be inactive when OA enthalpy rises above 29 btu/# OR outside air temperature rises above switching setpoint, dampers shall return to their scheduled minimum positions as specified above.

c. Enthalpy Comparison: Economizer mode shall be active while the unit is energized AND when outside air enthalpy falls below return air enthalpy (with 2btu/# cycle differential). Economizer mode shall be inactive when outside air enthalpy rises above return air enthalpy, dampers shall return to their scheduled minimum positions as specified above.
5. Sequenced Heating and Cooling: BAS shall control the heating and cooling coils and air side economizer as detailed for the particular AH. Program logic shall directly prohibit the heating and cooling valves as well as the heating valve and economizer damper to be open (or above minimum) simultaneously. This does not apply to cooling and reheat valves that are used simultaneously for dehumidification.

6. Mixed Air Low Limit Override: BAS shall override the signal to the OA damper via a proportional only loop to maintain a minimum mixed air temperature of 45°F (adj.) (loop shall output 0% at 45°F which shall be passed to the output via a low selector).

7. Freeze Safety: Upon operation of a freezestat, unit shall be deenergized with the exception of the heating loops. Typically supply and return fans where applicable shall be deenergized via a hardwired interlock, [and an indication of the operation shall be sensed by the BAS]. BAS shall enunciate appropriate alarm and remove and lock out the start command [which shall initiate "fan failure" alarms]. OA dampers shall close and heating loops shall remain active.

8. Smoke Safety: Upon indication of smoke by a smoke detector, FAC shall deenergize the AH. Smoke detector shall notify the fire alarm system and BAS, shut down the fans, and close the smoke dampers via hard-wired interlock.

9. High or Low Pressure Safety: Upon activation of a high or low pressure safety switch, AH shall be deenergized, fans shall be deenergized via a hard wired interlock [, and an indication of the operation shall be sensed by the BAS]. BAS shall enunciate appropriate alarm and remove and lock out the start command [which shall initiate "fan failure" alarms].

10. Vibration Safety (Applicable To Units >50,000 cfm): Upon activation of a vibration safety switch, respective fan shall be deenergized, fan shall be deenergized via a hard wired interlock and an indication of the operation shall be sensed by the BAS]. BAS shall enunciate appropriate alarm and remove and lock out the start command.

B. The detailed “logic strategies” above shall be required by reference to them in each of the individual sequences specified below.

3.3 AIR HANDLING UNIT DIAGNOSTICS - GENERAL

A. Diagnostic Strategies: In addition to the standard alarm limits specified for all sensed variables the BAS monitor and diagnose anomalies in the operation of the air handlers. The following “diagnostic strategies” shall be included by reference with each air handler with any specific clarifications required:

1. Run Time Limit: BAS shall accumulate the runtime of the status of associated rotating equipment and enunciate a level 5 alarm to indicate that the unit is in need of service.

2. Filter Monitoring: BAS shall monitor the differential pressure transmitter across the filter bank(s). A level 5 alarm shall be reported when pressure drop exceeds the transmitter's setting.

3. Start Monitoring: BAS shall accumulate the starts of cycling equipment. BAS shall further enunciate a level 5 alarm when the number of starts exceeds the specified value within the specified time period. (ie: more than 3 starts in a 30 min period)

4. Heating Valve Leak: While heating valve is closed, if the temperature increase across the heating coil exceeds 2°F continuously for 30 minutes; or if the discharge temperature is more than 5°F above setpoint for more than 30 minutes continuously, enunciate the following alarm at level 3 and 4 priorities:
a. **ENERGY WASTE**: An unexpected temperature rise is occurring across the heating coil. Please check for leaking valve or faulty controls.

5. **Cooling Valve Leak**: While cooling valve is closed, if the temperature drop across the cooling coil exceeds 2°F continuously for 30 minutes; or if the discharge temperature is more than 5°F below setpoint for more than 30 minutes continuously, enunciate the following alarm at level 3 and 4 priority:

 a. **ENERGY WASTE**: An unexpected temperature drop is occurring across the cooling coil. Please check for leaking valve or faulty controls.

6. **Cooling Capacity Shortage**: BAS shall monitor the output to the valve. If the output exceeds 99% open for 1 hour continuously, enunciate the following alarm.

 a. **Lack of Capacity**: The cooling valve of XXX has been commanded to the full open position for an extended time period. Ensure that the setpoint for the control loop is at a reasonable value and that flow to the coil has not been obstructed as in a plugged strainer, throttled balancing valve, debris in the control valve, etc.

7. **Economizer Anomaly**: If mixed air temperature is less than low limit mixed air temperature 9°F or greater than [85]; or if the outside air temperature is between 55°F and 65°F and the mixed air temperature is more than 2°F different from the outside air temperature for more than 30 minutes continuously, enunciate the following alarm at level 3 and 4 priority:

 a. **ENERGY WASTE**: An unexpected mixed air temperature indicates a possible problem with the economizer damper controls. Please check for faulty dampers or controls.

8. **Fighting Valves**: BAS shall monitor the valve positions of the preheat and cooling coils and shall enunciate the following level 3 alarm if the valve positions are both over 10% open.

 a. **Fighting Valves**: The preheat and the cooling valves are opening simultaneously on XXX. Coordinate the control loops.

9. **Fighting Thermal Zones**: BAS shall monitor the mode of multiple terminal zones within a thermal zone and enunciate the following level 3 alarm if some are in heating mode, and others are in cooling mode:

 a. **FIGHTING TERMINAL UNITS**: Simultaneous heating and cooling exists in XXX. Coordinate the setpoints.

10. **Fighting Humidity Zones**: BAS shall monitor the mode of multiple terminal zones within a humidity zone and enunciate the following level 3 alarm if some are in heating mode, and others are in cooling mode:
a. FIGHTING TERMINAL UNITS: simultaneous humidification and
dehumidification exists in XXX. Coordinate the setpoints.

11. Unstable Control: BAS shall monitor the output to the actuator. BAS shall calculate
the average change in output per second over a 30-min. period. The average change
in output signal shall be calculated as follows: \[\frac{\text{Abs(Current Output(\%)) - Last Output(\%)}}{\text{Scan Interval(s)}} \]
\(\div \) \(\frac{\# \text{ of Scans in 30 min}}{30 \text{ minutes}} \). The program shall
execute the check once every 14 hours (start the 30-min. interval change
accumulation, after 30 min. perform the check and clear the sum). BAS shall
enunciate the following alarm if the average rate of change exceeds 1%/sec or one
half of the maximum rate of change programmed for the point.

a. Unstable Control: The control loop on XXX appears to be unstable. Establish a plot
of the valve output to validate this. If the damper is hunting unacceptably, tune the
loop.

END OF SECTION
SECTION 23 09 59

BAS SYSTEM COMMISSIONING

PART 1 - GENERAL

1.1 SECTION INCLUDES
 A. BAS and equipment testing and start-up
 B. Validation of proper and thorough installation of BAS and equipment
 C. Functional testing of control systems
 D. Documentation of tests, procedures, and installations
 E. Coordination of BAS training
 F. Documentation of BAS Operation and Maintenance materials

1.2 RELATED SECTIONS
 A. Section 23 09 50 - BAS General Requirements
 B. Section 23 09 51 - BAS Basic Materials and Devices
 C. Section 23 09 53 - BAS Field Panels
 D. Section 23 09 54 - BAS Communication Devices
 E. Section 23 09 55 - BAS Software and Programming
 F. Section 23 09 58 - Sequence of Operation

1.3 GENERAL DESCRIPTION
 A. This section defines responsibilities of the Controls Contractor to commission the BAS.
 B. The following is written based on the use of a separate Commissioning Authority (CA). If that is not the case on the project, the Contractor must still start up and commission the BAS. Therefore edit the responsibilities as appropriate for the project commissioning requirements.

1.4 CONTRACTOR RESPONSIBILITIES
 A. Completely install and thoroughly inspect, startup, test, adjust, balance, and document all systems and equipment.
 B. Assist Commissioning Authority in performing verification and performance testing. This will generally include the following:
 1. Attend Commissioning (Cx) progress and coordination meetings.
2. Prepare and submit required draft forms and systems information.
3. Establish trend logs of system operation as specified herein.
4. Demonstrate system operation.
5. Manipulate systems and equipment to facilitate testing.
6. Provide instrumentation necessary for verification and performance testing.
7. Manipulate control systems to facilitate verification and performance testing.
8. Train State's Representatives as specified in Part III of this section.

C. Provide a BAS Technician to work at the direction of Commissioning Authority for software optimization assistance for a minimum of [80] hours. Refer to Part 3 for a description of the software optimization.

1.5 SEQUENCING

A. The following list outlines the general sequence of events for submittals and commissioning:

1. Submit product data and shop drawings, and receive approval.
2. Submit BAS logic documentation, and receive approval.
3. Submit Start-Up Checklists and manufacturer's start-up procedures for all equipment provided by the BAS Contractor.
4. Install BAS.
5. Submit BAS Start-Up Test Agenda and Schedule for review.
6. Receive BAS start up Test Agenda/schedule approval.
7. Submit Training Plan.
8. Simulate sequencing and debug program off-line to the extent practical.
9. Place systems under BAS control where applicable during a scheduled outage.
10. Perform BAS start up where applicable during a scheduled outage.
11. Prepare and initiate trend log data storage and format trend graphs.
12. Submit completed BAS Start-Up Reports and initial draft of the O&M Manuals.
13. Receive BAS Start Up Report approval and approval to schedule Demonstrations and Commissioning.
14. Demonstrate systems to Commissioning Authority and The State.
15. Submit Trend Logs in format specified.
16. Receive demonstration approval and approval to schedule Acceptance Period.
17. Train The State on BAS operation and maintenance.
18. Substantial Completion.
20. Two week Operational Test.
22. Receive Acceptance Period approval, which is Functional Completion for the BAS.
23. Train The State on final sequences and modes of operation.
24. Install framed control drawings. (See Section 23 09 50/1.09/G)
25. Provide Level 1 password access to the State.
26. Revise and re-submit record drawings and O&M Manuals.
27. Substantial Completion.
29. Schedule and begin Opposite Season acceptance period.
30. Receive Opposite Season acceptance period approval.
31. Submit as-built drawings and O&M Manuals.
32. Update framed control drawings. (See Section 23 09 50/1.09/G)
33. Complete State personnel Training.
34. End-of-Warranty date/period.

PART 2 - PRODUCTS

2.1 INSTRUMENTATION
A. Instrumentation required to verify readings and test the system and equipment performance shall be provided by Contractor and made available to Commissioning Authority. Generally, no testing equipment will be required beyond that required to perform Contractor's work under these Contract Documents. All equipment used for testing and calibration shall be NIST/NBS traceable and calibrated within the preceding 6-month period. Certificates of calibration shall be submitted.

2.2 TAB & COMMISSIONING Portable operators terminal
A. For new projects, Contractor shall provide a portable operators terminal or hand held device to facilitate Testing, Adjusting, and Balancing (TAB) and calibration. This device shall support all functions and allow querying and editing of all parameters required for proper calibration and start up.

B. Connections shall be provided local to the device being calibrated. For instance, for VAV boxes, connection of the operator's terminal shall be either at the sensor or at the terminal box. Otherwise a wireless system shall be provided to facilitate this local functionality.

PART 3 - EXECUTION

3.1 BAS Start-Up TESTING, ADJUSTING, CALIBRATION
A. Work and/or systems installed under this Division shall be fully functioning prior to Demonstration and Acceptance Phase. Contractor shall start, test, adjust, and calibrate all work and/or systems under this Contract, as described below:

1. Inspect the installation of all devices. Review the manufacturer's installation instructions and validate that the device is installed in accordance with them.
2. Verify proper electrical voltages and amperages, and verify that all circuits are free from faults.
3. Verify integrity/safety of all electrical connections.
4. For the following control settings, initially use the control setting that was used by existing control system, unless otherwise indicated. For AHUs that use a throttled outside air damper position when minimum outside air is required, contractor shall mark existing minimum outside air damper position to allow replication by new controls.
5. Coordinate with TAB subcontractor to obtain control settings that are determined from balancing procedures. Record the following control settings as obtained from TAB contractor, and note any TAB deficiencies in the BAS Start-Up Report:

 a. Optimum duct static pressure setpoints for VAV air handling units.
 b. Minimum outside air damper settings for air handling units.
 c. Optimum differential pressure setpoints for variable speed pumping systems.
 d. Calibration parameters for flow control devices such as VAV boxes and flow measuring stations.

 i. BAS contractor shall provide hand-held device as a minimum to the TAB and CA to facilitate calibration. Connection for any given device shall be local to it (i.e. at the VAV box or at the thermostat). Hand-held device or portable operator's terminal shall allow querying and editing of parameters required for proper calibration and start-up.

6. Test, calibrate, and set all digital and analog sensing and actuating devices. Calibrate each instrumentation device by making a comparison between the BAS display and the reading at the device, using an instrument traceable to the National Bureau of Standards, which shall be at least twice as accurate as the device to be calibrated (e.g., if field device is +/-0.5% accurate, test equipment shall be +/-0.25% accurate over same range). Record the measured value and displayed value for each device in the BAS Start-Up Report.

7. Check and set zero and span adjustments for all transducers and transmitters.

8. For dampers and valves:

 a. Check for adequate installation including free travel throughout range and adequate seal.
 b. Where loops are sequenced, check for proper control without overlap.

9. For actuators:

 a. Check to insure that device seals tightly when the appropriate signal is applied to the operator.
 b. Check for appropriate fail position, and that the stroke and range is as required.
 c. For pneumatic operators, adjust the operator spring compression as required to achieve close-off. If positioner or volume booster is installed on the operator, calibrate per manufacturer’s procedure to achieve spring range indicated. Check split-range positioners to verify proper operation. Record settings for each device in the BAS Pre-Commissioning Report.
 d. For sequenced electronic actuators, calibrate per manufacturer's instructions to required ranges.

10. Check each digital control point by making a comparison between the control command at the CU and the status of the controlled device. Check each digital input point by making a comparison of the state of the sensing device and the Operator Interface display. Record the results for each device in the BAS Start-Up Report.
11. For outputs to reset other manufacturer's devices (for example, VSDs) and for feedback from them, calibrate ranges to establish proper parameters. Coordinate with representative of the respective manufacturer and obtain their approval of the installation.

12. Verify proper sequences by using the approved checklists to record results and submit with BAS Start-Up Report. Verify proper sequence and operation of all specified functions.

13. Verify that all safety devices trip at appropriate conditions. Adjust setpoints accordingly.

14. Tune all control loops to obtain the fastest stable response without hunting, offset or overshoot. Record tuning parameters and response test results for each control loop in the BAS Start Up Report. Except from a startup, maximum allowable variance from set point for controlled variables under normal load fluctuations shall be as follows. Within 3 minutes of any upset (for which the system has the capability to respond) in the control loop, tolerances shall be maintained (exceptions noted):
 a. Duct air temperature: ±1°F
 b. Space Temperature: ±2°F
 c. Chilled Water: ±1°F
 d. Hot water temperature: ±3°F
 e. Condenser water temperature: ±3°F
 f. Duct pressure: ±0.25” w.g.
 g. Water pressure: ±1 psid
 h. Duct or space Humidity: ±5%
 i. Air flow control: ±5% of setpoint velocity. [For fume hoods ±10% on full sash travel (from min to max in 3 seconds) within 3 seconds. Refer to Section 15995 for fume hood acceptance requirements.] [For minimum OA flow loops being reset from CO2, response to upset max time is one hour.]
 j. Space Pressurization (on active control systems): ±0.05” wg with no door or window movements.

15. For interface and DDC control panels:
 a. Ensure devices are properly installed with adequate clearance for maintenance and with clear labels in accordance with the record drawings.
 b. Ensure that terminations are safe, secure and labeled in accordance with the record drawings.
 c. Check power supplies for proper voltage ranges and loading.
 d. Ensure that wiring and tubing are run in a neat and workman-like manner, either bound or enclosed in trough.
 e. Check for adequate signal strength on communication networks.
 f. Check for standalone performance of controllers by disconnecting the controller from the LAN. Verify the event is annunciated at Operator Interfaces. Verify that the controlling LAN reconfigures as specified in the event of a LAN disconnection.
 g. Ensure that all outputs and devices fail to their proper positions/states.
 h. Ensure that buffered and/or volatile information is held through power outage.
 i. With all system and communications operating normally, sample and record update/annunciation times for critical alarms fed from the panel to the Operator Interface.
j. Check for adequate grounding of all DDC panels and devices.

16. For Operator Interfaces:

a. Verify that all elements on the graphics are functional and are properly bound to physical devices and/or virtual points, and that hot links or page jumps are functional and logical.
b. Output all specified BAS reports for review and approval.
c. Verify that the alarm printing and logging is functional and per requirements.
d. Verify that trends are archiving to disk and provide a sample to the [Commissioning Authority and] State for review.
e. Verify that paging/dial-out alarm annunciation is functional.
f. Verify the functionality of remote Operator Interfaces and that a robust connection can be established consistently.
g. Verify that required third party software applications required with the bid are installed and are functional.

17. Start-up and check out control air compressors, air drying, and filtering systems in accordance with the appropriate section and with manufacturer's instructions.

18. Verify proper interface with fire alarm system.

B. Submit Start-Up Test Report: Report shall be completed, submitted, and approved prior to Substantial Completion.

3.2 SENSOR CHECKOUT AND CALIBRATION

A. General Checkout: Verify that all sensor locations are appropriate and are away from causes of erratic operation. Verify that sensors with shielded cable are grounded only at one end. For sensor pairs that are used to determine a temperature or pressure difference, make sure they are reading within 0.2°F of each other for temperature and within a tolerance equal to 2% of the reading of each other for pressure. Tolerances for critical applications may be tighter.

B. Calibration: Calibrate all sensors using one of the following procedures:

1. Sensors Without Transmitters - Standard Application: Make a reading with a calibrated test instrument within 6 inches of the site sensor at various points across the range. Verify that the sensor reading (via the permanent thermostat, gage or BAS) is within the tolerances specified for the sensor. If not, adjust offset and range, or replace sensor. Where sensors are subject to wide variations in the sensed variable, calibrate sensor within the highest and lowest 20% of the expected range.

2. Sensors With Transmitters - Standard Application: Disconnect sensor. Connect a signal generator in place of sensor. Connect ammeter in series between transmitter and BAS control panel. Using manufacturer's resistance-temperature data, simulate minimum desired temperature. Adjust transmitter potentiometer zero until the ammeter reads 4 mA. Repeat for the maximum temperature matching 20 mA to the potentiometer span or maximum and verify at the OI. Record all values and recalibrate controller as necessary to conform to tolerances. Reconnect sensor. Make a reading with a calibrated test instrument within 6 inches of the site sensor. Verify that the sensor reading (via the permanent
thermostat, gage or BAS) is within the tolerances specified. If not, replace sensor and repeat. For pressure sensors, perform a similar process with a suitable signal generator.

C. Sensor Tolerance: Sensors shall be within the tolerances specified for the device. Refer to Section 23 09 51.

3.3 COIL VALVE LEAK CHECK

A. Verify proper close-off of the valves. Ensure the valve seats properly by simulating the maximum anticipated pressure difference across the circuit. Calibrate air temperature sensors on each side of coil to be within 0.5°F of each other. Via the Operator Interface, command the valve to close. Energize fans. After 5 minutes observe air temperature difference across coil. If a temperature difference is indicated, and the piping surface temperature entering the coil is within 3°F of the water supply temp, leakage is probably occurring. If it appears that it is occurring, close the isolation valves to the coil to ensure the conditions change. If they do, this validates the valve is not closing. Remedy the condition by adjusting the stroke and range, increasing the actuator size/torque, replacing the seat, or replacing the valve as applicable.

3.4 VALVE STROKE SETUP AND CHECK

A. For all valve and actuator positions checked, verify the actual position against the Operator Interface readout.

B. Set pumps to normal operating mode. Command valve closed, verify that valve is closed, and adjust output zero signal as required. Command valve open, verify position is full open and adjust output signal as required. Command the valve to various few intermediate positions. If actual valve position doesn't reasonably correspond, replace actuator or add pilot positioner (for pneumatics).

3.5 BAS DEMONSTRATION

A. Demonstrate the operation of the BAS hardware, software, and all related components and systems to the satisfaction of the Commissioning Authority and State. Schedule the demonstration with the State's representative 1 week in advance. Demonstration shall not be scheduled until all hardware and software submittals, and the Start-Up Test Report are approved. If the Work fails to be demonstrated to conform with Contract specifications, so as to require scheduling of additional site visits by the Commissioning Authority for re-demonstration, Contractor shall reimburse The State for costs of subsequent Commissioning Authority site visits.

B. The Contractor shall supply all personnel and equipment for the demonstration, including, but not limited to, instruments, ladders, etc. Contractor-supplied personnel must be competent with and knowledgeable of all project-specific hardware, software, and the HVAC systems. All training documentation and submittals shall be at the job site.

C. Demonstration shall typically involve small representative samples of systems/equipment randomly selected by the State and CA.

D. The system shall be demonstrated following the same procedures used in the Start-Up Test by using the approved Commissioning Checklists. Demonstration shall include, but not necessarily be limited to, the following:
1. Demonstrate that required software is installed on BAS workstations. Demonstrate that graphic screens, alarms, trends, and reports are installed as submitted and approved.

2. Demonstrate that points specified and shown can be interrogated and/or commanded (as applicable) from all workstations, as specified.

3. Demonstrate that remote dial-up communication abilities are in accordance with these Specifications.

4. Demonstrate correct calibration of input/output devices using the same methods specified for the Start-Up Tests. A maximum of 10 percent of I/O points shall be selected at random by the Commissioning Authority and/or State for demonstration. Upon failure of any device to meet the specified end-to-end accuracy, an additional 10 percent of I/O points shall be selected at random by Commissioning Authority for demonstration. This process shall be repeated until 100 percent of randomly selected I/O points have been demonstrated to meet specified end-to-end accuracy.

5. Demonstrate that all DDC and other software programs exist at respective field panels. The Direct Digital Control (DDC) programming and point database shall be as submitted and approved.

6. Demonstrate that all DDC programs accomplish the specified sequences of operation.

7. Demonstrate that the panels automatically recover from power failures, as specified.

8. Demonstrate that the stand-alone operation of panels meets the requirements of these Specifications. Demonstrate that the panels’ response to LAN communication failures meets the requirements of these Specifications.

9. Identify access to equipment selected by Commissioning Authority. Demonstrate that access is sufficient to perform required maintenance.

10. Demonstrate that required trend graphs and trend logs are set up per the requirements. Provide a sample of the data archive. Indicate the file names and locations.

E. BAS Demonstration shall be completed and approved prior to Substantial Completion.

F. Any tests successfully completed during the demonstration will be recorded as passed for the functional performance testing and will not have to be retested.

3.6 BAS ACCEPTANCE PERIOD

A. After approval of the BAS Demonstration and prior to Contract Close Out Acceptance Phase shall commence. Acceptance Period shall not be scheduled until all HVAC systems are in operation and have been accepted, all required cleaning and lubrication has been completed (i.e., filters changed, piping flushed, strainers cleaned, and the like), and TAB report has been submitted and approved. Acceptance Period and its approval will be performed on a system-by-system basis if mutually agreed upon by the Contractor and the Government.

B. Operational Test: At the beginning of the Acceptance Phase, the system shall operate properly for two weeks without malfunction, without alarm caused by control action or device failure, and with smooth and stable control of systems and equipment in conformance with these specifications. At the end of the two weeks, contractor shall forward the trend logs to the Commissioning Authority for review. Commissioning Authority shall determine if the system is ready for functional performance testing and document any problems requiring contractor attention.
1. If the systems are not ready for functional performance testing, Contractor shall correct problems and provide notification to the State's representative that all problems have been corrected. The Acceptance Period shall be restarted at a mutually scheduled time for an additional one-week period. This process shall be repeated until Commissioning Authority issues notice that the BAS is ready for functional performance testing.

C. During the Acceptance Period, the contractor shall maintain a hard copy log of all alarms generated by the BAS. For each alarm received, Contractor shall diagnose the cause of the alarm, and shall list on the log for each alarm, the diagnosed cause of the alarm, and the corrective action taken. If in the Contractor's opinion, the cause of the alarm is not the responsibility of the Contractor, Contractor shall immediately notify the State's representative.

3.7 TREND LOGS
A. Contractor shall configure and analyze all trends required under Section 23 09 55.

3.8 TREND GRAPHS
A. Trend graphs as specified in Section 23 09 55 shall generally be used during the Acceptance Phase to facilitate and document testing. Prepare controller and workstation software to display graphical format trends during the Acceptance Period. Trend graphs shall demonstrate compliance with contract documents.

B. Each graph shall be clearly labeled with HVAC subsystem title, date, and times.

3.9 WARRANTY PHASE BAS OPPOSITE SEASON TRENDING AND TESTING:
A. Trending: throughout the Warranty Phase, trend logs shall be maintained as required for the Acceptance Period. Contractor shall forward archive trend logs to the Commissioning Authority/State for review upon Commissioning Authority/State's request. Commissioning Authority/ The State will review these and notify contractor of any warranty work required.

B. Opposite Season Testing: Within 6 months of completion of the Acceptance Phase, Commissioning Authority/ The State shall schedule and conduct Opposite Season functional performance testing. Contractor shall participate in this testing and remedy any deficiencies identified.

3.10 SOFTWARE OPTIMIZATION ASSISTANCE
A. The Contractor shall provide the services of a BAS Technician as specified above at the project site to be at the disposal of the Commissioning Authority. The purpose of this requirement is to make changes, enhancements and additions to control unit and/or workstation software that have been identified by the Commissioning Authority during the construction and commissioning of the project and that are beyond the specified Contract requirements. The cost for this service shall be included with the bid. Requests for assistance shall be for contiguous or non-contiguous 8-hour days, unless otherwise mutually agreed upon by Contractor, Commissioning Authority, and State. The State's representative shall notify contractor 2 days in advance of each day of requested assistance.

B. The BAS Technician provided shall be thoroughly trained in the programming and operation of the controller and workstation software. If the BAS Technician provided cannot perform
every software task requested by the Commissioning Authority in a timely fashion, contractor shall provide additional qualified personnel at the project site as requested by the Commissioning Authority, to meet the total specified requirement on-site.

3.11 BAS OPERATOR TRAINING and O&M Manuals

A. Provide up to 4 complete sets of the approved Operations and Maintenance (O&M) Manuals (hard copy and one electronic copy) to be used for training.

B. Contractor shall submit a Training Plan for the scope of training for which they are responsible. Training Plan shall be forwarded to the Division 23 Contractor who will compile, organize, format, and forward to the Engineer for review.

C. On-Site Training: Provide services of controls contractor's qualified technical personnel for [five] 8-hour days to instruct State's personnel in operation and maintenance of BAS. Instruction shall be in classroom setting at the project site for appropriate portions of the training. Training may be in non-contiguous days at the request of the State. The State's representative shall notify contractor 1 week in advance of each day of requested training. The Contractor's designated training personnel shall meet with the Engineer and State's representative for the purpose of discussing and fine-tuning the training agenda prior to the first training session.

Training agenda shall generally be as follows:

1. Basic Operator Workstation (OWS) Training - For all potential users of the OWS:
 a. Brief walk-through of building, including identification of all controlled equipment and condensed demonstration of controller portable and built-in operator interface device display capabilities.
 b. Brief overview of the various parts of the O&M Manuals, including hardware and software programming and operating publications, catalog data, controls installation drawings, and DDC programming documentation.
 c. Demonstration of workstation login/logout procedures, password setup, and exception reporting.
 d. Demonstration of workstation menu penetration and broad overview of the various workstation features.
 e. Overview of systems installed.
 f. Present all site-specific point naming conventions and points lists, open protocol information, configuration databases, back-up sequences, upload/download procedures, and other information as necessary to maintain the integrity of the BAS.
 g. Overview of alarm features.
 h. Overview of trend features.
 i. Overview of workstation reports.

2. BAS Hardware Training - For Maintenance and Control Technicians
 a. Review of installed components and how to install/replace, maintain, commission, and diagnose them.
3. BAS Technician Training
 a. Introduction to controller programming and overview of the programming application interface.
 b. General review of sequence of operation and control logic for the project site, including standalone and fail-safe modes of operation.
 c. Uploading/Downloading and backing up programs.
 d. Network administration.
 e. Review of setpoint optimization and fine-tuning concepts.

4. Advanced Training: Advanced Training shall be provided for one (1) individual and be provided at an off-site training facility containing installations of the proposed system. Contractor shall pay training registration and materials fee and the State shall pay all employee expenses (travel, per diem, salary).
 a. Contractor shall provide the standard, advanced training offering on all Control Programming Applications.
 b. Contractor shall provide the standard, advanced training offering on Advanced Installation, Configuration, Maintenance, and Network Administration.
 c. For Echelon-based systems, advanced training shall include a Lon systems integration course.

END OF SECTION
SECTION 23 09 69

VARIABLE FREQUENCY CONTROLLERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes solid-state, PWM, VFCs for speed control of three-phase motors.

1.3 Definitions

A. BMS: Building management system.
B. IGBT: Integrated gate bipolar transistor.
C. LAN: Local area network.
D. PID: Control action, proportional plus integral plus derivative.
E. PWM: Pulse-width modulated.
F. VFC: Variable frequency controller.

1.4 SUBMITTALS

A. Product Data: For each type of VFC, provide dimensions; mounting arrangements; location for conduit entries; shipping and operating weights; and manufacturer's technical data on features, performance, electrical ratings, characteristics, and finishes.

B. Shop Drawings (for each VFC):

1. Include dimensioned plans, elevations, sections, and details, including required clearances and service space around equipment. Show tabulations of installed devices, equipment features, and ratings. Include the following:
 a. Each installed unit's type and details.
 b. Nameplate legends.
 c. Short-circuit current ratings of integrated unit.
 d. UL listing for series rating of overcurrent protective devices in combination controllers.
2. Wiring Diagrams: Power, signal, and control wiring for VFC. Provide schematic wiring diagram for each type of VFC.

C. Coordination Drawings: Floor plans showing dimensioned layout, required working clearances, and required area above and around VFCs where pipe and ducts are prohibited. Show VFC layout and relationships between electrical components and adjacent structural and mechanical elements. Show support locations, type of support, and weight on each support. Indicate field measurements.

D. Qualification Data: For testing agency and manufacturer.

E. Field Test Reports: Written reports specified in Part 3.

F. Manufacturer's field service report.

G. Operation and Maintenance Data: For VFCs, all installed devices, and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 1 Section "Operation and Maintenance Data," include the following:

1. Routine maintenance requirements for VFCs and all installed components.
2. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.

H. Load-Current and Overload-Relay Heater List: Compile after motors have been installed and arrange to demonstrate that selection of heaters suits actual motor nameplate full-load currents.

I. Load-Current and List of Settings of Adjustable Overload Relays: Compile after motors have been installed and arrange to demonstrate that dip switch settings for motor running overload protection suit actual motor to be protected.

1.5 QUALITY ASSURANCE

A. Manufacturer Qualifications: Maintain, within 100 miles of Project site, a service center capable of providing training, parts, and emergency maintenance and repairs.

B. Testing Agency Qualifications: An independent testing agency, acceptable to authorities having jurisdiction, with the experience and capability to conduct the testing indicated, as documented according to ASTM E 548.

C. Source Limitations: Obtain VFCs of a single type through one source from a single manufacturer.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

E. Comply with NFPA 70.
1.6 DELIVERY, STORAGE, AND HANDLING

A. Store VFCs indoors in clean, dry space with uniform temperature to prevent condensation. Protect VFCs from exposure to dirt, fumes, water, corrosive substances, and physical damage.

1.7 COORDINATION

A. Coordinate layout and installation of VFCs with other construction including conduit, piping, equipment, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

B. Coordinate features of VFCs, installed units, and accessory devices with pilot devices and control circuits to which they connect.

C. Coordinate features, accessories, and functions of each VFC and each installed unit with ratings and characteristics of supply circuit, motor, required control sequence, and duty cycle of motor and load.

1.8 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents:

1. Spare Fuses: Furnish one spare for every five installed, but not less than one set of three of each type and rating
2. Indicating Lights: Two of each type installed.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Yaskawa, Inc.
3. Danfoss

2.2 VARIABLE FREQUENCY CONTROLLERS

A. Microprocessor based Bypass Controller - Manual or automatic (selectable) transfer to line power via contactors. A keypad to control the bypass controller is to be mounted on the enclosure door. The bypass keypad shall include a one line diagram and status LEDs to indicate the mode of operation and “External Fault” conditions. When in the “Normal” mode, the bypass contactor is open and the drive output contactor is closed. In the “Test” position, both contactors are open, in the “Bypass” position, the drive output contactor is open, and the bypass
contactor is closed. Start/stop via customer supplied maintained contact shall be 24V or 115V compatible and shall function in both the “Normal” and “Bypass” modes. The voltage tolerance of the bypass power supply shall be ± 35% to eliminate the problem of contactor coil burnout. The design shall include single-phase protection in both the AFD and bypass modes.

B. Customer Interlock Terminal Strip – provide a separate terminal strip for connection of freeze, fire, smoke contacts, and external start command. Include fireman’s override and damper control circuit as standard. All external safety interlocks shall remain fully functional whether the system is in Hand, Auto, or Bypass modes.

C. Automatic bypass operation shall be selectable in the standard microprocessor based bypass design.

D. Door / cover interlocked circuit breaker disconnect switch which will disconnect all input power from the drive and all internally mounted options. The disconnect handle shall be through the door, and be padlockable in the “Off” position.

E. Fast acting semi-conductor fuses exclusive to the AFD – fast acting semi-conductor fuses allow the AFD to disconnect from the line prior to clearing upstream branch circuit protection, maintaining bypass capability. Bypass designs which have no such fuses, or that incorporate fuses common to both the AFD and the bypass will not be accepted. In such designs, a fuse clearing failure would render the bypass unusable.

F. Class 10 or 20 (selectable) electronic motor overload protection shall be included in the microprocessor bypass to protect the motor in bypass mode.

G. 3% DC line reactor

H. Input AC Line Reactor

I. The following operating information displays shall be standard on the AFD digital display. All applicable operating values shall be capable of being displayed in engineering (user) units. A minimum of two operating values from the list below shall be capable of being displayed at all times. The display shall be in complete English words (alpha-numeric codes are not acceptable):

1. Output Frequency
2. Motor Speed (RPM, %, or Engineering units)
3. Motor Current
4. Calculated Motor Torque
5. Calculated Motor Power (kW)
6. DC Bus Voltag
7. Output Voltage
8. Heatsink Temperature (0F)
9. Analog Input Values
10. Analog Output Value
11. Keypad Reference Values
12. Elapsed Time Meter (resettable)
13. kWh meter (resettable)
14. mWh meter
15. Digital input status
16. Digital output status

J. Communications: Provide an ethernet interface allowing VFC to be used with an external system within a multidrop LAN configuration. Interface shall allow all parameter settings of VFC to be programmed via a BACNet IP BMS. Provide capability for VFC to retain these settings within the nonvolatile memory.

2.3 ENCLOSURES
A. Enclosure: NEMA 250 Type I, with hinged full front access.

2.4 FACTORY FINISHES
A. Finish: Manufacturer's standard paint applied to factory-assembled and -tested VFCs before shipping.

PART 3 - EXECUTION
3.1 EXAMINATION
A. Examine areas, surfaces, and substrates to receive VFCs for compliance with requirements, installation tolerances, and other conditions affecting performance.
B. Examine roughing-in for conduit systems to verify actual locations of conduit connections before VFC installation.
C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION
A. Anchor each VFC assembly to steel-channel sills arranged and sized according to manufacturer's written instructions. Attach by bolting. Level and grout sills flush with VFC mounting surface.
B. Controller Fuses: Install fuses in each fusible switch. Comply with requirements in Division 26 Section "Fuses."

3.3 IDENTIFICATION
A. Identify VFCs, components, and control wiring according to Division 15 Section "Mechanical identification."
B. Operating Instructions: Frame printed operating instructions for VFCs, including control sequences and emergency procedures. Fabricate frame of finished metal, and cover instructions with clear acrylic plastic. Mount on front of VFC units.

3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect field-assembled components and equipment installation, including pretesting and adjusting VFCs.

B. Test Reports: Prepare a written report to record the following:

1. Test procedures used.
2. Test results that comply with requirements.
3. Test results that do not comply with requirements and corrective action taken to achieve compliance with requirements.

3.5 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.

B. Complete installation and startup checks according to manufacturer's written instructions.

3.6 CLEANING

A. Clean VFCs internally, on completion of installation, according to manufacturer's written instructions. Vacuum dirt and debris; do not use compressed air to assist in cleaning.

3.7 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain VFCs.

END OF SECTION
SECTION 23 21 13

HYDRONIC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes pipe and fitting materials and joining methods for the following:

1. Copper tube and fittings.
2. Steel pipe and fittings.
4. Transition fittings.
5. Dielectric fittings.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of the following:

1. Pipe.
2. Fittings.

B. Delegated-Design Submittal:

1. Design calculations and detailed fabrication and assembly of pipe anchors and alignment guides, hangers and supports for multiple pipes, expansion joints and loops, and attachments of the same to the building structure.
2. Locations of and details for penetrations, including sleeves and sleeve seals for exterior walls, floors, basement, and foundation walls.
3. Locations of and details for penetration and firestopping for fire- and smoke-rated wall and floor and ceiling assemblies.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Piping layout, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Other building services.
2. Structural members.
1.5 QUALITY ASSURANCE

A. Installer Qualifications:

1. Steel Support Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."
2. Pipe Welding: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code: Section IX.
 b. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Hydronic piping components and installation shall be capable of withstanding the following minimum working pressure and temperature unless otherwise indicated:

1. Hot-Water Heating Piping: 150 psig at 200 deg F.
2. Chilled-Water Piping: 150 psig at 73 deg F.
3. Condensate-Drain Piping: 180 deg F.

2.2 STEEL PIPE AND FITTINGS

A. Steel Pipe: ASTM A 53/A 53M, black steel with plain ends; welded and seamless, Grade B, and wall thickness as indicated in "Piping Applications" Article.

B. Cast-Iron Threaded Fittings: ASME B16.4; Classes 125 and 250 as indicated in "Piping Applications" Article.

D. Malleable-Iron Unions: ASME B16.39; Classes 150, 250, and 300 as indicated in "Piping Applications" Article.

E. Cast-Iron Pipe Flanges and Flanged Fittings: ASME B16.1, Classes 25, 125, and 250; raised ground face, and bolt holes spot faced as indicated in "Piping Applications" Article.
F. Wrought-Steel Fittings: ASTM A 234/A 234M, wall thickness to match adjoining pipe.

G. Wrought Cast- and Forged-Steel Flanges and Flanged Fittings: ASME B16.5, including bolts, nuts, and gaskets of the following material group, end connections, and facings:

2. End Connections: Butt welding.
3. Facings: Raised face.

H. Grooved Mechanical-Joint Fittings and Couplings:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Central Sprinkler Company.
 b. Grinnell Mechanical Products.
 c. Victaulic Company.

2. Joint Fittings: ASTM A 536, Grade 65-45-12 ductile iron; ASTM A 47/A 47M, Grade 32510 malleable iron; ASTM A 53/A 53M, Type F, E, or S, Grade B fabricated steel; or ASTM A 106/A 106M, Grade B steel fittings with grooves or shoulders constructed to accept grooved-end couplings; with nuts, bolts, locking pin, locking toggle, or lugs to secure grooved pipe and fittings.

3. Couplings: Ductile- or malleable-iron housing and [EPDM] [or] [nitrile] gasket of central cavity pressure-responsive design; with nuts, bolts, locking pin, locking toggle, or lugs to secure grooved pipe and fittings.

2.3 JOINING MATERIALS

A. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.

1. ASME B16.21, nonmetallic, flat, asbestos free, 1/8-inch maximum thickness unless otherwise indicated.
 a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.

B. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.

C. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

D. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for joining copper with copper; or BAg-1, silver alloy for joining copper with bronze or steel.

E. Welding Filler Metals: Comply with AWS D10.12M/D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.
2.4 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

B. Dielectric Unions:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Jomar Valve.
 b. WATTS.
 c. Zurn Industries, LLC.

2. Description:
 b. Pressure Rating: 150 psig.
 c. End Connections: Solder-joint copper alloy and threaded ferrous.

C. Dielectric Flanges:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. WATTS.
 b. Zurn Industries, LLC.

2. Description:
 b. Factory-fabricated, bolted, companion-flange assembly.
 c. Pressure Rating: 150 psig.
 d. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

D. Dielectric-Flange Insulating Kits:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Central Plastics Company.
 d. Pipeline Seal and Insulator, Inc.

2. Description:
 a. Nonconducting materials for field assembly of companion flanges.
 b. Pressure Rating: 150 psig.
 c. Gasket: Neoprene or phenolic.
 d. Bolt Sleeves: Phenolic or polyethylene.
e. Washers: Phenolic with steel backing washers.

E. Dielectric Nipples:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Grinnell Mechanical Products.
 b. Precision Plumbing Products.
 c. Victaulic Company.

2. Description:
 b. Electroplated steel nipple, complying with ASTM F 1545.
 c. Pressure Rating: 300 psig at 225 deg F.
 d. End Connections: Male threaded or grooved.
 e. Lining: Inert and noncorrosive, propylene.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

A. Hot-water heating piping, aboveground, NPS 2 and smaller, shall be any of the following:

1. Schedule 40 steel pipe, wrought-steel fittings and wrought-cast or forged-steel flanges and flange fittings, and welded and flanged joints.
2. Schedule 40, Grade B, Type 96 steel pipe; Class 125, cast-iron fittings; cast-iron flanges and flange fittings; and threaded joints.

B. Hot-water heating piping, aboveground, NPS 2-1/2 and larger, shall be any of the following:

1. Schedule 40 steel pipe, wrought-steel fittings and wrought-cast or forged-steel flanges and flange fittings, and welded and flanged joints.
2. Schedule 40 steel pipe; grooved, mechanical joint coupling and fittings; and grooved, mechanical joints.

C. Chilled-water piping, aboveground, NPS 2 and smaller, shall be any of the following:

1. Schedule 40 steel pipe, wrought-steel fittings and wrought-cast or forged-steel flanges and flange fittings, and welded and flanged joints.
2. Schedule 40 steel pipe; grooved, mechanical joint coupling and fittings; and grooved, mechanical joints.

D. Chilled-water piping, aboveground, NPS 2-1/2 and larger, shall be any of the following:

1. Schedule 40 steel pipe, wrought-steel fittings and wrought-cast or forged-steel flanges and flange fittings, and welded and flanged joints.
2. Schedule 40 steel pipe; grooved, mechanical joint coupling and fittings; and grooved, mechanical joints.

E. Condensate-Drain Piping: Schedule 40 PVC plastic pipe and fittings and solvent-welded joints.

3.2 PIPING INSTALLATIONS

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

D. Install piping to permit valve servicing.

E. Install piping at indicated slopes.

F. Install piping free of sags and bends.

G. Install fittings for changes in direction and branch connections.

H. Install piping to allow application of insulation.

I. Select system components with pressure rating equal to or greater than system operating pressure.

J. Install groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves.

K. Install drains, consisting of a tee fitting, NPS 3/4 ball valve, and short NPS 3/4 threaded nipple with cap, at low points in piping system mains and elsewhere as required for system drainage.

L. Install piping at a uniform grade of 0.2 percent upward in direction of flow.

M. Reduce pipe sizes using eccentric reducer fitting installed with level side up.

N. Install branch connections to mains using mechanically formed tee fittings in main pipe, with the branch connected to the bottom of the main pipe. For up-feed risers, connect the branch to the top of the main pipe.

O. Install valves according to the following:

1. Section 23 05 23.11 "Globe Valves for HVAC Piping."
2. Section 23 05 23.12 "Ball Valves for HVAC Piping."
3. Section 23 05 23.13 "Butterfly Valves for HVAC Piping."
4. Section 23 05 23.14 "Check Valves for HVAC Piping."
5. Section 23 05 23.15 "Gate Valves for HVAC Piping."

P. Install unions in piping, NPS 2 and smaller, adjacent to valves, at final connections of equipment, and elsewhere as indicated.

Q. Install flanges in piping, NPS 2-1/2 and larger, at final connections of equipment and elsewhere as indicated.

R. Install shutoff valve immediately upstream of each dielectric fitting.

S. Comply with requirements in Section 23 05 53 "Identification for HVAC Piping and Equipment" for identifying piping.

T. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 23 05 17 "Sleeves and Sleeve Seals for HVAC Piping."

U. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 23 05 17 "Sleeves and Sleeve Seals for HVAC Piping."

V. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 23 05 18 "Escutcheons for HVAC Piping."

3.3 DIELECTRIC FITTING INSTALLATION

A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.

B. Dielectric Fittings for NPS 2 and Smaller: Use dielectric unions.

C. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flange kits.

D. Dielectric Fittings for NPS 5 and Larger: Use dielectric flange kits.

3.4 HANGERS AND SUPPORTS

A. Comply with requirements in Section 23 05 29 "Hangers and Supports for HVAC Piping and Equipment" for hanger, support, and anchor devices. Comply with the following requirements for maximum spacing of supports.

B. Comply with requirements in Section 23 05 48 "Vibration and Seismic Controls for HVAC" for seismic restraints.

C. Install the following pipe attachments:

1. Adjustable steel clevis hangers for individual horizontal piping less than 20 feet long.
2. Adjustable roller hangers and spring hangers for individual horizontal piping 20 feet or longer.
3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet or longer, supported on a trapeze.
4. Provide copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.

D. Install hangers for steel piping with the following maximum spacing and minimum rod sizes:

1. NPS 3/4: Maximum span, 7 feet.
2. NPS 1: Maximum span, 7 feet.
3. NPS 1-1/2: Maximum span, 9 feet.
4. NPS 2: Maximum span, 10 feet.
5. NPS 2-1/2: Maximum span, 11 feet.
6. NPS 3 and Larger: Maximum span, 12 feet.

E. Support vertical runs at each floor, and at 10-foot intervals between floors.

3.5 PIPE JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:

1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

D. Welded Joints: Construct joints according to AWS D10.12M/D10.12, using qualified processes and welding operators according to "Quality Assurance" Article.

E. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

F. Grooved Joints: Assemble joints with coupling and gasket, lubricant, and bolts. Cut or roll grooves in ends of pipe based on pipe and coupling manufacturer's written instructions for pipe wall thickness. Use grooved-end fittings and rigid, grooved-end-pipe couplings.

3.6 TERMINAL EQUIPMENT CONNECTIONS

A. Sizes for supply and return piping connections shall be the same as or larger than equipment connections.

B. Install control valves in accessible locations close to connected equipment.

C. Install bypass piping with globe valve around control valve. If parallel control valves are installed, only one bypass is required.
D. Install ports for pressure gages and thermometers at coil inlet and outlet connections. Comply with requirements in Section 23 05 19 "Meters and Gages for HVAC Piping."

3.7 FIELD QUALITY CONTROL

A. Prepare hydronic piping according to ASME B31.9 and as follows:

1. Leave joints, including welds, uninsulated and exposed for examination during test.
2. Provide temporary restraints for expansion joints that cannot sustain reactions due to test pressure. If temporary restraints are impractical, isolate expansion joints from testing.
3. Flush hydronic piping systems with clean water; then remove and clean or replace strainer screens.
4. Isolate equipment from piping. If a valve is used to isolate equipment, its closure shall be capable of sealing against test pressure without damage to valve. Install blinds in flanged joints to isolate equipment.
5. Install safety valve, set at a pressure no more than one-third higher than test pressure, to protect against damage by expanding liquid or other source of overpressure during test.

B. Perform the following tests on hydronic piping:

1. Use ambient temperature water as a testing medium unless there is risk of damage due to freezing. Another liquid that is safe for workers and compatible with piping may be used.
2. While filling system, use vents installed at high points of system to release air. Use drains installed at low points for complete draining of test liquid.
3. Isolate expansion tanks and determine that hydronic system is full of water.
4. Subject piping system to hydrostatic test pressure that is not less than 1.5 times the system's working pressure. Test pressure shall not exceed maximum pressure for any vessel, pump, valve, or other component in system under test. Verify that stress due to pressure at bottom of vertical runs does not exceed 90 percent of specified minimum yield strength or 1.7 times the "SE" value in Appendix A in ASME B31.9, "Building Services Piping."
5. After hydrostatic test pressure has been applied for at least 10 minutes, examine piping, joints, and connections for leakage. Eliminate leaks by tightening, repairing, or replacing components, and repeat hydrostatic test until there are no leaks.
6. Prepare written report of testing.

C. Perform the following before operating the system:

1. Open manual valves fully.
2. Inspect pumps for proper rotation.
3. Set makeup pressure-reducing valves for required system pressure.
4. Inspect air vents at high points of system and determine if all are installed and operating freely (automatic type), or bleed air completely (manual type).
5. Set temperature controls so all coils are calling for full flow.
6. Inspect and set operating temperatures of hydronic equipment, such as boilers, chillers, cooling towers, to specified values.
7. Verify lubrication of motors and bearings.

END OF SECTION
SECTION 23 21 16

HYDRONIC PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Hydronic specialty valves.
2. Air-control devices.
3. Strainers.
4. Connectors.

B. Related Requirements:

1. Section 23 05 23.11 "Globe Valves for HVAC Piping" for specification and installation requirements for globe valves common to most piping systems.
2. Section 23 05 23.12 "Ball Valves for HVAC Piping" for specification and installation requirements for ball valves common to most piping systems.
3. Section 23 05 23.13 "Butterfly Valves for HVAC Piping" for specification and installation requirements for butterfly valves common to most piping systems.
4. Section 23 05 23.14 "Check Valves for HVAC Piping" for specification and installation requirements for check valves common to most piping systems.
5. Section 23 05 23.15 "Gate Valves for HVAC Piping" for specification and installation requirements for gate valves common to most piping systems.
6. Section 23 09 23.11 "Control Valves" for automatic control valve and sensor specifications, installation requirements, and locations.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product:

1. Include construction details and material descriptions for hydronic piping specialties.
2. Include rated capacities, operating characteristics, and furnished specialties and accessories.
3. Include flow and pressure drop curves based on manufacturer's testing for calibrated-orifice balancing valves and automatic flow-control valves.
1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For hydronic piping specialties to include in emergency, operation, and maintenance manuals.

1.5 MAINTENANCE MATERIAL SUBMITTALS

A. Differential Pressure Meter: For each type of balancing valve and automatic flow control valve, include flowmeter, probes, hoses, flow charts, and carrying case.

1.6 QUALITY ASSURANCE

A. Pipe Welding: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code: Section IX.

B. Safety Valves and Pressure Vessels: Shall bear the appropriate ASME label. Fabricate and stamp air separators and expansion tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.

PART 2 - PRODUCTS

2.1 HYDRONIC SPECIALTY VALVES

A. Cast-Iron or Steel, Calibrated-Orifice, Balancing Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Armstrong Pumps, Inc.
 b. Bell & Gossett; a Xylem brand.
 c. Flow Design, Inc.
 d. Gerand Engineering Co.
 e. Grinnell G-Fire by Johnson Controls Company.
 f. Griswold Controls.
 g. TACO Comfort Solutions, Inc.
 h. Tour & Andersson; available through Victaulic Company.
 i. Victaulic Company.

2. Body: Cast-iron or steel body, ball, plug, or globe pattern with calibrated orifice or venturi.

3. Ball: Brass or stainless steel.

5. Disc: Glass and carbon-filled PTFE.

6. Seat: PTFE.

7. End Connections: Flanged or grooved.

9. Handle Style: Lever, with memory stop to retain set position.

11. Maximum Operating Temperature: 250 deg F.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AMTROL, Inc.
 b. Apollo Flow Controls; Conbraco Industries, Inc.
 c. Armstrong Pumps, Inc.
 d. Bell & Gossett; a Xylem brand.
 e. Spence Engineering Company, Inc.
 f. WATTS.

2. Body: Bronze or brass.
3. Disc: Glass and carbon-filled PTFE.
5. Stem Seals: EPDM O-rings.
6. Diaphragm: EPT.
7. Low inlet-pressure check valve.
8. Inlet Strainer: stainless steel, removable without system shutdown.
10. Valve Size, Capacity, and Operating Pressure: Selected to suit system in which installed, with operating pressure and capacity factory set and field adjustable.

C. Automatic Flow-Control Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Griswold Controls.
 c. NuTech Hydronic Specialty Products.

2. Body: Brass or ferrous metal.
3. Flow Control Assembly, provide either of the following:
 a. Piston and Spring Assembly: Corrosion resistant, tamper proof, self-cleaning, and removable.

4. Combination Assemblies: Include bronze or brass-alloy ball valve.
5. Identification Tag: Marked with zone identification, valve number, and flow rate.
6. Size: Same as pipe in which installed.
7. Performance: Maintain constant flow within plus or minus 10 percent, regardless of system pressure fluctuations.
9. Maximum Operating Temperature: 250 deg F.
AIR HANDLING UNIT REPLACEMENT
DELWARE TECHNICAL COMMUNITY COLLEGE
WILMINGTON, DELAWARE
GEORGE CAMPUS - EAST BUILDING

2.2 AIR-CONTROL DEVICES

A. Manual Air Vents:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AMTROL, Inc.
 b. Armstrong Pumps, Inc.
 c. Bell & Gossett; a Xylem brand.
 d. Nexus Valve, Inc.
 e. NuTech Hydronic Specialty Products.
 f. TACO Comfort Solutions, Inc.
 2. Body: Bronze.
 3. Internal Parts: Nonferrous.
 4. Operator: Screwdriver or thumbscrew.
 5. Inlet Connection: NPS 1/2.
 7. CWP Rating: 150 psig.
 8. Maximum Operating Temperature: 225 deg F.

2.3 STRAINERS

A. Y-Pattern Strainers:
 1. Body: ASTM A126, Class B, cast iron with bolted cover and bottom drain connection.
 2. End Connections: Threaded ends for NPS 2 and smaller; flanged ends for NPS 2-1/2 and larger.

2.4 CONNECTORS

A. Stainless-Steel Bellow, Flexible Connectors:
 2. End Connections: Threaded or flanged to match equipment connected.
 4. CWP Rating: 150 psig.
 5. Maximum Operating Temperature: 250 deg F.
PART 3 - EXECUTION

3.1 VALVE APPLICATIONS

A. Install shutoff-duty valves at each branch connection to supply mains and at supply connection to each piece of equipment.

B. Install calibrated-orifice, balancing valves in the return pipe of each heating or cooling coil.

3.2 HYDRONIC SPECIALTIES INSTALLATION

A. Install manual air vents at high points in piping, at heat-transfer coils, and elsewhere as required for system air venting.

B. Install automatic air vents at high points of system piping in mechanical equipment rooms only. Install manual vents at heat-transfer coils and elsewhere as required for air venting.

END OF SECTION
SECTION 23 31 13
METAL DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Single-wall rectangular ducts and fittings.
 2. Sealants and gaskets.
 3. Hangers and supports.

B. Related Sections:
 1. Section 23 05 93 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing requirements for metal ducts.
 2. Section 23 33 00 "Air Duct Accessories" for dampers, sound-control devices, duct-mounting access doors and panels, turning vanes, and flexible ducts.

1.3 PERFORMANCE REQUIREMENTS

A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" and performance requirements and design criteria indicated in "Duct Schedule" Article.

B. Structural Performance: Duct hangers and supports shall withstand the effects of gravity loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

C. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of the following products:
 1. Liners and adhesives.
 2. Sealants and gaskets.
B. Shop Drawings:

1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
2. Factory- and shop-fabricated ducts and fittings.
3. Duct layout indicating sizes, configuration, liner material, and static-pressure classes.
4. Elevation of top of ducts.
5. Dimensions of main duct runs from building grid lines.
6. Fittings.
7. Reinforcement and spacing.
8. Seam and joint construction.
9. Penetrations through fire-rated and other partitions.
10. Equipment installation based on equipment being used on Project.
11. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.
12. Hangers and supports, including methods for duct and building attachment and vibration isolation.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Duct installation in congested spaces, indicating coordination with general construction, building components, and other building services. Indicate proposed changes to duct layout.
2. Suspended ceiling components.
3. Structural members to which duct will be attached.
4. Size and location of initial access modules for acoustical tile.
5. Penetrations of smoke barriers and fire-rated construction.
6. Items penetrating finished ceiling including the following:
 a. Air outlets and inlets.
 b. Speakers.
 c. Access panels.
 d. Lighting Fixtures.

B. Welding certificates.

C. Field quality-control reports.

1.6 QUALITY ASSURANCE

A. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and System Start-up."

B. ASHRAE/IES Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6.4.4 - "HVAC System Construction and Insulation."
2.1 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.

B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 4, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.2 SHEET METAL MATERIALS

A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 2. Finishes for Surfaces Exposed to View: Mill phosphatized.

C. Reinforcement Shapes and Plates: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
 1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.

D. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.
2.3 SEALANT AND GASKETS

A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.

B. Two-Part Tape Sealing System:
 1. Tape: Woven cotton fiber impregnated with mineral gypsum and modified acrylic/silicone activator to react exothermically with tape to form hard, durable, airtight seal.
 2. Tape Width: 4 inches.
 5. Mold and mildew resistant.
 6. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
 7. Service: Indoor and outdoor.
 8. Service Temperature: Minus 40 to plus 200 deg F.
 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum.

C. Water-Based Joint and Seam Sealant:
 1. Application Method: Brush on.
 2. Solids Content: Minimum 65 percent.
 5. Mold and mildew resistant.
 6. VOC: Maximum 75 g/L (less water).
 7. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
 8. Service: Indoor or outdoor.
 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.

D. Flanged Joint Sealant: Comply with ASTM C 920.
 2. Type: S.
 3. Grade: NS.
 5. Use: O.

2.4 HANGERS AND SUPPORTS

A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.

B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.
C. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct."

D. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.

E. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.

F. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.

G. Trapeze and Riser Supports:
 2.

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.

B. Install ducts according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" unless otherwise indicated.

C. Install ducts in maximum practical lengths.

D. Install ducts with fewest possible joints.

E. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.

F. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.

G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.

H. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness.

I. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.

J. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal
flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.

K. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Section 23 33 00 "Air Duct Accessories" for fire and smoke dampers.

3.2 INSTALLATION OF EXPOSED DUCTWORK

A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.

B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.

C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.

D. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.

E. Repair or replace damaged sections and finished work that does not comply with these requirements.

3.3 DUCT SEALING

A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

B. Seal ducts at a minimum to the following seal classes according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible":

1. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
2. Unconditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class B.
3. Unconditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class A.
4. Unconditioned Space, Return-Air Ducts: Seal Class B.
5. Conditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class B.
6. Conditioned Space, Return-Air Ducts: Seal Class C.
3.4 HANGER AND SUPPORT INSTALLATION

A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 5, "Hangers and Supports."

B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.

1. Where practical, install concrete inserts before placing concrete.
2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches thick.
4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick.
5. Do not use powder-actuated concrete fasteners for seismic restraints.

C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.

D. Hangers Exposed to View: Threaded rod and angle or channel supports.

E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet.

F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.5 CONNECTIONS

A. Make connections to equipment with flexible connectors complying with Section 23 33 00 "Air Duct Accessories."

B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.6 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Leakage Tests:

2. Test the following systems:
a. Ducts with a Pressure Class Higher Than 3-Inch wg: Test representative duct sections, selected by Architect from sections installed, totaling no less than 25 percent of total installed duct area for each designated pressure class.

3. Disassemble, reassemble, and seal segments of systems to accommodate leakage testing and for compliance with test requirements.
4. Test for leaks before applying external insulation.
5. Conduct tests at static pressures equal to maximum design pressure of system or section being tested. If static-pressure classes are not indicated, test system at maximum system design pressure. Do not pressurize systems above maximum design operating pressure.
6. Give seven days' advance notice for testing.

C. Duct System Cleanliness Tests:

1. Visually inspect duct system to ensure that no visible contaminants are present.
2. Test sections of metal duct system, chosen randomly by Owner, for cleanliness according to "Vacuum Test" in NADCA ACR, "Assessment, Cleaning and Restoration of HVAC Systems."

 a. Acceptable Cleanliness Level: Net weight of debris collected on the filter media shall not exceed 0.75 mg/100 sq. cm.

D. Duct system will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

3.7 DUCT SCHEDULE

1. Ducts Connected to Air-Handling Units:

 a. Pressure Class: Positive or negative 4-inch wg.
 b. Minimum SMACNA Seal Class: A.
 c. SMACNA Leakage Class for Rectangular: 12.

B. Elbow Configuration:

1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-2, "Rectangular Elbows."

 a. Velocity 1000 fpm or Lower:

 1) Radius Type RE 1 with minimum 0.5 radius-to-diameter ratio.
 2) Mitered Type RE 4 without vanes.

 b. Velocity 1000 to 1500 fpm:

 1) Radius Type RE 1 with minimum 1.0 radius-to-diameter ratio.
 2) Radius Type RE 3 with minimum 0.5 radius-to-diameter ratio and two vanes.
3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."

c. Velocity 1500 fpm or Higher:

1) Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
2) Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."

2. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-2, "Rectangular Elbows."

a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.

b. Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.

c. Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."

C. Branch Configuration:

1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-6, "Branch Connection."

a. Rectangular Main to Rectangular Branch: 45-degree entry.

END OF SECTION
SECTION 23 33 00
AIR DUCT ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

2. Turning vanes.
3. Duct-mounted access doors.
4. Flexible connectors.
5. Flexible Ducts.
6. Duct accessory hardware.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. For duct silencers, include pressure drop and dynamic insertion loss data. Include breakout noise calculations for high transmission loss casings.

B. Shop Drawings: For duct accessories. Include plans, elevations, sections, details and attachments to other work.

1. Detail duct accessories fabrication and installation in ducts and other construction. Include dimensions, weights, loads, and required clearances; and method of field assembly into duct systems and other construction. Include the following:

 a. Special fittings.
 c. Control-damper installations.
 d. Wiring Diagrams: For power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which ceiling-mounted access panels and access doors required for access to duct accessories are shown and coordinated with each other, using input from Installers of the items involved.
B. Source quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For air duct accessories to include in operation and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTION

B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

2.2 MATERIALS

A. Galvanized Sheet Steel: Comply with ASTM A653/A653M.
 2. Exposed-Surface Finish: Mill phosphatized.

B. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.

C. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.3 MANUAL VOLUME DAMPERS

A. Standard, Steel, Manual Volume Dampers:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Warming and Ventilating; a Mestek Architectural Group company.
 b. Flex-Tek Group.
2. Standard leakage rating, with linkage outside airstream.
3. Suitable for horizontal or vertical applications.
4. Frames:
 a. Frame: Hat-shaped, 0.094-inch-thick, galvanized sheet steel.
 b. Mitered and welded corners.
 c. Flanges for attaching to walls and flangeless frames for installing in ducts.
5. Blades:
 a. Multiple or single blade.
 b. Parallel- or opposed-blade design.
 c. Stiffen damper blades for stability.
 d. Galvanized-steel, 0.064 inch thick.
7. Bearings:
 a. Oil-impregnated or bronze Molded synthetic.
 b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
8. Tie Bars and Brackets: Galvanized steel.

2.4 FLANGE CONNECTORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. CL WARD & Family Inc.
 2. Ductmate Industries, Inc.
 3. Elgen Manufacturing.
 4. Nexus PDQ.
 5. Ward Industries; a brand of Hart & Cooley, Inc.

B. Description: Add-on or roll-formed, factory-fabricated, slide-on transverse flange connectors, gaskets, and components.

C. Material: Galvanized steel.

D. Gage and Shape: Match connecting ductwork.
2.5 TURNING VANES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Aero-Dyne Sound Control Co.
2. CL WARD & Family Inc.
3. Ductmate Industries, Inc.
4. Duro Dyne Inc.
5. Elgen Manufacturing.
6. METALAIRE, Inc.
7. SEMCO LLC.
8. Ward Industries; a brand of Hart & Cooley, Inc.

B. Manufactured Turning Vanes for Metal Ducts: Curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.

C. Manufactured Turning Vanes for Nonmetal Ducts: Fabricate curved blades of resin-bonded fiberglass with acrylic polymer coating; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.

D. General Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible"; Figures 4-3, "Vanes and Vane Runners," and 4-4, "Vane Support in Elbows."

E. Vane Construction: Double wall.

F. Vane Construction: Single wall for ducts up to 12 inches wide and double wall for larger dimensions.

2.6 DUCT-MOUNTED ACCESS DOORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. American Warming and Ventilating; a Mestek Architectural Group company.
2. Cesco Products; a division of MESTEK, Inc.
3. Ductmate Industries, Inc.
4. Elgen Manufacturing.
5. Flexmaster U.S.A., Inc.
7. McGill AirFlow LLC.
8. Nailor Industries Inc.
9. Ventfabrics, Inc.
10. Ward Industries; a brand of Hart & Cooley, Inc.

1. Door:
 a. Double wall, rectangular.
 b. Galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class.
 c. Hinges and Latches: 1-by-1-inch butt or piano hinge and cam latches.
 d. Fabricate doors airtight and suitable for duct pressure class.

2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.

3. Number of Hinges and Locks:
 a. Access Doors Less Than 12 Inches Square: No hinges and two sash locks.
 b. Access Doors up to 18 Inches Square: Continuous and two sash locks.
 c. Access Doors up to 24 by 48 Inches: Continuous and two compression latches with outside and inside handles.
 d. Access Doors Larger Than 24 by 48 Inches: Continuous and two compression latches with outside and inside handles.

2.7 FLEXIBLE CONNECTORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1. Ductmate Industries, Inc.
 2. Duro Dyne Inc.
 3. Elgen Manufacturing.
 4. Ventfabrics, Inc.
 5. Ward Industries; a brand of Hart & Cooley, Inc.

B. Materials: Flame-retardant or noncombustible fabrics.

C. Coatings and Adhesives: Comply with UL 181, Class 1.

D. Metal-Edged Connectors: Factory fabricated with a fabric strip 5-3/4 inches wide attached to two strips of 2-3/4-inch-wide, 0.028-inch-thick, galvanized sheet steel or 0.032-inch-thick aluminum sheets. Provide metal compatible with connected ducts.

 1. Minimum Weight: 26 oz./sq. yd.
 2. Tensile Strength: 480 lbf/inch in the warp and 360 lbf/inch in the filling.
 3. Service Temperature: Minus 40 to plus 200 deg F.
2.8 DUCT ACCESSORY HARDWARE

A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct insulation thickness.

B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install duct accessories according to applicable details in SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.

B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts.

C. Compliance with ASHRAE/IESNA 90.1-2004 includes Section 6.4.3.3.3 - "Shutoff Damper Controls," restricts the use of backdraft dampers, and requires control dampers for certain applications. Install control dampers at inlet of exhaust fans or exhaust ducts as close as possible to exhaust fan unless otherwise indicated.

D. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.

1. Install steel volume dampers in steel ducts.

E. Set dampers to fully open position before testing, adjusting, and balancing.

F. Install test holes at fan inlets and outlets and elsewhere as indicated.

G. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:

1. Downstream from manual volume dampers, control dampers, backdraft dampers, and equipment.

H. Install access doors with swing against duct static pressure.

I. Access Door Sizes:

1. Two-Hand Access: 12 by 6 inches.
J. Label access doors according to Section 23 05 53 "Identification for HVAC Piping and Equipment" to indicate the purpose of access door.

K. Install flexible connectors to connect ducts to equipment.

L. Connect diffusers or light troffer boots to ducts with maximum 60-inch lengths of flexible duct clamped or strapped in place.

M. Connect flexible ducts to metal ducts with draw bands.

N. Install duct test holes where required for testing and balancing purposes.

3.2 FIELD QUALITY CONTROL

A. Tests and Inspections:

1. Operate dampers to verify full range of movement.
2. Inspect locations of access doors and verify that purpose of access door can be performed.
3. Inspect turning vanes for proper and secure installation.

END OF SECTION
SECTION 23 73 13

MODULAR INDOOR CENTRAL-STATION AIR-HANDLING UNITS with ENERGY RECOVERY HEAT WHEEL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Constant-air-volume, single-zone air-handling units with energy recovery wheel.

1.3 ACTION SUBMITTALS

A. Product Data: For each air-handling unit with energy recovery wheel indicated.

1. Unit dimensions and weight.
2. Cabinet material, metal thickness, finishes, insulation, and accessories.
3. Fans:
 a. Certified fan-performance curves with system operating conditions indicated.
 b. Certified fan-sound power ratings.
 c. Fan construction and accessories.
 d. Motor ratings, electrical characteristics, and motor accessories.

4. Certified coil-performance ratings with system operating conditions indicated.
5. Dampers, including housings, linkages, and operators.
6. Filters with performance characteristics.

B. Delegated-Design Submittal: For vibration isolation indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames...
1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Floor plans and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Mechanical-room layout and relationships between components and adjacent structural and mechanical elements.
2. Support location, type, and weight.
3. Field measurements.

B. Source quality-control reports.

C. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For air-handling and energy recovery wheel units to include operation, and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Filters: Three (3) sets for each air-handling unit.

1.7 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. NFPA Compliance: Comply with NFPA 90A for design, fabrication, and installation of air-handling units and components.

C. AHRI Certification: Air-handling units and their components shall be factory tested according to AHRI 430, "Performance Rating of Central-Station Air-Handling Unit Supply Fans," and shall be listed and labeled by AHRI.

D. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and Startup."

E. ASHRAE/IES 90.1 Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6 - "Heating, Ventilating, and Air-Conditioning."

F. Comply with NFPA 70.
1.8 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

B. Coordinate sizes and locations of structural-steel support members, if any, with actual equipment provided.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design vibration isolation and seismic-restraint details, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Structural Performance: Casing panels shall be self-supporting and capable of withstanding 133 percent of internal static pressures indicated, without panel joints exceeding a deflection of L/200 where "L" is the unsupported span length within completed casings.

2.2 AIR HANDLING UNIT MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Trane.
 2. YORK; a Johnson Controls company.
 4. VTS
 5. Air Enterprises

2.3 UNIT CASINGS

A. General Fabrication Requirements for Casings:

 1. Forming: Form walls, roofs, and floors with at least two breaks at each joint.
 2. Casing Joints: Sheet metal screws or pop rivets.
 3. Sealing: Seal all joints with water-resistant sealant.
 5. Factory Finish for Galvanized-Steel Casings: Immediately after cleaning and pre-treating, apply manufacturer's standard two-coat, baked-on enamel finish, consisting of prime coat and thermosetting topcoat.
 7. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

B. Casing Insulation and Adhesive:

 1. Materials: ASTM C 1071, Type I.
2. Location and Application: Factory applied with adhesive and mechanical fasteners to the internal surface of section panels downstream from, and including, the cooling-coil section.
 a. Liner Adhesive: Comply with ASTM C 916, Type I.
 b. Mechanical Fasteners: Galvanized steel, suitable for adhesive attachment, mechanical attachment, or welding attachment to duct without damaging liner when applied as recommended by manufacturer and without causing leakage in cabinet.
 c. Liner materials applied in this location shall have air-stream surface coated with a temperature-resistant coating or faced with a plain or coated fibrous mat or fabric depending on service-air velocity.

3. Location and Application: Encased between outside and inside casing.

C. Inspection and Access Panels and Access Doors:

 1. Panel and Door Fabrication: Formed and reinforced, single- or double-wall and insulated panels of same materials and thicknesses as casing.
 2. Inspection and Access Panels:
 a. Fasteners: Two or more camlock type for panel lift-out operation. Arrangement shall allow panels to be opened against air-pressure differential.
 b. Gasket: Neoprene, applied around entire perimeters of panel frames.
 c. Size: Large enough to allow inspection and maintenance of air-handling unit's internal components.

3. Locations and Applications:
 a. Fan Section: Inspection and access panels.
 b. Coil Section: Inspection and access panel.
 c. Damper Section: Inspection and access panels.
 d. Filter Section: Inspection and access panels large enough to allow periodic removal and installation of filters.

D. Condensate Drain Pans:

 1. Fabricated with one percent slope in at least two planes to collect condensate from cooling coils (including coil piping connections, coil headers, and return bends) and from humidifiers and to direct water toward drain connection.
 a. Length: Extend drain pan downstream from leaving face to comply with ASHRAE 62.1.
 b. Depth: A minimum of 2 inches deep.
 2. Double-wall, stainless-steel sheet with space between walls filled with foam insulation and moisture-tight seal.
 3. Drain Connection: Located at lowest point of pan and sized to prevent overflow. Terminate with threaded nipple on one end of pan.
2.4 FAN, DRIVE, AND MOTOR SECTION

A. Fan and Drive Assemblies: Statically and dynamically balanced and designed for continuous operation at maximum-rated fan speed and motor horsepower.

1. Shafts: Designed for continuous operation at maximum-rated fan speed and motor horsepower, and with field-adjustable alignment.
 a. Turned, ground, and polished hot-rolled steel with keyway. Ship with a protective coating of lubricating oil.
 b. Designed to operate at no more than 70 percent of first critical speed at top of fan's speed range.

B. Centrifugal Fan Housings: Formed- and reinforced-steel panels to form curved scroll housings with shaped cutoff and spun-metal inlet bell.

1. Bracing: Steel angle or channel supports for mounting and supporting fan scroll, wheel, motor, and accessories.
2. Horizontal-Flanged, Split Housing: Bolted construction.
3. Housing for Supply Fan: Attach housing to fan-section casing with metal-edged flexible duct connector.
4. Flexible Connector: Factory fabricated with a fabric strip 3-1/2 inches wide attached to 2 strips of 2-3/4-inch-wide, 0.028-inch-thick, galvanized-steel sheet or 0.032-inch-thick aluminum sheets; select metal compatible with casing.
 1) Fabric Minimum Weight: 26 oz./sq. yd.
 2) Fabric Tensile Strength: 480 lbf/inch in the warp and 360 lbf/inch in the filling.
 3) Fabric Service Temperature: Minus 40 to plus 200 deg F.

C. Fan Shaft Bearings:

1. Pre-lubricated and Sealed, Ball Bearings: Self-aligning, pillow-block type with a rated life of 120,000 hours according to ABMA 9.

D. Belt Drives: Factory mounted, with adjustable alignment and belt tensioning, and with 1.5 service factor based on fan motor.

1. Pulleys: Cast iron or cast steel with split, tapered bushing; dynamically balanced at factory.
2. Motor Pulleys: Adjustable pitch for use with 5-hp motors and smaller. Select pulley size so pitch adjustment is at the middle of adjustment range at fan design conditions.
3. Belts: Oil resistant, non-sparking, and non-static; in matched sets for multiple-belt drives.
4. Belt Guards: Comply with requirements specified by OSHA and fabricate according to SMACNA’s "HVAC Duct Construction Standards"; 0.1046-inch-thick, 3/4-inch diamond-mesh wire screen, welded to steel angle frame; prime coated.
E. Internal Vibration Isolation: Fans shall be factory mounted with manufacturer's standard vibration isolation mounting devices having a minimum static deflection of 1 inch.

F. Motor: Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 23 05 13 "Common Motor Requirements for HVAC Equipment."

1. Enclosure Type: Totally enclosed, fan cooled.
2. NEMA Premium (TM) efficient motors as defined in NEMA MG 1.
3. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
5. Mount unit-mounted disconnect switches on exterior of unit.

2.5 COIL SECTION

A. General Requirements for Coil Section:
 1. Comply with AHRI 410.
 2. Fabricate coil section to allow removal and replacement of coil for maintenance and to allow in-place access for service and maintenance of coil(s).
 3. Coils shall not act as structural component of unit.
 4. Corrosion-Resistant Coating: Coat coils with a corrosion-resistant coating capable of withstanding a 3,000-hour salt-spray test according to ASTM B 117.

 a. Standards:
 1) ASTM B-117 for salt spray.
 b. Application: Spray.
 c. Thickness: 1 mil.
 d. Gloss: Minimum gloss of 50 gloss units on a single-angle 60-degree meter.
 e. UV Protection: Spray-applied topcoat.

B. HYDRONIC CHILLED WATER COIL
 1. Performance Ratings: Tested and rated according to AHRI 410 and ASHRAE 33.
 2. Minimum Working-Pressure/Temperature Ratings: 200 psig, 325 deg F.
 4. Tubes: ASTM B 743 copper, minimum 0.020 inch thick.
 5. Fins: Aluminum, minimum 0.010 inch thick.
 6. Headers: Cast iron with cleaning plugs and drain and air vent tappings.
 7. Frames: Galvanized-steel channel frame, minimum 0.064 inch thick for slip-in or flanged mounting.

2.6 HEAT WHEEL SECTION

A. Heat Wheel:
1. Casing:
 a. Manufacturer's standard construction with standard factory finish.
 b. Slide-in, slide-out cassette style for easy access.
 c. Integral purge section, limiting carryover of return air to between 5.0 percent at
 \(<\text{Insert number}\) inch and 10.0 percent at \(<\text{Insert number}\) inch differential
 pressure.
 d. Casing seals on periphery of rotor and on duct divider and purge section.
 e. Support vertical rotors on grease-lubricated ball bearings having or permanently
 lubricated bearings with an bearing life of 200,000 hours. Support horizontal
 rotors on tapered roller bearing.

2. Rotor: Aluminum or polymer segmented wheel, strengthened with radial spokes.
3. Rotor: Aluminum or polymer segmented wheel, strengthened with radial spokes, with
 nontoxic, noncorrosive, silica-gel coating.
4. Rotor: Aluminum, metallic, or polymer segmented wheel, strengthened with radial
 spokes impregnated with nonmigrating, water-selective, four-angstrom, molecular-sieve
 desiccant coating.
5. Drive: Fractional horsepower motor and gear reducer, with speed changed by variable-
 frequency motor controller and self-adjusting multilink belt around outside of rotor.
 a. Comply with NEMA designation, temperature rating, service factor, enclosure
 type, and efficiency requirements for motors specified in Section 23 05 13
 "Common Motor Requirements for HVAC Equipment."
 b. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven
 load will not require motor to operate in service factor range above 1.0.

2.7 AIR FILTRATION SECTION

A. General Requirements for Air Filtration Section:
 1. Comply with NFPA 90A.
 2. Provide minimum arrestance according to ASHRAE 52.1, and a minimum efficiency
 reporting value (MERV) according to ASHRAE 52.2.
 3. Provide filter holding frames arranged for flat or angular orientation, with access doors
 on both sides of unit. Filters shall be removable from one side or lifted out from access
 plenum.

B. Disposable Panel Filters:
 1. Factory-fabricated, viscous-coated, flat-panel type.
 2. Thickness: 2 inches.
 3. Dust-Holding Capacity: 0.5 lb.
 4. Initial Resistance: 0.1 inches.
 5. Recommended Final Resistance: 0.5 inches wg.
 7. MERV (ASHRAE 52.2): 7.
2.8 DAMPERS

A. General Requirements for Dampers: Leakage rate, according to AMCA 500, "Laboratory Methods for Testing Dampers for Rating," shall not exceed 2 percent of air quantity at 2000-fpm face velocity through damper and 4-inch wg pressure differential.

B. Damper Operators: By the BAS Contractor.

C. Outdoor- and Return-Air Mixing Dampers: Parallel-blade, aluminum dampers mechanically fastened to steel operating rod in reinforced cabinet. Connect operating rods with common linkage and interconnect linkages so dampers operate simultaneously.

2.9 CAPACITIES AND CHARACTERISTICS

A. Refer to Drawings for equipment scheduled and parameters.

2.10 SOURCE QUALITY CONTROL

A. Fan Sound-Power Level Ratings: Comply with AMCA 301, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data." Test fans according to AMCA 300, "Reverberant Room Method for Sound Testing of Fans." Fans shall bear AMCA-certified sound ratings seal.

B. Fan Performance Rating: Factory test fan performance for airflow, pressure, power, air density, rotation speed, and efficiency. Rate performance according to AMCA 210, "Laboratory Methods of Testing Fans for Aerodynamic Performance Rating."

C. Water Coils: Factory tested to 300 psig according to AHRI 410 and ASHRAE 33.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine casing insulation materials and filter media before air-handling unit installation. Reject insulation materials and filter media that are wet, moisture damaged, or mold damaged.

C. Examine roughing-in for hydronic, and condensate drainage piping systems and electrical services to verify actual locations of connections before installation.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

E. Install packaged, indoor, heat wheel energy-recovery units, so supply and exhaust airstreams flow in opposite directions, and rotation is away from exhaust side to purge section to supply side.
1. Install access doors in both supply and exhaust ducts, both upstream and downstream, for access to wheel surfaces, drive motor, and seals.
2. Install removable panels or access doors between supply and exhaust ducts on building side for bypass during startup.
3. Access doors and panels are specified in Section 23 33 00 "Air Duct Accessories."

3.2 INSTALLATION

A. Equipment Mounting:

1. Install air-handling units on cast-in-place concrete equipment bases. Retain one of two subparagraphs below. Retain first for projects in seismic areas; retain second for projects not in seismic areas. Indicate vibration isolation and seismic-control device type and minimum deflection in supported equipment schedule on Drawings.
2. Comply with requirements for vibration isolation devices as recommended by the Factory.

B. Arrange installation of units to provide access space around air-handling units for service and maintenance.

C. Do not operate fan system until filters (temporary or permanent) are in place. Replace temporary filters used during construction and testing, with new, clean filters.

D. Install filter-gage, static-pressure taps upstream and downstream of filters. Mount filter gages on outside of filter housing or filter plenum in accessible position. Provide filter gages on filter banks, installed with separate static-pressure taps upstream and downstream of filters.

3.3 CONNECTIONS

A. Comply with requirements for piping specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Comply with requirements for ductwork according to Section 23 31 13 "Metal Ducts."

C. Install piping adjacent to air-handling unit to allow service and maintenance.

D. Connect condensate drain pans using NPS 1-1/4, ASTM B 88, Type M copper tubing. Extend to nearest equipment or floor drain. Construct deep trap at connection to drain pan and install cleanouts at changes in direction.

E. Chilled-Water Piping: Comply with applicable requirements in Section 23 21 13 "Hydronic Piping" and Section 23 21 16 "Hydronic Piping Specialties." Install shutoff valve and union or flange at each coil supply connection. Install balancing valve and union or flange at each coil return connection.

F. Connect duct to air-handling units with flexible connections. Comply with requirements in Section 23 33 00 "Air Duct Accessories."
3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

B. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

C. Tests and Inspections:
 1. Leak Test: After installation, fill water coils with water, and test coils and connections for leaks.
 2. Charge refrigerant coils with refrigerant and test for leaks.
 3. Fan Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

D. Air-handling unit or components will be considered defective if unit or components do not pass tests and inspections.

E. Prepare test and inspection reports.

3.5 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.
 1. Complete installation and startup checks according to manufacturer's written instructions.
 2. Verify that shipping, blocking, and bracing are removed.
 3. Verify that unit is secure on mountings and supporting devices and that connections to piping, ducts, and electrical systems are complete. Verify that proper thermal-overload protection is installed in motors, controllers, and switches.
 4. Verify proper motor rotation direction, free fan wheel rotation, and smooth bearing operations. Reconnect fan drive system, align belts, and install belt guards.
 5. Verify that bearings, pulleys, belts, and other moving parts are lubricated with factory-recommended lubricants.
 6. Verify that outdoor- and return-air mixing dampers open and close, and maintain minimum outdoor-air setting.
 7. Comb coil fins for parallel orientation.
 8. Verify that proper thermal-overload protection is installed for electric coils.
 10. Verify that manual and automatic volume control and fire and smoke dampers in connected duct systems are in fully open position.

B. Starting procedures for air-handling units include the following:
1. Energize motor; verify proper operation of motor, drive system, and fan wheel. Adjust fan to indicated rpm. Replace fan and motor pulleys as required to achieve design conditions.
2. Measure and record motor electrical values for voltage and amperage.
3. Manually operate dampers from fully closed to fully open position and record fan performance.

3.6 ADJUSTING

A. Adjust damper linkages for proper damper operation.

B. Comply with requirements in Section 23 05 93 "Testing, Adjusting, and Balancing for HVAC" for air-handling system testing, adjusting, and balancing.

3.7 CLEANING

A. After completing system installation and testing, adjusting, and balancing air-handling unit and air-distribution systems and after completing startup service, clean air-handling units internally to remove foreign material and construction dirt and dust. Clean fan wheels, cabinets, dampers, coils, and filter housings, and install new, clean filters.

3.8 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain air-handling units.

END OF SECTION
SECTION 23 82 39.16 - PROPELLER UNIT HEATERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes propeller unit heaters with hot-water coils.

1.3 DEFINITIONS

A. CWP: Cold working pressure.

B. PTFE: Polytetrafluoroethylene plastic.

C. TFE: Tetrafluoroethylene plastic.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include rated capacities, operating characteristics, furnished specialties, and accessories.

B. Shop Drawings:

1. Include plans, elevations, sections, and details.

2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

3. Include location and size of each field connection.

4. Include details of anchorages and attachments to structure and to supported equipment.

5. Include equipment schedules to indicate rated capacities, operating characteristics, furnished specialties, and accessories.

6. Indicate location and arrangement of piping valves and specialties.

7. Indicate location and arrangement of integral controls.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Floor plans, reflected ceiling plans, and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Structural members to which propeller unit heaters will be attached.
2. Method of attaching hangers to building structure.
3. Items penetrating ceiling, including the following:
 a. Lighting fixtures.
 b. Air outlets and inlets.
 c. Sprinklers.

B. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For propeller unit heaters to include in emergency, operation, and maintenance manuals.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Airtherm; a Mestek company
2. Modine
3. Marley
4. Trane

2.2 DESCRIPTION

A. Assembly including casing, coil, fan, and motor in horizontal discharge configuration with adjustable discharge louver.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Comply with UL 2021.

D. Comply with UL 823.
2.3 PERFORMANCE REQUIREMENTS

A. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and Startup."

B. ASHRAE/IESNA 90.1 Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6 - "Heating, Ventilating, and Air-Conditioning."

2.4 HOUSINGS

A. Finish: Manufacturer's standard baked enamel applied to factory-assembled and -tested propeller unit heaters before shipping.

B. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

C. Discharge Louver: Adjustable fin diffuser for horizontal units and conical diffuser for vertical units.

2.5 COILS

A. General Coil Requirements: Test and rate hot-water propeller unit-heater coils according to ASHRAE 33.

B. Hot-Water Coil: Copper tube, minimum 0.025-inch wall thickness, with mechanically bonded aluminum fins spaced no closer than 0.1 inch and rated for a minimum working pressure of 200 psig and a maximum entering-water temperature of 325 deg F, with manual air vent. Test for leaks to 350 psig underwater.

2.6 FAN AND MOTOR

A. Fan: Propeller type with aluminum wheel directly mounted on motor shaft in the fan venturi.

B. Motor: Permanently lubricated. Comply with requirements in Section 23 05 13 "Common Motor Requirements for HVAC Equipment."

2.7 CONTROLS

A. Control Devices:

1. Wall-mounted thermostat.
PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine areas to receive propeller unit heaters for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
B. Examine roughing-in for piping and electrical connections to verify actual locations before unit-heater installation.
C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION
A. Install propeller unit heaters to comply with NFPA 90A.
B. Install propeller unit heaters level and plumb.
C. Suspend propeller unit heaters from structure with all-thread hanger rods and spring hangers with vertical-limit stop. Hanger rods and attachments to structure are specified in Section 23 05 29 "Hangers and Supports for HVAC Piping and Equipment." Vibration hangers are specified in Section 23 05 48.13 "Vibration Controls for HVAC."
D. Install wall-mounted thermostats and switch controls in electrical outlet boxes at heights to match lighting controls. Verify location of thermostats and other exposed control sensors with Drawings and room details before installation.

3.3 CONNECTIONS
A. Drawings indicate general arrangement of piping, fittings, and specialties. Piping installation requirements are specified in the following Sections:
 1. Section 23 21 13 "Hydronic Piping."
 2. Section 23 21 16 "Hydronic Piping Specialties."
B. Install piping adjacent to machine to allow service and maintenance.
C. Connect piping to propeller unit heater's factory, hot-water piping package. Install the piping package if shipped loose.
D. Comply with safety requirements in UL 1995.
E. Unless otherwise indicated, install union and gate or ball valve on supply-water connection and union and calibrated balancing valve on return-water connection of propeller unit heater. Hydronic specialties are specified in Section 23 21 13 "Hydronic Piping" and Section 23 21 16 "Hydronic Piping Specialties."
F. Ground equipment according to Section 26 05 26 "Grounding and Bonding for Electrical Systems."
G. Connect wiring according to Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."

3.4 FIELD QUALITY CONTROL

A. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

1. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
2. Operate electric heating elements through each stage to verify proper operation and electrical connections.
3. Test and adjust controls and safety devices. Replace damaged and malfunctioning controls and equipment.

B. Units will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

3.5 ADJUSTING

A. Adjust initial temperature set points.

B. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain propeller unit heaters.

END OF SECTION 23 82 39.16
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, apply to this Section and to all of Divisions 26.

1.2 SUMMARY

A. Section Includes:

1. General requirements applicable to components and systems included in Electric Contract.

B. Products Installed but Not Furnished Under This Section

1. Make electrical connections to equipment shown on Drawings and furnished by other Contractors. Obtain approved wiring diagrams and location drawings for roughing in and final connections from Contractor furnishing equipment.

1.3 REFERENCES

A. AIA American Institute of Architects
B. ADA Americans with Disabilities Act
C. AISC American Institute of Steel Construction
D. ANSI American National Standards Institute
E. ASTM ASTM International
F. IBC International Building Code
G. IEEE Institute of Electrical and Electronics Engineers, Inc. (The)
H. IES Illuminating Engineering Society of North America
I. NEC National Electrical Code
J. NEMA National Electrical Manufacturers' Association
K. NETA International Electrical Testing Association
L. NFPA National Fire Protection Association
M. UL Underwriters' Laboratories, Inc.

1.4 DEFINITIONS

A. “Existing”: Equipment depicted on Drawings with an “E” or “EX” designation denotes existing equipment to remain.
B. “Modify”: Disconnect equipment, remove circuitry to a point beyond demolition and tag for reuse, store equipment for reuse and reinstall as specified in Contract Documents. Modify/extend circuitry to new equipment locations and reconnect with necessary control/monitoring wiring (in Conduit) as required. The Contractor is responsible for protecting equipment from damage during removal, storage and reinstallation.

C. “Replace”: Existing equipment to replace. Refer to relevant Drawing Project Manual Specification for additional information and requirements.

1.5 SYSTEM DESCRIPTIONS

A. Inspection of Existing Systems: Inspect each existing system scheduled for modification in presence of Authorized Owner’s Representative and issue a deficiency report to Owner and Architect listing conditions found prior to any removals, relocations, procurement, or additions. Modified systems include (but are not limited to):

1. Motor Control Center with NO/NC Contacts as required.
2. PLC/BAS System.
3. Conduit: Wiring to reconnect existing to remaining Pump Motors.

B. Design Requirements - Provide complete systems, properly tested, balanced, and ready for operation including necessary details, items and accessories although not expressly shown or specified, including (but not limited to):

1. Wiring and raceway for work specified in Project Manual and/or shown on Drawings.
2. Electrical devices and equipment for work specified in Project Manual and/or shown on Drawings.
3. Systems included, but not limited to:
 a. Modifications of MCC buckets to fit fused switches to feed new external mounted VFDs (to be provided other, but they would be and tested by electrical contractor). Provide conduit and wiring from VFD to MCC 8 PLC Cabinet.
 b. Electrical connections including providing local disconnecting switches for the equipment to be served.
 c. Control system- providing connecting conduit-wiring to respective VFDs for Pump Motor systems and signals to existing PLC/SCADA. Provide signal to building automation network (BACNET) system providing new conduit-wiring.
 d. Computer network system.
 e. Security system.
 f. Emergency lighting.

C. Electric Layouts: Arrange MCC panels; disconnect switches, equipment, raceways, and similar components neatly, orderly and symmetrically. Provide 3/4-inch fire treated, gray painted plywood backboards for surface mounted panels, disconnect switches, enclosed breakers, and similar equipment. Arrangements shown on Drawings are diagrammatic only; provide and adjust raceways, wiring, and other components as required.
D. Power Interruptions and Scheduled Outages: Coordinate scheduling of all power interruptions and outages with Owner. Confirm with Owner and/or Utility Company prior to interruption of power, which building systems are considered critical and must remain operational during the interruption. If a scheduled power outage is to extend beyond one standard workday, provide temporary power to operate critical building systems (including, but not limited to fire alarm system, security system, building access control system, and building energy management control system).

1.6 SUBMITTALS

A. General Division 26 submittal requirements:

1. Comply with requirements of SECTION 01 33 00 – SUBMITTAL PROCEDURES and as modified below.

2. Product Data: Submit product data for items listed in individual technical section. Clearly identify manufacturer, pertinent design, function, materials, construction and performance data specifically addressing specification description and Contract Document requirements of item. Strike out products that are not applicable to item being submitted, where more than one product is indicated on manufacturer product literature.

 a. Cover Sheet: Attach cover sheet, identified in Section 01 33 00, to Product Data of each item submitted. Provide cover sheet for only one type of item with related accessories, equipment with related components. Do not combine unrelated items under the same cover sheet.

 b. Specified Equivalent Product Data: Submit manufacturer’s product information including product literature, technical specifications and descriptions, performance data and, and similar items to demonstrate compatibility with Basis-of-Design Equipment as specified.

3. Shop Drawings: Submit detailed drawings for electrical equipment layouts, showing exact sizes and locations for approval before beginning work.

 a. Do not proceed with installation of systems in each area until agreement is reached with all concerned on exact arrangements for each room or area, unless otherwise directed by Architect. If Contractor proceeds prior to resolving conflicts, Contractor shall modify installed Work as required to permit other systems to proceed with a coordinated installation.

 b. Specified Equivalent Drawings: Submit detailed drawings of proposed Specified Equivalents, indicating proposed installation of equipment and showing maintenance clearances, required service removal space other pertinent revisions to arrangement and configuration shown in Contract Documents.

4. Samples: On all submittals, indicate standard factory color and factory finish surfaces. Where more than one color is available, selection will be made by Architect from manufacturer’s full range of colors. Electronically transmitted color samples are not acceptable.
1.7 ACTION SUBMITTALS

A. Product Data: For each type of product. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for sleeves and sleeve seals. Include rated capacities, and furnished specialties and accessories.

1. Penetration firestopping materials.
2. Penetration firestopping assembly drawings.

1.8 QUALITY ASSURANCE

A. Regulatory Requirements:

1. Codes and Standards: Comply with applicable Federal, State and local building and electrical codes, laws, ordinances, and regulations, and comply with applicable NFPA, National Electrical Code and utility company requirements and regulations. Provide Underwriters Laboratories Seal on all materials.

2. Permits and Inspections: Obtain approvals, tests, and inspections required by Architect, Engineer, local electrical inspector, agent or agency specified in Project Manual, or National, State, or local codes and ordinances.
 a. Schedule electrical inspection by an agency acceptable to the local authority having jurisdiction and submit final inspection certificate to Architect.
 b. Furnish materials and labor necessary for tests and pay costs associated with tests and inspections.
 c. Conduct tests under load for load balancing and where required by codes, regulations, ordinances, or technical Specification.

3. Electrical Components, Devices, and Accessories: UL Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction and marked for intended use.

1.9 DELIVERY, STORAGE AND HANDLING

A. Storage and Protection:

1. Take precautions to store materials and products to protect finishes and not permit dust and dirt to penetrate equipment.
2. Replace equipment damaged beyond reasonable repair as required by Architect.
3. Refinish any equipment with marks, stains, scratches, dents, and other aesthetic damage that doesn’t impede operation of equipment as required by Architect.

1.10 COORDINATION OF WORK

A. New Construction:

1. Openings, Chases, Recesses, Sleeves, Lintels and Bucks (required for admission of Electric Contract systems and components): Coordinate requirements with General
Contractor for inclusion in General Contract. Furnish necessary information (e.g. locations and sizes) to General Contractor in ample time for installation of systems and components included in Electric Contract.

2. Anchor Bolts: Deliver to Contractor responsible for General Work anchor bolts required for Electric Contract construction that are to be installed in construction included in General Contract.

3. Locate settings, check locations as installation in General Contract progresses, and provide templates or holding fixtures as required to maintain proper accuracy.

B. Existing Construction:

1. Unless otherwise specified, employ Contractor responsible for General Work for all cutting, patching, repairing and replacing of general work required for installation of systems and components included in Electric Work. Secure approval from Architect’s representative before cutting.

2. Anchor Bolts: Deliver to Contractor responsible for General Work anchor bolts required for Electric Work construction that are to be installed in construction included in General Contract. Provide templates or holding fixtures as required to maintain proper accuracy.

3. Access Doors: Provide access doors shown on Drawings, or as required for access to pull boxes, junction boxes, relays and other electrical devices requiring periodic inspection, adjustment or maintenance, where located above or within inaccessible walls or ceilings, and including cutting and patching of adjacent walls and ceilings to match existing materials and finishes.

1.11 ALTERATION PROCEDURES

A. In locations where existing devices are indicated to be disconnected and removed and existing power circuit or communications cable is not scheduled to be reused:

1. Remove circuit conductors back to source.

2. Modify panel directory for that circuit.

3. Remove all existing exposed and unexposed accessible raceway.

4. Provide blank cover plates or wall infill as described below:

 a. For single gang and multi-gang switch boxes in public or occupied spaces; stainless steel coverplates.

 b. For single gang and multi-gang boxes in un-occupied spaces; stainless steel, galvanized steel or coverplates.

 c. For boxes larger than standard boxes in public or occupied spaces and provide wall infill, matching sub-surface and finished surface conditions. Paint wall to match surrounding finishes.
d. For boxes larger than standard boxes in un-occupied spaces; 18 gage galvanized sheet metal coverplate with machined edges. Prime and paint to match surrounding finish conditions.

5. Patch and paint walls where disturbed by the electrical work.

B. In locations where existing devices are to remain in place, ensure circuits feeding such devices remain operational. Modify existing circuits as required to allow new construction to occur and to maintain necessary circuitry to existing devices for complete and proper operation.

C. In locations where entire existing system is being removed or modified:

1. Refer to individual system specification sections for documentation and inspection requirements prior to any alteration work on any system.
2. Take all necessary measures to ensure that down time will not compromise safety.
3. Notify Owner, Architect, Utility Company and other Contractors not less than 2 weeks prior to interruptions in service.
4. Coordinate work schedule to minimize duration of system outage during hours when building is occupied.

PART 2 - PRODUCTS

2.1 SLEEVE AND SLEEVE SEALS

A. Comply with requirements for sealants in fire rated penetrations specified in Section 26 05 44; “Sleeve and Sleeve Seals for Electrical Systems.”

B. Submit Manufacturers Product Data Sheets for each type of product selected. Certify that Firestop Material is free of asbestos and lead paint, and complies with local regulations.

1. Certification by firestopping manufacturer that products supplied comply with local regulations controlling use of volatile organic compounds (VOCs) and are nontoxic to building occupants.

C. Submit system design listings, including illustrations from qualified testing and inspection agency that is applicable to each firestop configuration.

D. Submit a project specific Penetration Firestopping Schedule indicating where each firestop configuration will be used.

2.2 GROUT

A. Description: ASTM C 1107, Grade B, non-shrink, non-metallic, high strength grout, suitable for interior and exterior, above and below grade applications.

2. Design Mix: 5000-psi, 28-day compressive strength.
2.3 SEALANTS

A. Comply with requirements for sealants in non-fire rated penetrations specified in Section 07 92 00 "Joint Sealants."

B. Mildew-Resistant, Single-Component, Acid-Curing Silicone Joint Sealant: ASTM C 920, Type S, Grade NS, Class 25, for Use NT.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 a. BASF Building Systems; Omniplus.
 b. Dow Corning Corporation; 786 Mildew Resistant.
 c. GE Advanced Materials - Silicones; Sanitary SCS1700.

2.4 ACCESS DOORS

A. Provide Access Panels and Doors for Electrical Items that are behind the finished surfaces or otherwise concealed. Access Doors and Frames shall be located in coordination with Work of other trades and/or Project Architect.

2.5 PAINT AND FINISHES

A. Provide painting and finishing of MCC’s Panel Switches per manufacturer’s recommendations.

PART 3 - EXECUTION

3.1 CUTTING AND PATCHING

A. Do not cut waterproofed floors or walls for admission of any equipment or materials and do not pierce any structural members without written permission from Architect.

B. Furnish and install sleeves, inserts, panels, raceways, boxes, and similar infrastructure, ahead of general construction work and maintain Contractor personnel at Site during installation of general construction work to be responsible for and to maintain these items in position.

C. Unless otherwise noted elsewhere in Contract Documents, bear expense of cutting, patching, repairing or replacing of work of other trades made necessary by any fault, error or tardiness on part of Electrical Contract or damage done by Electric Contract. Employ and pay Contractor whose work is involved.

3.2 DEMONSTRATION OF COMPLETE ELECTRICAL SYSTEMS

A. Thoroughly demonstrate and instruct Owner's designated representative in care and operation of electrical systems and equipment furnished and installed in Electric Contract.

 1. System Operator: Maintain competent operator at building for at least 2 days in 2 consecutive weeks after Owner takes occupancy of major parts of building to operate systems and equipment in presence of Owner's representative.
2. Factory Representative: In addition to demonstration and instruction specified above, provide technically qualified factory representatives from manufacturers of major equipment, to train Owner's representatives in care and operation of applicable products as specified in applicable technical sections of Division 26.

3. Coordinate and schedule time and place of all training through the Architect at the Owner’s convenience.

4. Submit letters attesting to satisfactory completion of instructions, including date of completion of instruction, names of persons in attendance, and signature of Owner’s authorized representative.

5. Architect's representative must be present when Owner's representatives participate in instruction.

6. The following equipment and systems are included:

a. New ATC control system including local & remote startups of all HVAC Systems.
 b. Lighting system.
 c. Clock and program system.
 d. Computer network systems.
 e. Telephone system.
 f. Security system.
 g. Lightning protection system.

3.3 GROUTING

 A. Mix and install grout for electrical equipment base bearing surfaces, other equipment base plates, and anchors.
 B. Clean surfaces that will come into contact with grout.
 C. Provide forms as required for placement of grout.
 D. Avoid air entrapment during placement of grout.
 E. Place grout, completely filling equipment bases.
 F. Place grout on concrete bases and provide smooth bearing surface for equipment.
 G. Place grout around anchors.
 H. Cure placed grout.

3.4 SEALANTS

 A. Install sealants according to the requirements of Manufacturer’s Instructions of Joint Sealant Materials to be used.
3.5 FIRESTOPPING

A. Install firestopping according to the requirements of Manufacturer’s Instructions of Penetration Firestopping to be used.

B. Applied Fireproofing:

1. Coordinate the installation of hangers, supports and accessories from the structural steel with the fireproofing installation. Install all hangers and supports prior to installation of fireproofing.

2. Repair or replace existing fireproofing removed as a part of Electrical Work installation.

 a. Employ the services of an approved fireproofing contractor to repair or replace the fireproofing by patching any areas that have been removed or damaged due to the installation of work after the completion of the fireproofing.

C. Repaired or replacement fireproofing shall match the fireproofing adjacent to the repaired area. All warranties shall be maintained.

END OF SECTION
SECTION 26 05 19

LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Copper building wire rated 600 V or less.
 2. Fire-alarm wire and cable.
 3. Connectors, splices, and terminations rated 600 V and less.

B. Related Requirements:
 1. Section 26 05 23 "Control-Voltage Electrical Power Cables" for control systems communications cables and Classes 1, 2, and 3 control cables.
 2. Section 27 13 13 "Communications Copper Backbone Cabling" for twisted pair cabling used for data circuits.
 3. Section 27 15 13 "Communications Copper Horizontal Cabling" for twisted pair cabling used for data circuits.

1.3 DEFINITIONS

A. RoHS: Restriction of Hazardous Substances.

B. VFC: Variable-frequency controller.

C. VFD: Variable Frequency Drive.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Product Schedule: Indicate type, use, location, and termination locations.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For manufacturer's authorized service representative.
AIR HANDLING UNIT REPLACEMENT DELAWARE TECHNICAL COMMUNITY COLLEGE
WILMINGTON, DELAWARE GEORGE CAMPUS - EAST BUILDING

B. Field quality-control reports.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of NETA.

1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

PART 2 - PRODUCTS

2.1 COPPER BUILDING WIRE

A. Description: Flexible, insulated and uninsulated, drawn copper current-carrying conductor with an overall insulation layer or jacket, or both, rated 600 V or less.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Alpha Wire Company.
2. Belden Inc.
3. Okonite Company (The).
5. WESCO.

C. Standards:

1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
2. RoHS compliant.
3. Conductor and Cable Marking: Comply with wire and cable marking according to UL's "Wire and Cable Marking and Application Guide."

D. Conductors: Copper, complying with ASTM B3 for bare annealed copper and with ASTM B496 for stranded conductors.

E. Conductor Insulation:

1. Type USE-2 and Type SE: Comply with UL 854.
2. Type TC-ER: Comply with NEMA WC 70/ICEA S-95-658 and UL 1277.
3. Type THHN and Type THWN-2: Comply with UL 83.
4. Type THW and Type THW-2: Comply with NEMA WC-70/ICEA S-95-658 and UL 83.
5. Type UF: Comply with UL 83 and UL 493.

F. Shield:

1. Type TC-ER: Cable designed for use with VFCs, with oversized crosslinked polyethylene insulation, dual spirally wrapped copper tape shields and three bare symmetrically applied ground wires, and sunlight- and oil-resistant outer PVC jacket.
2.2 FIRE-ALARM WIRE AND CABLE

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Allied Wire & Cable Inc.
2. Draka Cableteq USA; a Prysmian Group company.
3. Genesis Cable Products; Honeywell International, Inc.
4. Rockbestos-Suprenant Cable Corp.
5. Superior Essex Inc.
6. West Penn Wire.

B. Signaling Line Circuits: Twisted, shielded pair, not less than No. 18 AWG.

1. Circuit Integrity Cable: Twisted shielded pair, NFPA 70, Article 760, Classification CI, for power-limited fire-alarm signal service Type FPL. NRTL listed and labeled as complying with UL 1424 and UL 2196 for a two-hour rating.

C. Non-Power-Limited Circuits: Solid-copper conductors with 600-V rated, 75 deg C, color-coded insulation, and complying with requirements in UL 2196 for a two-hour rating.

1. Low-Voltage Circuits: No. 16 AWG, minimum, in pathway.
2. Line-Voltage Circuits: No. 12 AWG, minimum, in pathway.
3. Multiconductor Armored Cable: NFPA 70, Type MC, copper conductors, Type TFN/THHN conductor insulation, copper drain wire, copper shielded with overall outer jacket with red identifier stripe, NTRL listed for fire-alarm and cable tray installation, plenum rated.

2.3 CONNECTORS AND SPLICES

A. Description: Factory-fabricated connectors, splices, and lugs of size, ampacity rating, material, type, and class for application and service indicated; listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. 3M Electrical Products.
2. AFC Cable Systems; a part of Atkore International.
4. Ideal Industries, Inc.
5. ILSCO.
6. O-Z/Gedney; a brand of Emerson Industrial Automation.
7. Thomas & Betts Corporation; A Member of the ABB Group.

C. Jacketed Cable Connectors: For steel and aluminum jacketed cables, zinc die-cast with set screws, designed to connect conductors specified in this Section.

D. Lugs: One piece, seamless, designed to terminate conductors specified in this Section.
1. Material: Copper.
2. Type: Two hole with standard / long barrels.
3. Termination: Compression.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

A. Feeders: Copper; solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

B. Feeders: Copper for feeders smaller than No. 4 AWG; copper or aluminum for feeders No. 4 AWG and larger. Conductors shall be solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

C. Branch Circuits: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

D. Branch Circuits: Copper. Solid for No. 12 AWG and smaller; stranded for No. 10 AWG and larger.

E. VFC Output Circuits Cable: Extra-flexible stranded for all sizes.

G. PV Circuits: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS

A. Service Entrance: Type USE, single conductor in raceway Multiconductor cable, Type SE.

B. Exposed Feeders: Type THHN/THWN-2, single conductors in raceway Type XHHW-2, single conductors in raceway.

C. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspaces: Type THHN/THWN-2, single conductors in raceway.

D. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN/THWN-2, single conductors in raceway Underground feeder cable, Type UF.

E. Feeders Installed below Raised Flooring: Type THHN/THWN-2, single conductors in raceway.

F. Feeders in Cable Tray: Type THHN/THWN-2, single conductors in raceway Type XHHW-2, single conductors larger than No. 1/0 AWG.

G. Exposed Branch Circuits, Including in Crawlspaces: Type THHN/THWN-2, single conductors in raceway.
H. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN/THWN-2, single conductors in raceway.

I. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN/THWN-2, single conductors in raceway.

J. Branch Circuits Installed below Raised Flooring: Type THHN/THWN-2, single conductors in raceway.

K. Branch Circuits in Cable Tray: Type THHN/THWN-2, single conductors in raceway. Type XHHW-2, single conductors larger than No. 1/0 AWG.

L. Cord Drops and Portable Appliance Connections: Type SO, hard service cord with stainless-steel, wire-mesh, strain relief device at terminations to suit application.

M. VFC Output Circuits: Type XHHW-2 in metal conduit / Type TC-ER cable with braided shield.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

A. Conceal cables in finished walls, ceilings, and floors unless otherwise indicated.

B. Complete raceway installation between conductor and cable termination points according to Section 26 05 33 "Raceways and Boxes for Electrical Systems" prior to pulling conductors and cables.

C. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.

D. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.

E. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.

F. Support cables according to Section 26 05 29 "Hangers and Supports for Electrical Systems."

G. Complete cable tray systems installation according to Section 26 05 36 "Cable Trays for Electrical Systems" prior to installing conductors and cables.

3.4 INSTALLATION OF FIRE-ALARM WIRING

A. Comply with NECA 1 and NFPA 72.

B. Wiring Method: Install wiring in metal pathway:

1. Install plenum cable in environmental airspaces, including plenum ceilings.
2. Fire-alarm circuits and equipment control wiring associated with fire-alarm system shall be installed in a dedicated pathway system. This system shall not be used for any other wire or cable.

C. Wiring Method:

1. Cables and pathways used for fire-alarm circuits, and equipment control wiring associated with fire-alarm system, may not contain any other wire or cable.
2. Fire-Rated Cables: Use of two-hour, fire-rated fire-alarm cables, NFPA 70, Types “FPL” Cables.
3. Signaling Line Circuits: Power-limited fire-alarm cables may be installed in the same cable or pathway as signaling line circuits.

D. Wiring within Enclosures: Separate power-limited and non-power-limited conductors as recommended by manufacturer. Install conductors parallel with or at right angles to sides and back of the enclosure. Bundle, lace, and train conductors to terminal points with no excess. Connect conductors that are terminated, spliced, or interrupted in any enclosure associated with fire-alarm system to terminal blocks. Mark each terminal according to system's wiring diagrams. Make all connections with approved crimp-on terminal spade lugs, pressure-type terminal blocks, or plug connectors.

E. Cable Taps: Use numbered terminal strips in junction, pull, and outlet boxes; cabinets; or equipment enclosures where circuit connections are made.

F. Color-Coding: Color-code fire-alarm conductors differently from the normal building power wiring. Use one color-code for alarm circuit wiring and another for supervisory circuits. Color-code audible alarm-indicating circuits differently from alarm-initiating circuits. Use different colors for visible alarm-indicating devices. Paint fire-alarm system junction boxes and covers red.

G. Risers: Install at least two vertical cable risers to serve the fire-alarm system. Separate risers in close proximity to each other with a minimum one-hour-rated wall, so the loss of one riser does not prevent receipt or transmission of signals from other floors or zones.

H. Wiring to Remote Alarm Transmitting Device: 1-inch conduit between the fire-alarm control panel and the transmitter. Install number of conductors and electrical supervision for connecting wiring as needed to suit monitoring function.

3.5 CONNECTIONS

A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.

B. Make splices, terminations, and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.

1. Use oxide inhibitor in each splice, termination, and tap for aluminum conductors.
C. Wiring at Outlets: Install conductor at each outlet, with at least 6 inches of slack.

3.6 IDENTIFICATION
A. Identify and color-code conductors and cables according to Section 26 05 53 "Identification for Electrical Systems."
B. Identify each spare conductor at each end with identity number and location of other end of conductor, and identify as spare conductor.

3.7 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS
A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 26 05 44 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.8 FIELD QUALITY CONTROL
A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.
B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
D. Perform tests and inspections with the assistance of a factory-authorized service representative.
1. After installing conductors and cables and before electrical circuitry has been energized, test service entrance and feeder conductors for compliance with requirements.
2. After installing conductors and cables and before electrical circuitry has been energized, test service entrance and feeder conductors and conductors feeding the following critical equipment and services for compliance with requirements:
3. Perform each of the following visual and electrical tests:
 a. Inspect exposed sections of conductor and cable for physical damage and correct connection according to the single-line diagram.
 b. Test bolted connections for high resistance using one of the following:
 1) A low-resistance ohmmeter.
 2) Calibrated torque wrench.
 3) Thermographic survey.
 c. Inspect compression-applied connectors for correct cable match and indentation.
 d. Inspect for correct identification.
 e. Inspect cable jacket and condition.
 f. Insulation-resistance test on each conductor for ground and adjacent conductors. Apply a potential of 500-V dc for 300-V rated cable and 1000-V dc for 600-V rated cable for a one-minute duration.
g. Continuity test on each conductor and cable.

h. Uniform resistance of parallel conductors.

4. Initial Infrared Scanning: After Substantial Completion, but before Final Acceptance, perform an infrared scan of each splice in conductors No. 3 AWG and larger. Remove box and equipment covers so splices are accessible to portable scanner. Correct deficiencies determined during the scan.

a. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.

b. Record of Infrared Scanning: Prepare a certified report that identifies switches checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

5. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each switch 11 months after date of Substantial Completion.

E. Cables will be considered defective if they do not pass tests and inspections.

F. Prepare test and inspection reports to record the following:

1. Procedures used.
2. Results that comply with requirements.
3. Results that do not comply with requirements, and corrective action taken to achieve compliance with requirements.

END OF SECTION
SECTION 26 05 23

CONTROL-VOLTAGE ELECTRICAL POWER CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Backboards.
2. Category 6 balanced twisted pair cable.
3. Category 6a balanced twisted pair cable.
4. Balanced twisted pair cabling hardware.
5. RS-485 cabling.
6. Low-voltage control cabling.
7. Control-circuit conductors.
8. Identification products.

1.3 DEFINITIONS

A. EMI: Electromagnetic interference.

B. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control and signaling power-limited circuits.

C. Plenum: A space forming part of the air distribution system to which one or more air ducts are connected. An air duct is a passageway, other than a plenum, for transporting air to or from heating, ventilating, or air-conditioning equipment.

D. RCDD: Registered Communications Distribution Designer.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For testing agency, RCDD, layout technician, installation supervisor, and field inspector.
B. Source quality-control reports.
C. Field quality-control reports.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Accredited by NETA.
 1. Testing Agency’s Field Supervisor: Currently certified by BICSI as an RCDD to supervise on-site testing.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
B. Flame Travel and Smoke Density in Plenums: As determined by testing identical products according to NFPA 262, by a qualified testing agency. Identify products for installation in plenums with appropriate markings of applicable testing agency.
 1. Flame Travel Distance: 60 inches or less.
 2. Peak Optical Smoke Density: 0.5 or less.
 3. Average Optical Smoke Density: 0.15 or less.
C. Flame Travel and Smoke Density for Riser Cables in Non-Plenum Building Spaces: As determined by testing identical products according to UL 1666.
D. Flame Travel and Smoke Density for Cables in Non-Riser Applications and Non-Plenum Building Spaces: As determined by testing identical products according to UL 1685.
E. RoHS compliant.

2.2 BACKBOARDS

A. Description: Plywood, fire-retardant treated, 3/4 by 48 by 96 inches. Comply with requirements for plywood backing panels in Section 06 10 00 "Rough Carpentry."
B. Painting: Paint plywood on all sides and edges with flat / eggshell latex paint. Comply with requirements in Section 09 91 23 "Interior Painting."

2.3 CATEGORY 6 BALANCED TWISTED PAIR CABLE

A. Description: Four-pair, balanced-twisted pair cable, with internal spline, certified to meet transmission characteristics of Category 6 cable at frequencies up to 250MHz.
B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. 3M.
2. Belden CDT Networking Division/NORDX.
3. Berk-Tek Leviton; a Nexans/Leviton alliance.
4. Draka USA.
5. General Cable; General Cable Corporation.
7. Hitachi Cable America Inc.
8. Mohawk; a division of Belden Networking, Inc.
9. Superior Essex Inc.

D. Conductors: 100-ohm, 23 AWG solid copper.

E. Shielding/Screening: Unshielded twisted pairs (UTP) Shielded twisted pairs (FTP) Screened twisted pairs (F/UTP) Screened and shielded twisted pairs (F/FTP).

F. Cable Rating: Plenum.

G. Jacket: Blue / Yellow thermoplastic.

2.4 CATEGORY 6a BALANCED TWISTED PAIR CABLE

A. Description: Four-pair, balanced-twisted pair cable, with internal spline, certified to meet transmission characteristics of Category 6a cable at frequencies up to 500MHz.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. 3M.
2. Belden CDT Networking Division/NORDX.
3. Berk-Tek Leviton; a Nexans/Leviton alliance.
4. Draka USA.
5. General Cable; General Cable Corporation.
7. Hitachi Cable America Inc.
8. Mohawk; a division of Belden Networking, Inc.
9. Superior Essex Inc.

C. Standard: Comply with TIA-568-C.2 for Category 6a cables.

D. Conductors: 100-ohm, 23 AWG solid copper.

E. Shielding/Screening: Unshielded twisted pairs (UTP) Shielded twisted pairs (FTP) Screened twisted pairs (F/UTP) Screened and shielded twisted pairs (F/FTP).
F. Cable Rating: Plenum.

G. Jacket: Gray/Blue thermoplastic.

2.5 BALANCED TWISTED PAIR CABLE HARDWARE

A. Description: Hardware designed to connect, splice, and terminate balanced twisted pair copper communications cable.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. 3M.
2. AMP NETCONNECT; a TE Connectivity Ltd. company.
3. Belden CDT Networking Division/NORDX.
4. Berk-Tek Leviton; a Nexans/Leviton alliance.
5. Draka USA.
6. General Cable; General Cable Corporation.
7. Genesis Cable Products; Honeywell International, Inc.
8. Hubbell Premise Wiring.
9. Leviton Manufacturing Co., Inc.
10. Mohawk; a division of Belden Networking, Inc.
11. Panduit Corp.
12. Siemon Co. (The).
13. Superior Essex Inc.

C. General Requirements for Balanced Twisted Pair Cable Hardware:

1. Comply with the performance requirements of Category 6 / Category 6a.
2. Comply with TIA-568-C.2, IDC type, with modules designed for punch-down caps or tools.
3. Cables shall be terminated with connecting hardware of same category or higher.

D. Source Limitations: Obtain balanced twisted pair cable hardware from same manufacturer as balanced twisted pair cable, from single source.

E. Connecting Blocks: 110-style IDC for Category 6. Provide blocks for the number of cables terminated on the block, plus 25 percent spare, integral with connector bodies, including plugs and jacks where indicated.

F. Cross-Connect: Modular array of connecting blocks arranged to terminate building cables and permit interconnection between cables.

1. Number of Terminals per Field: One for each conductor in assigned cables.

G. Patch Panel: Modular panels housing numbered jack units with IDC-type connectors at each jack location for permanent termination of pair groups of installed cables.

1. Features:
a. Universal T568A and T568B wiring labels.
b. Labeling areas adjacent to conductors.
c. Replaceable connectors.
d. 24 or 48 ports.

2. Construction: 16-gauge steel and mountable on 19-inch equipment racks.
3. Number of Jacks per Field: One for each four-pair cable indicated.

H. Patch Cords: Factory-made, four-pair cables in 48-inch lengths; terminated with an eight-position modular plug at each end.

1. Patch cords shall have bend-relief-compliant boots and color-coded icons to ensure performance. Patch cords shall have latch guards to protect against snagging.
2. Patch cords shall have color-coded boots for circuit identification.

I. Plugs and Plug Assemblies:

1. Male; eight position; color-coded modular telecommunications connector designed for termination of a single four-pair 100-ohm unshielded or shielded balanced twisted pair cable.
2. Comply with IEC 60603-7-1, IEC 60603-7-2, IEC 60603-7-3, IEC 60603-7-4, and IEC 60603-7.5.
3. Marked to indicate transmission performance.

J. Jacks and Jack Assemblies:

1. Female; eight position; modular; fixed telecommunications connector designed for termination of a single four-pair 100-ohm unshielded or shielded balanced twisted pair cable.
2. Designed to snap-in to a patch panel or faceplate.
3. Standards:

 a. Category 6, unshielded balanced twisted pair cable shall comply with IEC 60603-7-4.
 b. Category 6, shielded balanced twisted pair cable shall comply with IEC 60603-7.5.
 c. Category 6A, unshielded balanced twisted pair cable shall comply with IEC 60603-7-41.
 d. Category 6A, shielded balanced twisted pair cable shall comply with IEC 60603-7.51.

4. Marked to indicate transmission performance.

K. Faceplate:

1. Four port, vertical single-gang faceplates designed to mount to single-gang wall boxes.
2. Eight port, vertical double-gang faceplates designed to mount to double-gang wall boxes.
4. Metal Faceplate: Stainless steel, complying with requirements in Section 26 27 26 "Wiring Devices."
5. For use with snap-in jacks accommodating any combination of balanced twisted pair, optical fiber, and coaxial work area cords.
 a. Flush mounting jacks, positioning the cord at a 45-degree angle.

L. Lendex:
 1. Machine printed, in the field, using adhesive-tape label.
 2. Snap-in, clear-label covers and machine-printed paper inserts.

2.6 TWIN-AXIAL DATA HIGHWAY CABLE

A. Standard Cable: NFPA 70, Type CM.
 1. Paired, 6 pairs, No. 20 AWG, stranded (7x28) tinned-copper conductors.
 2. Polypropylene insulation.
 3. Individual aluminum foil-polyester tape shielded pairs with 100 percent shield coverage.
 4. PVC jacket.
 5. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned-copper drain wire.

B. Plenum-Rated Cable: NFPA 70, Type CMP.
 1. Paired, 6 pairs, No. 20 AWG, stranded (7x28) tinned-copper conductors.
 2. Plastic insulation.
 3. Individual aluminum foil-polyester tape shielded pairs with 100 percent shield coverage.
 5. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned-copper drain wire.

2.7 RS-232 CABLE

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Allied Wire & Cable Inc.
 2. Belden Inc.
 3. General Cable Technologies Corporation.
 4. Genesis Cable Products; Honeywell International, Inc.
 5. Southwire Company.

B. PVC-Jacketed, TIA 232-F:
1. Nine, No. 22 AWG, stranded (7x30) tinned copper conductors.
2. Polypropylene insulation.
3. Aluminum foil-polyester tape shield with 100 percent shield coverage.
4. PVC jacket.
5. Conductors are cabled on common axis with No. 24 AWG, stranded (7x32) tinned copper drain wire.
6. NFPA 70 Type: Type CM.
7. Flame Resistance: Comply with UL 1581.

C. Plenum-Type, TIA 232-F:

1. Nine, No. 22 AWG, stranded (7x30) tinned copper conductors.
2. PE insulation.
3. Aluminum foil-polyester tape shield with 100 percent shield coverage.
4. Fluorinated ethylene propylene jacket.
5. Conductors are cabled on common axis with No. 24 AWG, stranded (7x32) tinned copper drain wire.

2.8 RS-485 CABLE

A. Standard Cable: NFPA 70, Type CMG.

1. Paired, two pairs, twisted, No. 22 AWG, stranded (7x30) tinned-copper conductors.
2. PVC insulation.
3. Unshielded.
4. PVC jacket.
5. Flame Resistance: Comply with UL 1685.

B. Plenum-Rated Cable: NFPA 70, Type CMP.

1. Paired, two pairs, No. 22 AWG, stranded (7x30) tinned-copper conductors.
2. Fluorinated ethylene propylene insulation.
3. Unshielded.
4. Fluorinated ethylene propylene jacket.

2.9 LOW-VOLTAGE CONTROL CABLE

A. Paired Cable: NFPA 70, Type CMG.

1. Multi-pair, twisted, No. 16 AWG, stranded (19x29) tinned-copper conductors.
2. PVC insulation.
3. Unshielded.
4. PVC jacket.
5. Flame Resistance: Comply with UL 1685.

B. Plenum-Rated, Paired Cable: NFPA 70, Type CMP.
1. Multi-pair, twisted, No. 16 AWG, stranded (19x29) tinned-copper conductors.
2. PVC insulation.
3. Unshielded.
4. PVC jacket.
5. Flame Resistance: Comply with NFPA 262.

2.10 CONTROL-CIRCUIT CONDUCTORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Encore Wire Corporation.
2. General Cable; General Cable Corporation.
3. Service Wire Co.

B. Class 1 Control Circuits: Stranded copper, Type THHN/THWN-2, complying with UL 83 in raceway.

C. Class 2 Control Circuits: Stranded copper, Type THHN/THWN-2, complying with UL 83 in raceway / power-limited tray cable, in cable tray.

D. Class 3 Remote-Control and Signal Circuits: Stranded copper, Type THHN/THWN-2, complying with UL 83 in raceway power-limited tray cable, in cable tray Type TW or Type TF, complying with UL 83, in raceway.

E. Class 2 Control Circuits and Class 3 Remote-Control and Signal Circuits That Supply Critical Circuits: Circuit Integrity (CI) cable.

1. Smoke control signaling and control circuits.

2.11 FIRE-ALARM WIRE AND CABLE

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Allied Wire & Cable Inc.
2. Draka Cableteq USA; a Prysmian Group company.
3. Genesis Cable Products; Honeywell International, Inc.
4. Superior Essex Inc.
5. West Penn Wire.

B. General Wire and Cable Requirements: NRTL listed and labeled as complying with NFPA 70, Article 760.

C. Signaling Line Circuits: Twisted, shielded pair, not less than No. 18 AWG or size as recommended by system manufacturer.
1. Circuit Integrity Cable: Twisted shielded pair, NFPA 70, Article 760, Classification CI, for power-limited fire-alarm signal service Type FPL. NRTL listed and labeled as complying with UL 1424 and UL 2196 for a two-hour rating.

D. Non-Power-Limited Circuits: Solid-copper conductors with 600-V rated, 75 deg C, color-coded insulation, and complying with requirements in UL 2196 for a two-hour rating.

 1. Low-Voltage Circuits: No. 16 AWG, minimum, in pathway.
 2. Line-Voltage Circuits: No. 12 AWG, minimum, in pathway.
 3. Multiconductor Armored Cable: NFPA 70, Type MC, copper conductors, Type TFN/THHN conductor insulation, copper drain wire, copper armor with outer jacket with red identifier stripe, NRTL listed for fire-alarm and cable tray installation, plenum rated.

2.12 SOURCE QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to evaluate cables.

B. Factory test twisted pair cables according to TIA-568-C.2.

C. Cable will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Test cables on receipt at Project site.

 1. Test each pair of twisted pair cable for open and short circuits.

3.2 INSTALLATION OF RACEWAYS AND BOXES

A. Comply with requirements in Section 26 05 33 "Raceways and Boxes for Electrical Systems" for raceway selection and installation requirements for boxes, conduits, and wireways as supplemented or modified in this Section.

 1. Outlet boxes shall be no smaller than 2 inches wide, 3 inches high, and 2-1/2 inches deep.
 2. Outlet boxes for cables shall be no smaller than 4 inches square by 2-1/8 inches deep with extension ring sized to bring edge of ring to within 1/8 inch of the finished wall surface.
 3. Flexible metal conduit shall not be used.

B. Comply with TIA-569-D for pull-box sizing and length of conduit and number of bends between pull points.
C. Install manufactured conduit sweeps and long-radius elbows if possible.

D. Raceway Installation in Equipment Rooms:
 1. Position conduit ends adjacent to a corner on backboard if a single piece of plywood is installed, or in the corner of the room if multiple sheets of plywood are installed around perimeter walls of the room.
 2. Install cable trays to route cables if conduits cannot be located in these positions.
 3. Secure conduits to backboard if entering the room from overhead.
 4. Extend conduits 3 inches above finished floor.
 5. Install metal conduits with grounding bushings and connect with grounding conductor to grounding system.

E. Backboards: Install backboards with 96-inch dimension vertical. Butt adjacent sheets tightly and form smooth gap-free corners and joints.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

A. Comply with NECA 1.

B. General Requirements for Cabling:
 2. Comply with BICSI ITSIMM, Ch. 5, "Copper Structured Cabling Systems."
 3. Terminate all conductors; no cable shall contain unterminated elements. Make terminations only at indicated outlets, terminals, and cross-connect and patch panels.
 4. Cables may not be spliced and shall be continuous from terminal to terminal. Do not splice cable between termination, tap, or junction points.
 5. Cables serving a common system may be grouped in a common raceway. Install network cabling and control wiring and cable in separate raceway from power wiring. Do not group conductors from different systems or different voltages.
 6. Secure and support cables at intervals not exceeding 30 inches and not more than 6 inches from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
 7. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIMM, Ch. 5, "Copper Structured Cabling Systems." Install lacing bars and distribution spools.
 8. Do not install bruised, kinked, scored, deformed, or abraded cable. Remove and discard cable if damaged during installation and replace it with new cable.
 11. Support: Do not allow cables to lie on removable ceiling tiles.
 12. Secure: Fasten securely in place with hardware specifically designed and installed so as to not damage cables.
 13. Provide strain relief.
 14. Keep runs short. Allow extra length for connecting to terminals. Do not bend cables in a radius less than 10 times the cable OD. Use sleeves or grommets to protect
cables from vibration at points where they pass around sharp corners and through penetrations.

15. Ground wire shall be copper, and grounding methods shall comply with IEEE C2. Demonstrate ground resistance.

C. Balanced Twisted Pair Cable Installation:

2. Install termination hardware as specified in Section 27 15 13 "Communications Copper Horizontal Cabling" unless otherwise indicated.
3. Do not untwist balanced twisted pair cables more than 1/2 inch at the point of termination to maintain cable geometry.

D. Installation of Control-Circuit Conductors:

1. Install wiring in raceways.
2. Use insulated spade lugs for wire and cable connection to screw terminals.
3. Comply with requirements specified in Section 26 05 33 "Raceways and Boxes for Electrical Systems."

E. Open-Cable Installation:

1. Install cabling with horizontal and vertical cable guides in telecommunications spaces with terminating hardware and interconnection equipment.
2. Suspend copper cable not in a wireway or pathway a minimum of 8 inches above ceilings by cable supports not more than 30 inches apart.
3. Cable shall not be run through or on structural members or in contact with pipes, ducts, or other potentially damaging items. Do not run cables between structural members and corrugated panels.

F. Installation of Cable Routed Exposed under Raised Floors:

1. Install plenum-rated cable only.
2. Install cabling after the flooring system has been installed in raised floor areas.
3. Below each feed point, neatly coil a minimum of 72 inches of cable in a coil not less than 12 inches in diameter.

G. Separation from EMI Sources:

1. Comply with BICSI TDMM and TIA-569-D recommendations for separating unshielded copper voice and data communications cable from potential EMI sources including electrical power lines and equipment.
2. Separation between open communications cables or cables in nonmetallic raceways and unshielded power conductors and electrical equipment shall be as follows:
 a. Electrical Equipment or Circuit Rating Less Than 2 kVA: A minimum of 5 inches.
 b. Electrical Equipment or Circuit Rating between 2 and 5 kVA: A minimum of 12 inches.
 c. Electrical Equipment or Circuit Rating More Than 5 kVA: A minimum of 24 inches.
3. Separation between communications cables in grounded metallic raceways and unshielded power lines or electrical equipment shall be as follows:
 a. Electrical Equipment or Circuit Rating Less Than 2 kVA: A minimum of 2-1/2 inches.
 b. Electrical Equipment or Circuit Rating between 2 and 5 kVA: A minimum of 6 inches.
 c. Electrical Equipment or Circuit Rating More Than 5 kVA: A minimum of 12 inches.

4. Separation between communications cables in grounded metallic raceways and power lines and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:
 a. Electrical Equipment or Circuit Rating Less Than 2 kVA: No requirement.
 b. Electrical Equipment or Circuit Rating between 2 and 5 kVA: A minimum of 3 inches.
 c. Electrical Equipment or Circuit Rating More Than 5 kVA: A minimum of 6 inches.

5. Separation between Communications Cables and Electrical Motors and Transformers, 5 kVA or 5 HP and Larger: A minimum of 48 inches.

6. Separation between Communications Cables and Fluorescent Fixtures: A minimum of 5 inches.

3.4 REMOVAL OF CONDUCTORS AND CABLES
A. Remove abandoned conductors and cables. Abandoned conductors and cables are those installed that are not terminated at equipment and are not identified with a tag for future use.

3.5 CONTROL-CIRCUIT CONDUCTORS
A. Minimum Conductor Sizes:
 1. Class 1 remote-control and signal circuits; No 14 AWG.
 2. Class 2 low-energy, remote-control, and signal circuits; No. 16 AWG.
 3. Class 3 low-energy, remote-control, alarm, and signal circuits; No 12 AWG.

3.6 FIRESTOPPING
A. Comply with TIA-569-D, Annex A, "Firestopping."
B. Comply with BICSI TDMM, "Firestopping" Chapter.

3.7 GROUNDING
A. For data communication wiring, comply with TIA-607-B and with BICSI TDMM, "Bonding and Grounding (Earthing)" Chapter.
B. For low-voltage control wiring and cabling, comply with requirements in Section 26 05 26 "Grounding and Bonding for Electrical Systems."

3.8 IDENTIFICATION

A. Comply with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."

B. Identify data and communications system components, wiring, and cabling according to TIA-606-B; label printers shall use label stocks, laminating adhesives, and inks complying with UL 969.

C. Identify each wire on each end and at each terminal with a number-coded identification tag. Each wire shall have a unique tag.

3.9 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.

B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

D. Perform tests and inspections with the assistance of a factory-authorized service representative.

E. Tests and Inspections:

1. Visually inspect cable jacket materials for UL or third-party certification markings. Inspect cabling terminations to confirm color-coding for pin assignments, and inspect cabling connections to confirm compliance with TIA-568-C.1.

2. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.

3. Test cabling for direct-current loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting bars in connection blocks. Test cables after termination, but not after cross-connection.

 a. Test instruments shall meet or exceed applicable requirements in TIA-568-C.2. Perform tests with a tester that complies with performance requirements in its "Test Instruments (Normative)" Annex, complying with measurement accuracy specified in its "Measurement Accuracy (Informative)" Annex. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.

F. Document data for each measurement. Print data for submittals in a summary report that is formatted using Table 10.1 in BICSI TDM as a guide, or transfer the data from the instrument to the computer, save as text files, print, and submit.

G. End-to-end cabling will be considered defective if it does not pass tests and inspections.
H. Prepare test and inspection reports.

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes grounding and bonding systems and equipment.
B. Section includes grounding and bonding systems and equipment, plus the following special applications:
 1. Foundation steel electrodes.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product indicated.

1.4 INFORMATIONAL SUBMITTALS
A. Coordination Drawings: Plans showing dimensioned locations of grounding features specified in "Field Quality Control" Article, including the following:
 1. Grounding arrangements and connections for separately derived systems.
B. Qualification Data: For testing agency and testing agency's field supervisor.
C. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For grounding to include in emergency, operation, and maintenance manuals.

 1. In addition to items specified in Section 01 78 23 "Operation and Maintenance Data," include the following:

 a. Plans showing as-built, dimensioned locations of system described in "Field Quality Control" Article, including the following:
1) Grounding arrangements and connections for separately derived systems.

b. Instructions for periodic testing and inspection of grounding features at test wells / ground rings / grounding connections for separately derived systems based on NFPA 70B.

1) Tests shall determine if ground-resistance or impedance values remain within specified maximums, and instructions shall recommend corrective action if values do not.

2) Include recommended testing intervals.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Certified by NETA.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with UL 467 for grounding and bonding materials and equipment.

2.2 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Advanced Lightning Technology, Ltd.
2. Burndy; Part of Hubbell Electrical Systems.
3. ERICO; a brand of nVent.
4. Galvan Industries, Inc.; Electrical Products Division, LLC.
5. Harger Lightning & Grounding.
6. ILSCO.
7. O-Z/Gedney; a brand of Emerson Industrial Automation.
9. Thomas & Betts Corporation; A Member of the ABB Group.

2.3 CONDUCTORS

A. Insulated Conductors: Copper or tinned-copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.

B. Bare Copper Conductors:

4. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch in diameter.
5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
6. Bonding Jumper: Copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.
7. Tinned Bonding Jumper: Tinned-copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.

C. Grounding Bus: Predrilled rectangular bars of annealed copper, 1/4 by 4 inches in cross section, with 9/32-inch holes spaced 1-1/8 inches apart. Stand-off insulators for mounting shall comply with UL 891 for use in switchboards, 600 V and shall be Lexan or PVC, impulse tested at 5000 V.

2.4 CONNECTORS

A. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.

B. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

C. Bus-Bar Connectors: Mechanical type, cast silicon bronze, solderless exothermic-type wire terminals, and long-barrel, two-bolt connection to ground bus bar.

D. Bus-Bar Connectors: Compression type, copper or copper alloy, with two wire terminals.

E. Beam Clamps: Mechanical type, terminal, ground wire access from four directions, with dual, tin-plated or silicon bronze bolts.

F. Cable-to-Cable Connectors: Compression type, copper or copper alloy.

G. Cable Tray Ground Clamp: Mechanical type, zinc-plated malleable iron.

H. Conduit Hubs: Mechanical type, terminal with threaded hub.

I. Ground Rod Clamps: Mechanical type, copper or copper alloy, terminal with hex head bolt.

J. Ground Rod Clamps: Mechanical type, copper or copper alloy, terminal with hex head bolt.

K. Lay-in Lug Connector: Mechanical type, copper rated for direct burial terminal with set screw.

L. Service Post Connectors: Mechanical type, bronze alloy terminal, in short- and long-stud lengths, capable of single and double conductor connections.

M. Signal Reference Grid Clamp: Mechanical type, stamped-steel terminal with hex head screw.

N. Straps: Solid copper, copper lugs. Rated for 600 A.

O. Tower Ground Clamps: Mechanical type, copper or copper alloy, terminal two-piece clamp.
P. U-Bolt Clamps: Mechanical type, copper or copper alloy, terminal listed for direct burial.

Q. Water Pipe Clamps:
 1. Mechanical type, two pieces with zinc-plated bolts.
 b. Listed for direct burial.
 2. U-bolt type with malleable-iron clamp and copper ground connector rated for direct burial.

PART 3 - EXECUTION

3.1 APPLICATIONS

A. Conductors: Install solid conductor for No. 8 AWG and smaller, and stranded conductors for No. 6 AWG and larger unless otherwise indicated.

B. Underground Grounding Conductors: Install bare tinned-copper conductor, No. 2/0 AWG minimum.
 1. Bury at least 30 inches below grade.
 2. Duct-Bank Grounding Conductor: Bury 12 inches above duct bank when indicated as part of duct-bank installation.

C. Grounding Conductors: Green-colored insulation with continuous yellow stripe.

D. Isolated Grounding Conductors: Green-colored insulation with more than one continuous yellow stripe. On feeders with isolated ground, identify grounding conductor where visible to normal inspection, with alternating bands of green and yellow tape, with at least three bands of green and two bands of yellow.

E. Grounding Bus: Install in electrical equipment rooms, in rooms housing service equipment, and elsewhere as indicated.
 1. Install bus horizontally, on insulated spacers 2 inches minimum from wall, 6 inches above finished floor unless otherwise indicated.
 2. Where indicated on both sides of doorways, route bus up to top of door frame, across top of doorway, and down; connect to horizontal bus.

F. Conductor Terminations and Connections:
 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 2. Underground Connections: Welded connectors except at test wells and as otherwise indicated.
 3. Connections to Ground Rods at Test Wells: Bolted connectors.
3.2 GROUNDING AT THE SERVICE

A. Equipment grounding conductors and grounding electrode conductors shall be connected to the ground bus. Install a main bonding jumper between the neutral and ground buses.

3.3 GROUNDING SEPARATELY DERIVED SYSTEMS

A. Generator: Install grounding electrode(s) at the generator location. The electrode shall be connected to the equipment grounding conductor and to the frame of the generator.

3.4 EQUIPMENT GROUNDING

A. Install insulated equipment grounding conductors with all feeders and branch circuits.

B. Install insulated equipment grounding conductors with the following items, in addition to those required by NFPA 70:

1. Feeders and branch circuits.
2. Lighting circuits.
3. Receptacle circuits.
5. Three-phase motor and appliance branch circuits.
6. Flexible raceway runs.
7. Armored and metal-clad cable runs.
8. Busway Supply Circuits: Install insulated equipment grounding conductor from grounding bus in the switchgear, switchboard, or distribution panel to equipment grounding bar terminal on busway.

C. Air-Duct Equipment Circuits: Install insulated equipment grounding conductor to duct-mounted electrical devices operating at 120 V and more, including air cleaners, heaters, dampers, humidifiers, and other duct electrical equipment. Bond conductor to each unit and to air duct and connected metallic piping.

D. Water Heater, Heat-Tracing, and Antifrost Heating Cables: Install a separate insulated equipment grounding conductor to each electric water heater and heat-tracing cable. Bond conductor to heater units, piping, connected equipment, and components.

E. Isolated Grounding Receptacle Circuits: Install an insulated equipment grounding conductor connected to the receptacle grounding terminal. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service unless otherwise indicated.

F. Isolated Equipment Enclosure Circuits: For designated equipment supplied by a branch circuit or feeder, isolate equipment enclosure from supply circuit raceway with a nonmetallic raceway fitting listed for the purpose. Install fitting where raceway enters enclosure, and install a separate insulated equipment grounding conductor. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service unless otherwise indicated.
G. Poles Supporting Outdoor Lighting Fixtures: Install grounding electrode and a separate insulated equipment grounding conductor in addition to grounding conductor installed with branch-circuit conductors.

H. Metallic Fences: Comply with requirements of IEEE C2.
 1. Grounding Conductor: Bare, tinned copper, not less than No. 8 AWG.
 2. Gates: Shall be bonded to the grounding conductor with a flexible bonding jumper.
 3. Barbed Wire: Strands shall be bonded to the grounding conductor.

3.5 INSTALLATION

A. Grounding Conductors: Route along shortest and straightest paths possible unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.

B. Ground Bonding Common with Lightning Protection System: Comply with NFPA 780 and UL 96 when interconnecting with lightning protection system. Bond electrical power system ground directly to lightning protection system grounding conductor at closest point to electrical service grounding electrode. Use bonding conductor sized same as system grounding electrode conductor, and install in conduit.

C. Ground Rods: Drive rods until tops are 2 inches below finished floor or final grade unless otherwise indicated.
 1. Interconnect ground rods with grounding electrode conductor below grade and as otherwise indicated. Make connections without exposing steel or damaging coating if any.
 2. Use exothermic welds for all below-grade connections.
 3. For grounding electrode system, install at least three rods spaced at least one-rod length from each other and located at least the same distance from other grounding electrodes, and connect to the service grounding electrode conductor.

D. Test Wells: Ground rod driven through drilled hole in bottom of handhole. Handholes are specified in Section 26 05 43 “Underground Ducts and Raceways for Electrical Systems,” and shall be at least 12 inches deep, with cover.
 1. Install at least one test well for each service unless otherwise indicated. Install at the ground rod electrically closest to service entrance. Set top of test well flush with finished grade or floor.

E. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance except where routed through short lengths of conduit.
 1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
 2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install bonding so vibration is not transmitted to rigidly mounted equipment.
 3. Use exothermic-welded connectors for outdoor locations; if a disconnect-type connection is required, use a bolted clamp.
F. Grounding and Bonding for Piping:

1. **Metal Water Service Pipe:** Install insulated copper grounding conductors, in conduit, from building’s main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes; use a bolted clamp connector or bolt a lug-type connector to a pipe flange by using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.

2. **Water Meter Piping:** Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.

3. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve.

G. Bonding Interior Metal Ducts: Bond metal air ducts to equipment grounding conductors of associated fans, blowers, electric heaters, and air cleaners. Install tinned bonding jumper to bond across flexible duct connections to achieve continuity.

H. **Grounding for Steel Building Structure:** Install a driven ground rod at base of each corner column and at intermediate exterior columns at distances not more than 60 feet apart.

I. **Ground Ring:** Install a grounding conductor, electrically connected to each building structure ground rod and to each steel column, extending around the perimeter of area.

1. Install tinned-copper conductor not less than No. 2/0 AWG for ground ring and for taps to building steel.

2. Bury ground ring not less than 24 inches from building’s foundation.

J. **Concrete-Encased Grounding Electrode (Ufer Ground):** Fabricate according to NFPA 70; use a minimum of 20 feet of bare copper conductor not smaller than No. 4 AWG.

1. If concrete foundation is less than 20 feet long, coil excess conductor within base of foundation.

2. Bond grounding conductor to reinforcing steel in at least four locations and to anchor bolts. Extend grounding conductor below grade and connect to building’s grounding grid or to grounding electrode external to concrete.

K. **Concrete-Encased Grounding Electrode (Ufer Ground):** Fabricate according to NFPA 70; using electrically conductive coated steel reinforcing bars or rods, at least 20 feet long. If reinforcing is in multiple pieces, connect together by the usual steel tie wires or exothermic welding to create the required length.

L. **Connections:** Make connections so possibility of galvanic action or electrolysis is minimized. Select connectors, connection hardware, conductors, and connection methods so metals in direct contact are galvanically compatible.

1. Use electroplated or hot-tin-coated materials to ensure high conductivity and to make contact points closer in order of galvanic series.

2. Make connections with clean, bare metal at points of contact.

5. Coat and seal connections having dissimilar metals with inert material to prevent future penetration of moisture to contact surfaces.

3.6 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.
B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
D. Perform tests and inspections with the assistance of a factory-authorized service representative.
E. Tests and Inspections:
 1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
 2. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.
 3. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal[, at ground test wells][, and at individual ground rods]. Make tests at ground rods before any conductors are connected.
 a. Measure ground resistance no fewer than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.
 b. Perform tests by fall-of-potential method according to IEEE 81.
 4. Prepare dimensioned Drawings locating each test well, ground rod and ground-rod assembly, and other grounding electrodes. Identify each by letter in alphabetical order, and key to the record of tests and observations. Include the number of rods driven and their depth at each location, and include observations of weather and other phenomena that may affect test results. Describe measures taken to improve test results.

F. Grounding system will be considered defective if it does not pass tests and inspections.
G. Prepare test and inspection reports.
H. Report measured ground resistances that exceed the following values:
 1. Power and Lighting Equipment or System with Capacity of 500 kVA and Less: 10 ohms.
 2. Power and Lighting Equipment or System with Capacity of 500 to 1000 kVA: 5 ohms.
 3. Power and Lighting Equipment or System with Capacity More Than 1000 kVA: 3 ohms.
 4. Power Distribution Units or Panelboards Serving Electronic Equipment: 1 ohm(s).
7. Hand hole application.

I. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

END OF SECTION
SECTION 26 05 29

HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Steel slotted support systems.
2. Conduit and cable support devices.
3. Support for conductors in vertical conduit.
4. Structural steel for fabricated supports and restraints.
5. Mounting, anchoring, and attachment components, including powder-actuated fasteners, mechanical expansion anchors, concrete inserts, clamps, through bolts, toggle bolts, and hanger rods.
6. Fabricated metal equipment support assemblies.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for the following:

 a. Slotted support systems, hardware, and accessories.
 b. Clamps.
 c. Hangers.
 d. Sockets.
 e. Eye nuts.
 f. Fasteners.
 g. Anchors.
 h. Saddles.
 i. Brackets.

2. Include rated capacities and furnished specialties and accessories.

B. Shop Drawings: Signed and sealed by a qualified professional engineer. For fabrication and installation details for electrical hangers and support systems.
2. Slotted support systems.
3. Equipment supports.
4. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.

C. Delegated-Design Submittal: For hangers and supports for electrical systems.
 1. Include design calculations and details of hangers.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Suspended ceiling components.
 2. Ductwork, piping, fittings, and supports.
 3. Structural members to which hangers and supports will be attached.
 4. Size and location of initial access modules for acoustical tile.
 5. Items penetrating finished ceiling, including the following:
 a. Luminaires.
 b. Access panels.

B. Welding certificates.

1.5 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M and/or AWS D1.2/D1.2M.

B. Welding Qualifications: Qualify procedures and personnel according to the following:
 1. AWS D1.1/D1.1M.
 2. AWS D1.2/D1.2M.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Surface-Burning Characteristics: Comply with ASTM E84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 1. Flame Rating: Class 1.
 2. Self-extinguishing according to ASTM D635.
2.2 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

A. Steel Slotted Support Systems: Preformed steel channels and angles with minimum 13/32-inch-diameter holes at a maximum of 8 inches o.c. in at least one surface.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Allied Tube & Conduit; a part of Atkore International.
 b. B-line, an Eaton business.
 c. CADDY; a brand of nVent.
 d. Flex-Strut Inc.
 e. GS Metals Corp.
 f. G-Strut.
 g. Thomas & Betts Corporation; A Member of the ABB Group.
 h. Unistrut; Part of Atkore International.
 i. Wesanco, Inc.

2. Standard: Comply with MFMA-4 factory-fabricated components for field assembly.
3. Material for Channel, Fittings, and Accessories: Galvanized steel / Stainless steel, Type 304 / Stainless steel, Type 316.
5. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
6. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating according to MFMA-4.
7. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.
8. Protect finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.

B. Conduit and Cable Support Devices: Steel and malleable-iron / Glass-fiber-resin hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.

C. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for nonarmored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be made of malleable iron.

D. Structural Steel for Fabricated Supports and Restraints: ASTM A36/A36M steel plates, shapes, and bars; black and galvanized.

E. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:
 1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1) Hilti, Inc.
2) ITW Ramset/Red Head; Illinois Tool Works, Inc.
3) MKT Fastening, LLC.
4) Simpson Strong-Tie Co., Inc.

2. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated / stainless steel, for use in hardened portland cement concrete, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.

a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1) B-line, an Eaton business.
2) Empire Tool and Manufacturing Co., Inc.
3) Hilti, Inc.
4) ITW Ramset/Red Head; Illinois Tool Works, Inc.
5) MKT Fastening, LLC.

3. Concrete Inserts: Steel or malleable-iron, slotted support system units are similar to MSS Type 18 units and comply with MFMA-4 or MSS SP-58.

4. Clamps for Attachment to Steel Structural Elements: MSS SP-58 units are suitable for attached structural element.

5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM F3125/F3125M, Grade A325.

2.3 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

A. Description: Welded or bolted structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.

B. Materials: Comply with requirements in Section 05 50 00 "Metal Fabrications" for steel shapes and plates.

PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with the following standards for application and installation requirements of hangers and supports, except where requirements on Drawings or in this Section are stricter:

1. NECA 1.
2. NECA 101
3. NECA 102.
4. NECA 105.
5. NECA 111.

B. Comply with requirements in Section 07 84 13 "Penetration Firestopping" for firestopping materials and installation for penetrations through fire-rated walls, ceilings, and assemblies.

C. Comply with requirements for raceways and boxes specified in Section 26 05 33 "Raceways and Boxes for Electrical Systems."

D. Maximum Support Spacing and Minimum Hanger Rod Size for Raceways: Space supports for EMT, IMC, and RMC as required by NFPA 70. Minimum rod size shall be 1/4 inch in diameter.

E. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted or other support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.

1. Secure raceways and cables to these supports with two-bolt conduit clamps / single-bolt conduit clamps using spring friction action for retention in support channel.

F. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch and smaller raceways serving branch circuits and communication systems above suspended ceilings, and for fastening raceways to trapeze supports.

3.2 SUPPORT INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this article.

B. Raceway Support Methods: In addition to methods described in NECA 1, EMT IMC and RMC may be supported by openings through structure members, according to NFPA 70.

C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.

D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:

1. To Wood: Fasten with lag screws or through bolts.
2. To New Concrete: Bolt to concrete inserts.
3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
4. To Existing Concrete: Expansion anchor fasteners.
5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches thick.
6. To Steel: Welded threaded studs complying with AWS D1.1/D1.1M, with lock washers and nuts or Beam clamps (MSS SP-58, Type 19, 21, 23, 25, or 27), complying with MSS SP-69 Spring-tension clamps.

7. To Light Steel: Sheet metal screws.

8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate.

E. Drill holes for expansion anchors in concrete at locations and to depths that avoid the need for reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

A. Comply with installation requirements in Section 05 50 00 "Metal Fabrications" for site-fabricated metal supports.

B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.

C. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 CONCRETE BASES

A. Construct concrete bases of dimensions indicated, but not less than 4 inches larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base.

B. Use 3000-psi, 28-day compressive-strength concrete. Concrete materials, reinforcement, and placement requirements are specified in Section 03 30 00 "Cast-in-Place Concrete."

C. Anchor equipment to concrete base as follows:

1. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
2. Install anchor bolts to elevations required for proper attachment to supported equipment.
3. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.

B. Touchup: Comply with requirements in Section 09 91 13 "Exterior Painting" and Section 09 96 00 "High-Performance Coatings" for cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal.
C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A780.

END OF SECTION
PAGE
INTENTIONALLY LEFT
BLANK
SECTION 26 05 33

RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Metal conduits and fittings.
2. Metal wireways and auxiliary gutters.
3. Surface raceways.

1.3 DEFINITIONS

A. GRC: Galvanized rigid steel conduit.
B. IMC: Intermediate metal conduit.

1.4 ACTION SUBMITTALS

A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.
B. Shop Drawings: For custom enclosures and cabinets. Include plans, elevations, sections, and attachment details.
C. Samples: For wireways and surface raceways and for each color and texture specified, 12 inches long.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of items involved:

1. Structural members in paths of conduit groups with common supports.
2. HVAC and plumbing items and architectural features in paths of conduit groups with common supports.
B. Qualification Data: For professional engineer.

C. Source quality-control reports.

PART 2 - PRODUCTS

2.1 METAL CONDUITS AND FITTINGS

A. Metal Conduit:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Allied Tube & Conduit; a part of Atkore International.
 b. FSR Inc.
 c. NEC, Inc.
 d. Opti-Com Manufacturing Network, Inc (OMNI).
 e. O-Z/Gedney; a brand of Emerson Industrial Automation.
 f. Republic Conduit.
 g. Southwire Company.
 h. Thomas & Betts Corporation; A Member of the ABB Group.
 i. Wheatland Tube Company.

2. Listing and Labeling: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

3. GRC: Comply with ANSI C80.1 and UL 6.

4. ARC: Comply with ANSI C80.5 and UL 6A.

5. IMC: Comply with ANSI C80.6 and UL 1242.

6. PVC-Coated Steel Conduit: PVC-coated rigid steel conduit.
 a. Comply with NEMA RN 1.
 b. Coating Thickness: 0.040 inch, minimum.

7. EMT: Comply with ANSI C80.3 and UL 797.

8. FMC: Comply with UL 1; zinc-coated steel.

9. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.

B. Metal Fittings:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Allied Tube & Conduit; a part of Atkore International.
 b. Electri-Flex Company.
 c. FSR Inc.
 d. NEC, Inc.
 e. Opti-Com Manufacturing Network, Inc (OMNI).
 f. O-Z/Gedney; a brand of Emerson Industrial Automation.
 g. Republic Conduit.
h. Southwire Company.

i. Thomas & Betts Corporation; A Member of the ABB Group.

j. Wheatland Tube Company.

2. Comply with NEMA FB 1 and UL 514B.

3. Listing and Labeling: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

4. Fittings, General: Listed and labeled for type of conduit, location, and use.

5. Conduit Fittings for Hazardous (Classified) Locations: Comply with UL 1203 and NFPA 70.

6. Fittings for EMT:
 a. Material: Steel or die cast.
 b. Type: Setscrew or compression.

7. Expansion Fittings: PVC or steel to match conduit type, complying with UL 651, rated for environmental conditions where installed, and including flexible external bonding jumper.

8. Coating for Fittings for PVC-Coated Conduit: Minimum thickness of 0.040 inch, with overlapping sleeves protecting threaded joints.

C. Joint Compound for IMC, GRC, or ARC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.2 METAL WIREWAYS AND AUXILIARY GUTTERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1. B-line, an Eaton business.
 2. Hoffman; a brand of nVent.
 3. Square D.

B. Description: Sheet metal, complying with UL 870 and NEMA 250, Type 3R / Type 4 unless otherwise indicated, and sized according to NFPA 70.

 1. Metal wireways installed outdoors shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Fittings and Accessories: Include covers, couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.

D. Wireway Covers: Hinged type Flanged-and-gasketed type unless otherwise indicated.

E. Finish: Manufacturer's standard enamel finish.
2.3 SURFACE RACEWAYS

A. Listing and Labeling: Surface raceways and tele-power poles shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Surface Metal Raceways: Galvanized steel with snap-on covers complying with UL 5. Manufacturer's standard enamel finish in color selected by Architect.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Hubbell Incorporated; Wiring Device-Kellems.
 b. MonoSystems, Inc.
 c. Panduit Corp.
 d. Wiremold / Legrand.

C. Surface Nonmetallic Raceways: Two- or three-piece construction, complying with UL 5A, and manufactured of rigid PVC with texture and color selected by Architect from manufacturer's standard colors. Product shall comply with UL 94 V-0 requirements for self-extinguishing characteristics.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Hubbell Incorporated.
 b. MonoSystems, Inc.
 c. Panduit Corp.
 d. Wiremold / Legrand.

2.4 BOXES, ENCLOSURES, AND CABINETS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Adalet.
3. EGS/Appleton Electric.
5. FSR Inc.
6. Hoffman; a brand of nVent.
8. Hubbell Incorporated; Wiring Device-Kellems.
10. RACO; Hubbell.
11. Spring City Electrical Manufacturing Company.
12. Thomas & Betts Corporation; A Member of the ABB Group.
13. Wiremold / Legrand.
B. General Requirements for Boxes, Enclosures, and Cabinets: Boxes, enclosures, and cabinets installed in wet locations shall be listed for use in wet locations.

C. Sheet Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.

D. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, ferrous alloy, Type FD, with gasketed cover.

E. Nonmetallic Outlet and Device Boxes: Comply with NEMA OS 2 and UL 514C.

F. Metal Floor Boxes:
 1. Material: Cast metal.
 2. Type: Fully adjustable/ Semi-adjustable.
 3. Shape: Rectangular.
 4. Listing and Labeling: Metal floor boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

G. Luminaire Outlet Boxes: Nonadjustable, designed for attachment of luminaire weighing 50 lb. Outlet boxes designed for attachment of luminaires weighing more than 50 lb shall be listed and marked for the maximum allowable weight.

H. Paddle Fan Outlet Boxes: Nonadjustable, designed for attachment of paddle fan weighing 70 lb.
 1. Listing and Labeling: Paddle fan outlet boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

I. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.

J. Cast-Metal Access, Pull, and Junction Boxes: Comply with NEMA FB 1 and UL 1773, galvanized, cast iron with gasketed cover.

K. Box extensions used to accommodate new building finishes shall be of same material as recessed box.

L. Device Box Dimensions: 4 inches square by 2-1/8 inches deep.

M. Gangable boxes are prohibited.

N. Hinged-Cover Enclosures: Comply with UL 50 and NEMA 250, Type 3R / Type 4 / Type 12 with continuous-hinge cover with flush latch unless otherwise indicated.
 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.
 3. Interior Panels: Steel; all sides finished with manufacturer's standard enamel.

O. Cabinets:
 1. NEMA 250, Type 3R / Type 12 galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
2. Hinged door in front cover with flush latch and concealed hinge.
3. Key latch to match panelboards.
4. Metal barriers to separate wiring of different systems and voltage.
5. Accessory feet where required for freestanding equipment.
6. Nonmetallic cabinets shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.5 SOURCE QUALITY CONTROL FOR UNDERGROUND ENCLOSURES

A. Handhole and Pull-Box Prototype Test: Test prototypes of handholes and boxes for compliance with SCTE 77. Strength tests shall be for specified tier ratings of products supplied.
 1. Tests of materials shall be performed by an independent testing agency.
 2. Strength tests of complete boxes and covers shall be by either an independent testing agency or manufacturer. A qualified registered professional engineer shall certify tests by manufacturer.
 3. Testing machine pressure gages shall have current calibration certification complying with ISO 9000 and ISO 10012 and traceable to NIST standards.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

A. Outdoors: Apply raceway products as specified below unless otherwise indicated:
 1. Exposed Conduit: GRC, Type EPC-40-PVC / RNC, Type EPC-80-PVC.
 2. Concealed Conduit, Aboveground: GRC / IMC.
 4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC / LFNC.
 5. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R / Type 4.

B. Indoors: Apply raceway products as specified below unless otherwise indicated:
 1. Exposed, Not Subject to Physical Damage: EMT.
 2. Exposed, Not Subject to Severe Physical Damage: EMT.
 3. Exposed and Subject to Severe Physical Damage: GRC / IMC. Raceway locations include the following:
 a. Pump Room.
 b. Area used for traffic of mechanized carts, forklifts, and pallet-handling units.
 c. Mechanical rooms.
 d. All Exterior Wiring.
 4. Concealed in Ceilings and Interior Walls and Partitions: EMT.
 5. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
6. Damp or Wet Locations: GRC & IMC.
7. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4 stainless steel/nonmetal in damp or wet locations.

C. Minimum Raceway Size: 3/4-inch trade size.

D. Raceway Fittings: Compatible with raceways and suitable for use and location.
 1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
 2. PVC Externally Coated, Rigid Steel Conduits: Use only fittings listed for use with this type of conduit. Patch and seal all joints, nicks, and scrapes in PVC coating after installing conduits and fittings. Use sealant recommended by fitting manufacturer and apply in thickness and number of coats recommended by manufacturer.
 4. Flexible Conduit: Use only fittings listed for use with flexible conduit. Comply with NEMA FB 2.20.

E. Install nonferrous conduit or tubing for circuits operating above 60 Hz. Where aluminum raceways are installed for such circuits and pass through concrete, install in nonmetallic sleeve.

F. Do not install aluminum conduits, boxes, or fittings in contact with concrete or earth.

G. Install surface raceways only where indicated on Drawings.

H. Do not install nonmetallic conduit where ambient temperature exceeds 120 deg F.

3.2 INSTALLATION

A. Comply with requirements in Section 26 05 29 "Hangers and Supports for Electrical Systems" for hangers and supports.

B. Comply with NECA 1 and NECA 101 for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NECA 102 for aluminum conduits. Comply with NFPA 70 limitations for types of raceways allowed in specific occupancies and number of floors.

C. Do not install raceways or electrical items on any "explosion-relief" walls or rotating equipment.

D. Do not fasten conduits onto the bottom side of a metal deck roof.

E. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.

F. Complete raceway installation before starting conductor installation.

G. Arrange stub-ups so curved portions of bends are not visible above finished slab.
H. Install no more than the equivalent of three 90-degree bends in any conduit run except for control wiring conduits, for which fewer bends are allowed. Support within 12 inches of changes in direction.

I. Make bends in raceway using large-radius preformed ells. Field bending shall be according to NFPA 70 minimum radii requirements. Use only equipment specifically designed for material and size involved.

J. Conceal conduit within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.

K. Support conduit within 12 inches of enclosures to which attached.

L. Raceways Embedded in Slabs:
 1. Run conduit larger than 1-inch trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support. Secure raceways to reinforcement at maximum 10-foot intervals.
 2. Arrange raceways to cross building expansion joints at right angles with expansion fittings.
 3. Arrange raceways to keep a minimum of 2 inches of concrete cover in all directions.
 4. Do not embed threadless fittings in concrete unless specifically approved by Architect for each specific location.
 5. Change from ENT to GRC before rising above floor.

M. Stub-Ups to Above Recessed Ceilings:
 1. Use EMT, RMC for raceways.
 2. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.

N. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.

O. Coat field-cut threads on PVC-coated raceway with a corrosion-preventing conductive compound prior to assembly.

P. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors including conductors smaller than No. 4 AWG.

Q. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install bushings on conduits up to 1-1/4-inch trade size and insulated throat metal bushings on 1-1/2-inch trade size and larger conduits terminated with locknuts. Install insulated throat metal grounding bushings on service conduits.

R. Install raceways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.

S. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.
T. Cut conduit perpendicular to the length. For conduits 2-inch trade size and larger, use roll cutter or a guide to make cut straight and perpendicular to the length.

U. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire. Cap underground raceways designated as spare above grade alongside raceways in use.

V. Surface Raceways:
 1. Install surface raceway with a minimum 2-inch radius control at bend points.
 2. Secure surface raceway with screws or other anchor-type devices at intervals not exceeding 48 inches and with no less than two supports per straight raceway section. Support surface raceway according to manufacturer's written instructions. Tape and glue are not acceptable support methods.

W. Install raceway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings according to NFPA 70.

X. Install devices to seal raceway interiors at accessible locations. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all raceways at the following points:
 1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
 2. Where an underground service raceway enters a building or structure.
 3. Conduit extending from interior to exterior of building.
 4. Conduit extending into pressurized duct and equipment.
 5. Conduit extending into pressurized zones that are automatically controlled to maintain different pressure set points.
 6. Where otherwise required by NFPA 70.

Y. Comply with manufacturer's written instructions for solvent welding RNC and fittings.

Z. Expansion-Joint Fittings:
 1. Install in each run of aboveground RNC that is located where environmental temperature change may exceed 30 deg F and that has straight-run length that exceeds 25 feet. Install in each run of aboveground RMC and EMT conduit that is located where environmental temperature change may exceed 100 deg F and that has straight-run length that exceeds 100 feet.
 2. Install type and quantity of fittings that accommodate temperature change listed for each of the following locations:
 a. Outdoor Locations Not Exposed to Direct Sunlight: 125 deg F temperature change.
 b. Outdoor Locations Exposed to Direct Sunlight: 155 deg F temperature change.
 c. Indoor Spaces Connected with Outdoors without Physical Separation: 125 deg F temperature change.
 d. Attics: 135 deg F temperature change.
3. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per deg F of temperature change for PVC conduits. Install fitting(s) that provide expansion and contraction for at least 0.000078 inch per foot of length of straight run per deg F of temperature change for metal conduits.

4. Install expansion fittings at all locations where conduits cross building or structure expansion joints.

5. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.

AA. Flexible Conduit Connections: Comply with NEMA RV 3. Use a maximum of 36 inches of flexible conduit for recessed and semirecessed luminaires, equipment subject to vibration, noise transmission, or movement; and for transformers and motors.

1. Use LFMC in damp or wet locations subject to severe physical damage.

2. Use LFMC or LFNC in damp or wet locations not subject to severe physical damage.

BB. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to center of box unless otherwise indicated.

CC. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall. Prepare block surfaces to provide a flat surface for a raintight connection between box and cover plate or supported equipment and box.

DD. Horizontally separate boxes mounted on opposite sides of walls so they are not in the same vertical channel.

EE. Locate boxes so that cover or plate will not span different building finishes.

FF. Support boxes of three gangs or more from more than one side by spanning two framing members or mounting on brackets specifically designed for the purpose.

GG. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.

HH. Set metal floor boxes level and flush with finished floor surface.

II. Set nonmetallic floor boxes level. Trim after installation to fit flush with finished floor surface.

3.3 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install 0sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 26 05 44 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.4 FIRESTOPPING

A. Install firestopping at penetrations of fire-rated floor and wall assemblies. Comply with requirements in Section 07 84 13 "Penetration Firestopping."
3.5 PROTECTION

A. Protect coatings, finishes, and cabinets from damage and deterioration.

1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION
SECTION 26 05 44

SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Sleeves for raceway and cable penetration of non-fire-rated construction walls and floors.
 2. Sleeve-seal systems.
 5. Silicone sealants.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Wall Sleeves:
 2. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.

B. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies: Galvanized-steel sheet; 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint, with tabs for screw-fastening the sleeve to the board.

C. PVC-Pipe Sleeves: ASTM D1785, Schedule 40.

D. Molded-PVC Sleeves: With nailing flange for attaching to wooden forms.
E. Molded-PE or -PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.

F. Sleeves for Rectangular Openings:
 2. Minimum Metal Thickness:
 a. For sleeve cross-section rectangle perimeter less than 50 inches and with no side larger than 16 inches, thickness shall be 0.052 inch.
 b. For sleeve cross-section rectangle perimeter 50 inches or more and one or more sides larger than 16 inches, thickness shall be 0.138 inch.

2.2 SLEEVE-SEAL SYSTEMS

A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Advance Products & Systems, Inc.
 b. CALPICO, Inc.
 c. Metraflex Company (The).
 d. Pipeline Seal and Insulator, Inc.
 e. Proco Products, Inc.

2. Sealing Elements: Nitrile (Buna N) rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.

4. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, Stainless steel of length required to secure pressure plates to sealing elements.

2.3 SLEEVE-SEAL FITTINGS

A. Description: Manufactured plastic, sleeve-type, waterstop assembly made for embedding in concrete slab or wall. Unit shall have plastic or rubber waterstop collar with center opening to match piping OD.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. HOLDRITE.

2.4 GROUT

A. Description: Nonshrink; recommended for interior and exterior sealing openings in non-fire-rated walls or floors.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

2.5 SILICONE SEALANTS

A. Silicone Sealants: Single-component, silicone-based, neutral-curing elastomeric sealants of grade indicated below.

1. Grade: Pourable (self-leveling) formulation for openings in floors and other horizontal surfaces that are not fire rated.

B. Silicone Foams: Multicomponent, silicone-based liquid elastomers that, when mixed, expand and cure in place to produce a flexible, nonshrinking foam.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION FOR NON-FIRE-RATED ELECTRICAL PENETRATIONS

A. Comply with NECA 1.

B. Comply with NEMA VE 2 for cable tray and cable penetrations.

C. Sleeves for Conduits Penetrating Above-Grade Non-Fire-Rated Concrete and Masonry-Unit Floors and Walls:

1. Interior Penetrations of Non-Fire-Rated Walls and Floors:
 a. Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Section 07 92 00 "Joint Sealants."
 b. Seal space outside of sleeves with mortar or grout. Pack sealing material solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect material while curing.

2. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.

3. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and raceway or cable unless sleeve seal is to be installed.

4. Install sleeves for wall penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of walls. Cut sleeves to length for mounting flush with both surfaces of walls. Deburr after cutting.

5. Install sleeves for floor penetrations. Extend sleeves installed in floors 2 inches above finished floor level. Install sleeves during erection of floors.

D. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies:
1. Use circular metal sleeves unless penetration arrangement requires rectangular sleeved opening.
2. Seal space outside of sleeves with approved joint compound for gypsum board assemblies.

E. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.

F. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

G. Underground, Exterior-Wall and Floor Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch annular clear space between raceway or cable and sleeve for installing sleeve-seal system.

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at raceway entries into building.

B. Install type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.3 SLEEVE-SEAL-FITTING INSTALLATION

A. Install sleeve-seal fittings in new walls and slabs as they are constructed.

B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.

C. Secure nailing flanges to concrete forms.

D. Using grout, seal the space around outside of sleeve-seal fittings.

END OF SECTION
SECTION 26 05 53
IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Color and legend requirements for raceways, conductors, and warning labels and signs.
2. Labels.
4. Tapes and stencils.
5. Tags.
7. Cable ties.
9. Fasteners for labels and signs.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for electrical identification products.

B. Samples: For each type of label and sign to illustrate composition, size, colors, lettering style, mounting provisions, and graphic features of identification products.

C. Identification Schedule: For each piece of electrical equipment and electrical system components to be an index of nomenclature for electrical equipment and system components used in identification signs and labels. Use same designations indicated on Drawings.

D. Delegated-Design Submittal: For arc-flash hazard study.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

B. Comply with NFPA 70.

D. Comply with ANSI Z535.4 for safety signs and labels.

E. Comply with NFPA 70E and Section 26 05 74 "Protective Device Arc-Flash Study" requirements for arc-flash warning labels.

F. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.

G. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes.
 1. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.

2.2 COLOR AND LEGEND REQUIREMENTS

A. Raceways and Cables Carrying Circuits at 600 V or Less:
 1. Black letters on an orange field.
 2. Legend: Indicate voltage and system or service type.

B. Color-Coding for Phase- and Voltage-Level Identification, 600 V or Less: Use colors listed below for ungrounded service, feeder and branch-circuit conductors.
 1. Color shall be factory applied or field applied for sizes larger than No. 8 AWG if authorities having jurisdiction permit.
 2. Colors for 208/120-V Circuits:
 a. Phase A: Black.
 b. Phase B: Red.
 c. Phase C: Blue.
 3. Colors for 240-V Circuits:
 a. Phase A: Black.
 b. Phase B: Red.
 4. Colors for 480/277-V Circuits:
 b. Phase B: Orange.
c. Phase C: Yellow.

5. Color for Neutral: White or gray.
6. Color for Equipment Grounds: Bare copper / Green / Green with a yellow stripe.
7. Colors for Isolated Grounds: Green with two or more yellow stripes.

C. Raceways and Cables Carrying Circuits at More Than 600 V:

1. Black letters on an orange field.
2. Legend: "DANGER - CONCEALED HIGH VOLTAGE WIRING."

D. Warning Label Colors:

1. Identify system voltage with black letters on an orange background.

E. Warning labels and signs shall include, but are not limited to, the following legends:

1. Multiple Power Source Warning: "DANGER - ELECTRICAL SHOCK HAZARD - EQUIPMENT HAS MULTIPLE POWER SOURCES."
2. Workspace Clearance Warning: "WARNING - OSHA REGULATION - AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KePT CLEAR FOR 36 INCHES."

F. Equipment Identification Labels:

1. Black letters on a white field.

2.3 LABELS

A. Vinyl Wraparound Labels: Preprinted, flexible labels laminated with a clear, weather- and chemical-resistant coating and matching wraparound clear adhesive tape for securing label ends.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Brady Corporation.
 b. Champion America.
 c. emedco.
 d. Grafolast Wire Markers.
 e. HellermannTyton.
 f. LEM Products Inc.
 g. Marking Services, Inc.
 h. Panduit Corp.
 i. Seton Identification Products.

B. Snap-around Labels: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeves, with diameters sized to suit diameters and that stay in place by gripping action.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Brady Corporation.
b. HellermannTyton.
c. Marking Services, Inc.
d. Panduit Corp.
e. Seton Identification Products.

C. Self-Adhesive Wraparound Labels: Preprinted / Write-on, 3-mil- thick, polyester / vinyl flexible label with acrylic pressure-sensitive adhesive.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. A’n D Cable Products.
 b. Brady Corporation.
 c. Brother International Corporation.
 d. emedco.
 e. Grafoplast Wire Markers.
 f. Ideal Industries, Inc.
 g. LEM Products Inc.
 h. Marking Services, Inc.
 i. Panduit Corp.
 j. Seton Identification Products.

2. Self-Lamination: Clear; UV-, weather- and chemical-resistant; self-laminating, protective shield over the legend. Labels sized such that the clear shield overlaps the entire printed legend.

3. Marker for Labels: Permanent, waterproof, black ink marker recommended by tag manufacturer.

4. Marker for Labels: Machine-printed, permanent, waterproof, black ink recommended by printer manufacturer.

D. Self-Adhesive Labels: Polyester / Vinyl, thermal, transfer-printed, 3-mil- thick, multicolor, weather- and UV-resistant, pressure-sensitive adhesive labels, configured for intended use and location.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. A’n D Cable Products.
 b. Brady Corporation.
 c. Brother International Corporation.
 d. emedco.
 e. Grafoplast Wire Markers.
 f. HellermannTyton.
 g. Ideal Industries, Inc.
 h. LEM Products Inc.
 i. Marking Services, Inc.
 j. Panduit Corp.
 k. Seton Identification Products.

2. Minimum Nominal Size:
 a. 1-1/2 by 6 inches for raceway and conductors
b. 3-1/2 by 5 inches for equipment.
c. As required by authorities having jurisdiction.

2.4 BANDS AND TUBES

A. Snap-around, Color-Coding Bands: Slit, pretensioned, flexible, solid-colored acrylic sleeves, 2 inches long, with diameters sized to suit diameters and that stay in place by gripping action.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Brady Corporation.
 b. HellermannTyton.
 c. Marking Services, Inc.
 d. Panduit Corp.

B. Heat-Shrink Preprinted Tubes: Flame-retardant polyolefin tubes with machine-printed identification labels, sized to suit diameter and shrunk to fit firmly. Full shrink recovery occurs at a maximum of 200 deg F. Comply with UL 224.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Brady Corporation.
 b. Panduit Corp.

2.5 TAPES AND STENCILS

A. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Carlton Industries, LP.
 b. Champion America.
 c. HellermannTyton.
 d. Ideal Industries, Inc.
 e. Marking Services, Inc.
 f. Panduit Corp.

B. Self-Adhesive Vinyl Tape: Colored, heavy duty, waterproof, fade resistant; not less than 3 mils thick by 1 to 2 inches wide; compounded for outdoor use.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Brady Corporation.
 b. Carlton Industries, LP.
 c. emedco.
d. Marking Services, Inc.

C. Tape and Stencil: 4-inch- wide black stripes on 10-inch centers placed diagonally over orange background and are 12 inches wide. Stop stripes at legends.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. HellermannTyton.
 b. LEM Products Inc.
 c. Marking Services, Inc.
 d. Seton Identification Products.

D. Floor Marking Tape: 2-inch- wide, 5-mil pressure-sensitive vinyl tape, with black and white or yellow and black stripes and clear vinyl overlay.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Carlton Industries, LP.
 b. Seton Identification Products.

E. Underground-Line Warning Tape:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Brady Corporation.
 b. Ideal Industries, Inc.
 c. LEM Products Inc.
 d. Marking Services, Inc.
 e. Reef Industries, Inc.
 f. Seton Identification Products.

2. Tape:
 a. Recommended by manufacturer for the method of installation and suitable to identify and locate underground electrical and communications utility lines.
 b. Printing on tape shall be permanent and shall not be damaged by burial operations.
 c. Tape material and ink shall be chemically inert and not subject to degradation when exposed to acids, alkalis, and other destructive substances commonly found in soils.

3. Color and Printing:
 b. Inscriptions for Red-Colored Tapes: "ELECTRIC LINE, HIGH VOLTAGE".
 c. Inscriptions for Orange-Colored Tapes: "TELEPHONE CABLE, CATV CABLE, COMMUNICATIONS CABLE, OPTICAL FIBER CABLE".
4. Tag: Type I:
 a. Pigmented polyolefin, bright colored, continuous-printed on one side with the inscription of the utility, compounded for direct-burial service.
 b. Width: 3 inches.
 c. Thickness: 4 mils.
 d. Weight: 18.5 lb/1000 sq. ft.
 e. Tensile according to ASTM D882: 30 lbf and 2500 psi.

5. Tag: Type II:
 a. Multilayer laminate, consisting of high-density polyethylene scrim coated with pigmented polyolefin; bright colored, continuous-printed on one side with the inscription of the utility, compounded for direct-burial service.
 b. Width: 3 inches.
 c. Thickness: 12 mils.
 d. Weight: 36.1 lb/1000 sq. ft.
 e. Tensile according to ASTM D882: 400 lbf and 11,500 psi.

6. Tag: Type ID:
 a. Detectable three-layer laminate, consisting of a printed pigmented polyolefin film, a solid aluminum-foil core, and a clear protective film that allows inspection of the continuity of the conductive core; bright colored, continuous-printed on one side with the inscription of the utility, compounded for direct-burial service.
 b. Width: 3 inches.
 c. Overall Thickness: 5 mils.
 d. Foil Core Thickness: 0.35 mil.
 e. Weight: 28 lb/1000 sq. ft.
 f. Tensile according to ASTM D882: 70 lbf and 4600 psi.

7. Tag: Type IID:
 a. Reinforced, detectable three-layer laminate, consisting of a printed pigmented woven scrim, a solid aluminum-foil core, and a clear protective film that allows inspection of the continuity of the conductive core; bright-colored, continuous-printed on one side with the inscription of the utility, compounded for direct-burial service.
 b. Width: 3 inches.
 c. Overall Thickness: 8 mils.
 d. Foil Core Thickness: 0.35 mil.
 e. Weight: 34 lb/1000 sq. ft.
 f. Tensile according to ASTM D882: 300 lbf and 12,500 psi.

F. Stenciled Legend: In nonfading, waterproof, black ink or paint. Minimum letter height shall be 1 inch.
2.6 TAGS

A. Metal Tags: Brass or aluminum, 2 by 2 by 0.05 inch, with stamped legend, punched for use with self-locking cable tie fastener.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Brady Corporation.
 b. Carlton Industries, LP.
 c. emedco.
 d. Marking Services, Inc.
 e. Seton Identification Products.

B. Nonmetallic Preprinted Tags: Polyethylene tags, 0.023 inch thick, color-coded for phase and voltage level, with factory printed permanent designations; punched for use with self-locking cable tie fastener.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Brady Corporation.
 b. Carlton Industries, LP.
 c. emedco.
 d. Grafoplast Wire Markers.
 e. LEM Products Inc.
 f. Marking Services, Inc.
 g. Panduit Corp.
 h. Seton Identification Products.

C. Write-on Tags:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Carlton Industries, LP.
 b. LEM Products Inc.
 c. Seton Identification Products.

2. Polyester Tags: 0.015 inch thick, with corrosion-resistant grommet and cable tie for attachment.

3. Marker for Tags: Permanent, waterproof, black ink marker recommended by tag manufacturer.

4. Marker for Tags: Machine-printed, permanent, waterproof, black ink marker recommended by printer manufacturer.

2.7 SIGNS

A. Baked-Enamel Signs:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Carlton Industries, LP.
 b. Champion America.
 c. emedco.
 d. Marking Services, Inc.

2. Preprinted aluminum signs, high-intensity reflective, punched or drilled for fasteners, with colors, legend, and size required for application.

3. 1/4-inch grommets in corners for mounting.

B. Metal-Backed Butyrate Signs:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Brady Corporation.
 b. Champion America.
 c. emedco.
 d. Marking Services, Inc.

2. Weather-resistant, nonfading, preprinted, cellulose-acetate butyrate signs, with 0.0396-inch galvanized-steel backing, punched and drilled for fasteners, and with colors, legend, and size required for application.

3. 1/4-inch grommets in corners for mounting.

4. Nominal Size: 10 by 14 inches.

C. Laminated Acrylic or Melamine Plastic Signs:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Brady Corporation.
 b. Carlton Industries, LP.
 c. emedco.
 d. Marking Services, Inc.

2. Engraved legend.

3. Thickness:
 a. For signs up to 20 sq. in., minimum 1/16 inch thick.
 b. For signs larger than 20 sq. in., 1/8 inch thick.
 c. Engraved legend with white letters on a dark gray background.
 d. Punched or drilled for mechanical fasteners with 1/4-inch grommets in corners for mounting.
 e. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.
2.8 CABLE TIES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. HellermannTyton.
2. Ideal Industries, Inc.
3. Marking Services, Inc.
4. Panduit Corp.

B. General-Purpose Cable Ties: Fungus inert, self-extinguishing, one piece, self-locking, and Type 6/6 nylon.

2. Tensile Strength at 73 Deg F according to ASTM D638: 12,000 psi.
3. Temperature Range: Minus 40 to plus 185 deg F.

C. UV-Stabilized Cable Ties: Fungus inert, designed for continuous exposure to exterior sunlight, self-extinguishing, one piece, self-locking, and Type 6/6 nylon.

2. Tensile Strength at 73 Deg F according to ASTM D638: 12,000 psi.
3. Temperature Range: Minus 40 to plus 185 deg F.

D. Plenum-Rated Cable Ties: Self-extinguishing, UV stabilized, one piece, and self-locking.

2. Tensile Strength at 73 Deg F according to ASTM D638: 7000 psi.
3. UL 94 Flame Rating: 94V-0.
4. Temperature Range: Minus 50 to plus 284 deg F.
5. Color: Black.

2.9 MISCELLANEOUS IDENTIFICATION PRODUCTS

A. Paint: Comply with requirements in painting Sections for paint materials and application requirements. Retain paint system applicable for surface material and location (exterior or interior).

B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.
PART 3 - EXECUTION

3.1 PREPARATION

A. Self-Adhesive Identification Products: Before applying electrical identification products, clean substrates of substances that could impair bond, using materials and methods recommended by manufacturer of identification product.

3.2 INSTALLATION

A. Verify and coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and operation and maintenance manual. Use consistent designations throughout Project.

B. Install identifying devices before installing acoustical ceilings and similar concealment.

C. Verify identity of each item before installing identification products.

D. Coordinate identification with Project Drawings, manufacturer's wiring diagrams, and operation and maintenance manual.

E. Apply identification devices to surfaces that require finish after completing finish work.

F. Install signs with approved legend to facilitate proper identification, operation, and maintenance of electrical systems and connected items.

G. System Identification for Raceways and Cables under 600 V: Identification shall completely encircle cable or conduit. Place identification of two-color markings in contact, side by side.

 1. Secure tight to surface of conductor, cable, or raceway.

H. System Identification for Raceways and Cables over 600 V: Identification shall completely encircle cable or conduit. Place adjacent identification of two-color markings in contact, side by side.

 1. Secure tight to surface of conductor, cable, or raceway.

J. Emergency Operating Instruction Signs: Install instruction signs with white legend on a red background with minimum 3/8-inch- high letters for emergency instructions at equipment used for load shedding.

K. Elevated Components: Increase sizes of labels, signs, and letters to those appropriate for viewing from the floor.
L. Accessible Fittings for Raceways: Identify the covers of each junction and pull box of the following systems with the wiring system legend and system voltage. System legends shall be as follows:

1. "EMERGENCY POWER."
2. "POWER."

M. Vinyl Wraparound Labels:

1. Secure tight to surface of raceway or cable at a location with high visibility and accessibility.
2. Attach labels that are not self-adhesive type with clear vinyl tape, with adhesive appropriate to the location and substrate.

N. Snap-around Labels: Secure tight to surface at a location with high visibility and accessibility.

O. Self-Adhesive Wraparound Labels: Secure tight to surface at a location with high visibility and accessibility.

P. Self-Adhesive Labels:

1. On each item, install unique designation label that is consistent with wiring diagrams, schedules, and operation and maintenance manual.
2. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on 1-1/2-inch-high label; where two lines of text are required, use labels 2 inches high.

Q. Snap-around Color-Coding Bands: Secure tight to surface at a location with high visibility and accessibility.

R. Heat-Shrink, Preprinted Tubes: Secure tight to surface at a location with high visibility and accessibility.

S. Marker Tapes: Secure tight to surface at a location with high visibility and accessibility.

T. Self-Adhesive Vinyl Tape: Secure tight to surface at a location with high visibility and accessibility.

1. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding.

U. Tape and Stencil: Comply with requirements in painting Sections for surface preparation and paint application.

V. Floor Marking Tape: Apply stripes to finished surfaces following manufacturer's written instructions.

W. Underground Line Warning Tape:

1. During backfilling of trenches, install continuous underground-line warning tape directly above cable or raceway at 6 to 8 inches below finished grade. Use multiple tapes where
width of multiple lines installed in a common trench or concrete envelope exceeds 16 inches overall.

2. Limit use of underground-line warning tape to direct-buried cables.
3. Install underground-line warning tape for direct-buried cables and cables in raceways.

X. Metal Tags:

1. Place in a location with high visibility and accessibility.
2. Secure using UV-stabilized / plenum-rated cable ties.

Y. Nonmetallic Preprinted Tags:

1. Place in a location with high visibility and accessibility.
2. Secure using UV-stabilized / plenum-rated cable ties.

Z. Write-on Tags:

1. Place in a location with high visibility and accessibility.
2. Secure using UV-stabilized / plenum-rated cable ties.

AA. Baked-Enamel Signs:

1. Attach signs that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
2. Unless otherwise indicated, provide a single line of text with 1/2-inch- high letters on minimum 1-1/2-inch- high sign; where two lines of text are required, use signs minimum 2 inches high.

BB. Metal-Backed Butyrate Signs:

1. Attach signs that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
2. Unless otherwise indicated, provide a single line of text with 1/2-inch- high letters on 1-1/2-inch- high sign; where two lines of text are required, use labels 2 inches high.

CC. Laminated Acrylic or Melamine Plastic Signs:

1. Attach signs that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
2. Unless otherwise indicated, provide a single line of text with 1/2-inch- high letters on 1-1/2-inch- high sign; where two lines of text are required, use labels 2 inches high.

DD. Cable Ties: General purpose, for attaching tags, except as listed below:

1. Outdoors: UV-stabilized nylon.
2. In Spaces Handling Environmental Air: Plenum rated.
3.3 IDENTIFICATION SCHEDULE

A. Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment. Install access doors or panels to provide view of identifying devices.

B. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, pull points, and locations of high visibility. Identify by system and circuit designation.

1. Locate identification at changes in direction, at penetrations of walls and floors, and at 10-foot maximum intervals.

D. Accessible Raceways, Armored and Metal-Clad Cables, More Than 600 V: Vinyl wraparound labels / Snap-around labels / Self-adhesive labels / Snap-around color-coding bands for raceway and cables.

1. Locate identification at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.

E. Accessible Raceways and Metal-Clad Cables, 600 V or Less, for Service, Feeder, and Branch Circuits, More Than 30 A and 120 V to Ground: Identify with self-adhesive raceway labels / vinyl tape applied in bands.

1. Locate identification at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.

F. Accessible Fittings for Raceways and Cables within Buildings: Identify the covers of each junction and pull box of the following systems with self-adhesive labels containing the wiring system legend and system voltage. System legends shall be as follows:

1. "EMERGENCY POWER."
2. "POWER."

G. Power-Circuit Conductor Identification, 600 V or Less: For conductors in vaults, pull and junction boxes, manholes, and handholes, use self-adhesive wraparound labels snap-around color-coding bands / self-adhesive vinyl tape to identify the phase.

1. Locate identification at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.

H. Power-Circuit Conductor Identification, More Than 600 V: For conductors in vaults, pull and junction boxes, manholes, and handholes, use nonmetallic preprinted tags colored and marked to indicate phase, and a separate tag with the circuit designation.
I. Control-Circuit Conductor Identification: For conductors and cables in pull and junction boxes, manholes, and handholes, use self-adhesive labels with the conductor or cable designation, origin, and destination.

J. Control-Circuit Conductor Termination Identification: For identification at terminations, provide self-adhesive labels with the conductor designation.

K. Conductors to Be Extended in the Future: Attach marker tape to conductors and list source.

L. Auxiliary Electrical Systems Conductor Identification: Self-adhesive vinyl tape that is uniform and consistent with system used by manufacturer for factory-installed connections.

1. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, and pull points. Identify by system and circuit designation.

M. Locations of Underground Lines: Underground-line warning tape for power, lighting, communication, and control wiring and optical-fiber cable.

N. Concealed Raceways and Duct Banks, More Than 600 V, within Buildings: Apply floor marking tape to the following finished surfaces:

1. Floor surface directly above conduits running beneath and within 12 inches of a floor that is in contact with earth or is framed above unexcavated space.
2. Wall surfaces directly external to raceways concealed within wall.
3. Accessible surfaces of concrete envelope around raceways in vertical shafts, exposed in the building, or concealed above suspended ceilings.

O. Workspace Indication: Apply floor marking tape or tape and stencil to finished surfaces. Show working clearances in the direction of access to live parts. Workspace shall comply with NFPA 70 and 29 CFR 1926.403 unless otherwise indicated. Do not install at flush-mounted panelboards and similar equipment in finished spaces.

P. Instructional Signs: Self-adhesive labels, including the color code for grounded and ungrounded conductors.

Q. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Baked-enamel warning signs.

1. Apply to exterior of door, cover, or other access.
2. For equipment with multiple power or control sources, apply to door or cover of equipment, including, but not limited to, the following:

a. Power-transfer switches.
b. Controls with external control power connections.

S. Operating Instruction Signs: Baked-enamel warning signs / Metal-backed, butyrate warning signs.
T. Emergency Operating Instruction Signs: Baked-enamel warning signs / Metal-backed, butyrate warning signs / Laminated acrylic or melamine plastic signs with white legend on a red background with minimum 3/8-inch high letters for emergency instructions at equipment used for power transfer / load shedding.

U. Equipment Identification Labels:

1. Indoor Equipment: Baked-enamel signs / Metal-backed butyrate signs / Laminated acrylic or melamine plastic sign.

2. Outdoor Equipment: Laminated acrylic or melamine sign / Stenciled legend 4 inches high.

3. Equipment to Be Labeled:

 a. Panelboards: Typewritten directory of circuits in the location provided by panelboard manufacturer. Panelboard identification shall be in the form of an engraved, laminated acrylic or melamine label.

 b. Enclosures and electrical cabinets.

 c. Access doors and panels for concealed electrical items.

 d. Switchgear.

 e. Switchboards.

 f. Transformers: Label that includes tag designation indicated on Drawings for the transformer, feeder, and panelboards or equipment supplied by the secondary.

 g. Substations.

 h. Emergency system boxes and enclosures.

 i. Motor-control centers.

 j. Enclosed switches.

 k. Enclosed circuit breakers.

 l. Enclosed controllers.

 m. Variable-speed controllers.

 n. Push-button stations.

 o. Power-transfer equipment.

 p. Contactors.

 q. Remote-controlled switches, dimmer modules, and control devices.

 r. Battery-inverter units.

 s. Battery racks.

 t. Monitoring and control equipment.

END OF SECTION
SECTION 26 05 73.13

SHORT-CIRCUIT STUDIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes a computer-based, fault-current study to determine the minimum interrupting capacity of circuit protective devices.

1.3 DEFINITIONS

A. Existing to Remain: Existing items of construction that are not to be removed and that are not otherwise indicated to be removed and salvaged, or removed and reinstalled. Existing to remain items shall remain functional throughout the construction period.

B. Field Adjusting Agency: An independent electrical testing agency with full-time employees and the capability to adjust devices and conduct testing indicated and that is a member company of NETA.

C. One-Line Diagram: A diagram that shows, by means of single lines and graphic symbols, the course of an electric circuit or system of circuits and the component devices or parts used therein.

D. Power System Analysis Software Developer: An entity that commercially develops, maintains, and distributes computer software used for power system studies.

E. Power Systems Analysis Specialist: Professional engineer in charge of performing the study and documenting recommendations, licensed in the state where Project is located.

F. Protective Device: A device that senses when an abnormal current flow exists and then removes the affected portion of the circuit from the system.

G. SCCR: Short-circuit current rating.

H. Service: The conductors and equipment for delivering electric energy from the serving utility to the wiring system of the premises served.

1.4 ACTION SUBMITTALS

A. Product Data:

1. For computer software program to be used for studies.
2. Submit the following after the approval of system protective devices submittals. Submittals shall be in digital form and printed form.
 a. Short-circuit study input data, including completed computer program input data sheets.
 b. Short-circuit study and equipment evaluation report; signed, dated, and sealed by a qualified professional engineer.

1) Submit study report for action prior to receiving final approval of distribution equipment submittals. If formal completion of studies will cause delay in equipment manufacturing, obtain approval from Architect for preliminary submittal of sufficient study data to ensure that selection of devices and associated characteristics is satisfactory.

2) Revised one-line diagram, reflecting field investigation results and results of short-circuit study. Instructions shall be provided to the vendor of Electrical Gears, MCC, Panelboard & Switches for providing coordinated Circuit Breaker, Fuses, and the Contractor must bear cost of recommended sizes/types instead of those shown in Contract Documents.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data:

1. For Power Systems Analysis Software Developer.
2. For Power System Analysis Specialist.
3. For Field Adjusting Agency.

B. Product Certificates: For short-circuit study software, certifying compliance with IEEE 399.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data:

1. For overcurrent protective devices to include in emergency, operation, and maintenance manuals.
2. The following are from the Short-Circuit Study Report:
 a. Final one-line diagram.
 b. Final Short-Circuit Study Report.
 c. Short-circuit study data files and printed form.
 d. Power system data.
1.7 QUALITY ASSURANCE

A. Study shall be performed using commercially developed and distributed software designed specifically for power system analysis.

B. Software algorithms shall comply with requirements of standards and guides specified in this Section.

C. Manual calculations are unacceptable.

1. Power System Analysis Software Qualifications: Computer program shall be designed to perform short-circuit studies or have a function, component, or add-on module designed to perform short-circuit studies.

2. Computer program shall be developed under the charge of a licensed professional engineer who holds IEEE Computer Society's Certified Software Development Professional certification.

D. Power Systems Analysis Specialist Qualifications: Professional engineer licensed in the state where Project is located. All elements of the study shall be performed under the direct supervision and control of this professional engineer.

E. Short-Circuit Study Certification: Short-Circuit Study Report shall be signed and sealed by Power Systems Analysis Specialist.

F. Field Adjusting Agency Qualifications:

1. Employer of a NETA ETT-Certified Technician Level III or NICET Electrical Power Testing Level III certification responsible for all field adjusting of the Work.

2. A member company of NETA.

3. Acceptable to authorities having jurisdiction.

PART 2 - PRODUCTS

2.1 POWER SYSTEM ANALYSIS SOFTWARE DEVELOPERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. CGI CYME.

2. ETAP Corporation.

3. ESA Inc.

4. Operation Technology, Inc.

5. Power Analytics, Corporation.

6. SKM Systems Analysis, Inc.

B. Comply with IEEE 399 and IEEE 551.

1. Analytical features of power systems analysis software program shall have capability to calculate "mandatory," "very desirable," and "desirable" features as listed in IEEE 399.
C. Computer software program shall be capable of plotting and diagramming time-current-characteristic curves as part of its output.

2.2 SHORT-CIRCUIT STUDY REPORT CONTENTS

A. Executive summary of study findings.

B. Study descriptions, purpose, basis, and scope. Include case descriptions, definition of terms, and guide for interpretation of results.

C. One-line diagram of modeled power system, showing the following:

1. Protective device designations and ampere ratings.
2. Conductor types, sizes, and lengths.
3. Transformer kilovolt ampere (kVA) and voltage ratings.
4. Motor and generator designations and kVA ratings.
5. Switchgear, switchboard, motor-control center, and panelboard designations and ratings.
6. Derating factors and environmental conditions.
7. Any revisions to electrical equipment required by the study.

D. Comments and recommendations for system improvements or revisions in a written document, separate from one-line diagram.

E. Protective Device Evaluation:

1. Evaluate equipment and protective devices and compare to available short-circuit currents. Verify that equipment withstand ratings exceed available short-circuit current at equipment installation locations.
2. Tabulations of circuit breaker, fuse, and other protective device ratings versus calculated short-circuit duties.
3. For 600-V overcurrent protective devices, ensure that interrupting ratings are equal to or higher than calculated 1/2-cycle symmetrical fault current.
4. For devices and equipment rated for asymmetrical fault current, apply multiplication factors listed in standards to 1/2-cycle symmetrical fault current.
5. Verify adequacy of phase conductors at maximum three-phase bolted fault currents; verify adequacy of equipment grounding conductors and grounding electrode conductors at maximum ground-fault currents. Ensure that short-circuit withstand ratings are equal to or higher than calculated 1/2-cycle symmetrical fault current.

F. Short-Circuit Study Input Data:

1. One-line diagram of system being studied.
2. Power sources available.
3. Manufacturer, model, and interrupting rating of protective devices.
4. Conductors.
5. Transformer data.

G. Short-Circuit Study Output Reports:
1. Low-Voltage Fault Report: Three-phase and unbalanced fault calculations, showing the following for each overcurrent device location:
 a. Voltage.
 b. Calculated fault-current magnitude and angle.
 c. Fault-point X/R ratio.
 d. Equivalent impedance.

2. Momentary Duty Report: Three-phase and unbalanced fault calculations, showing the following for each overcurrent device location:
 a. Voltage.
 b. Calculated symmetrical fault-current magnitude and angle.
 c. Fault-point X/R ratio.
 d. Calculated asymmetrical fault currents:
 1) Based on fault-point X/R ratio.
 2) Based on calculated symmetrical value multiplied by 1.6.
 3) Based on calculated symmetrical value multiplied by 2.7.

3. Interrupting Duty Report: Three-phase and unbalanced fault calculations, showing the following for each overcurrent device location:
 a. Voltage.
 b. Calculated symmetrical fault-current magnitude and angle.
 c. Fault-point X/R ratio.
 d. No AC Decrement (NACD) ratio.
 e. Equivalent impedance.
 f. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a symmetrical basis.
 g. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a total basis.

PART 3 - EXECUTION

3.1 POWER SYSTEM DATA

A. Obtain all data necessary for conduct of the study.
 1. Verify completeness of data supplied on one-line diagram. Call any discrepancies to Architect's attention.
 2. For equipment included as Work of this Project, use characteristics submitted under provisions of action submittals and information submittals for this Project.
 3. For relocated equipment and that which is existing to remain, obtain required electrical distribution system data by field investigation and surveys, conducted by qualified technicians and engineers. Qualifications of technicians and engineers shall be as defined by NFPA 70E.

B. Gather and tabulate the required input data to support the short-circuit study. Comply with requirements for recording circuit protective device characteristics. Record data on a Record
Document copy of one-line diagram. Comply with recommendations in IEEE 551 as to the amount of detail that is required to be acquired in the field. Field data gathering shall be under direct supervision and control of the engineer in charge of performing the study, and shall be by the engineer or its representative who holds NETA ETT-Certified Technician Level III or NICET Electrical Power Testing Level III certification. Data include, but are not limited to, the following:

1. **Product Data** for Project's overcurrent protective devices involved in overcurrent protective device coordination studies. Use equipment designation tags that are consistent with electrical distribution system diagrams, overcurrent protective device submittals, input and output data, and recommended device settings.
2. **Obtain electrical power utility impedance** at the service.
3. **Power sources and ties**.
4. For transformers, **include kVA, primary and secondary voltages, connection type, impedance, X/R ratio, taps measured in percent, and phase shift**.
5. For reactors, **provide manufacturer and model designation, voltage rating, and impedance**.
6. For circuit breakers and fuses, **provide manufacturer and model designation**. List type of breaker, type of trip, SCCR, current rating, and breaker settings.
7. **Generator short-circuit current contribution data**, including short-circuit reactance, rated kVA, rated voltage, and X/R ratio.
8. **Busway manufacturer and model designation**, current rating, impedance, lengths, and conductor material.
9. **Motor horsepower and NEMA MG 1 code letter designation**.
10. **Conductor sizes**, lengths, number, conductor material and conduit material (magnetic or nonmagnetic).
11. **Derating factors**.

3.2 SHORT-CIRCUIT STUDY

A. **Perform study following the general study procedures contained in IEEE 399**.

B. **Calculate short-circuit currents according to IEEE 551**.

C. **Base study on device characteristics supplied by device manufacturer**.

D. **Extent of electrical power system to be studied is indicated on Drawings**.

E. **Begin short-circuit current analysis at the service, extending down to system overcurrent protective devices as follows**:

 1. To normal system low-voltage load buses where fault current is 10 kA or less.
 2. Exclude equipment rated 240 V ac or less when supplied by a single transformer rated less than 125 kVA.

F. Study electrical distribution system from normal and alternate power sources throughout electrical distribution system for Project. Study all cases of system-switching configurations and alternate operations that could result in maximum fault conditions.
G. Include the ac fault-current decay from induction motors, synchronous motors, and asynchronous generators and apply to low- and medium-voltage, three-phase ac systems. Also account for the fault-current dc decrement to address asymmetrical requirements of interrupting equipment.

H. Calculate short-circuit momentary and interrupting duties for a three-phase bolted fault and a single line-to-ground fault at each equipment indicated on one-line diagram.

1. For grounded systems, provide a bolted line-to-ground fault-current study for areas as defined for the three-phase bolted fault short-circuit study.

I. Include in the report identification of any protective device applied outside its capacity.

END OF SECTION
SECTION 26 05 73.16

COORDINATION STUDIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes computer-based, overcurrent protective device coordination studies to determine overcurrent protective devices and to determine overcurrent protective device settings for selective tripping.

1. Study results shall be used to determine coordination of series-rated devices.

1.3 DEFINITIONS

A. Existing to Remain: Existing items of construction that are not to be removed and that are not otherwise indicated to be removed, removed and salvaged, or removed and reinstalled. Existing to remain items shall remain functional throughout the construction period.

B. Field Adjusting Agency: An independent electrical testing agency with full-time employees and the capability to adjust devices and conduct testing indicated and that is a member company of NETA.

C. One-Line Diagram: A diagram that shows, by means of single lines and graphic symbols, the course of an electric circuit or system of circuits and the component devices or parts used therein.

D. Power System Analysis Software Developer: An entity that commercially develops, maintains, and distributes computer software used for power system studies.

E. Power System Analysis Specialist: Professional engineer in charge of performing the study and documenting recommendations, licensed in the state where Project is located.

F. Protective Device: A device that senses when an abnormal current flow exists and then removes the affected portion of the circuit from the system.

G. SCCR: Short-circuit current rating.

H. Service: The conductors and equipment for delivering electric energy from the serving utility to the wiring system of the premises served.

1.4 ACTION SUBMITTALS

A. Product Data:

1. For computer software program to be used for studies.
2. Submit the following after the approval of system protective devices submittals. Submittals shall be in digital form along with printed copy.
 a. Coordination-study input data, including completed computer program input data sheets.
 b. Study and equipment evaluation reports.
3. Overcurrent protective device coordination study report; signed, dated, and sealed by a qualified professional engineer.
 a. Submit study report for action prior to receiving final approval of distribution equipment submittals. If formal completion of studies will cause delay in equipment manufacturing, obtain approval from Architect for preliminary submittal of sufficient study data to ensure that selection of devices and associated characteristics is satisfactory.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data:

1. For Power System Analysis Software Developer.
2. For Power Systems Analysis Specialist.
3. For Field Adjusting Agency.

B. Product Certificates: For overcurrent protective device coordination study software, certifying compliance with IEEE 399.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For overcurrent protective devices to include in emergency, operation, and maintenance manuals.

1. The following are from the Coordination Study Report:
 a. Final one-line diagram.
 b. Final protective device coordination study.
 c. Coordination study data files.
 d. List of all protective device settings. Type 8 Sizes of Breakers/Fuses.
 e. Time-current coordination curves.
 f. Power system data.
1.7 QUALITY ASSURANCE

A. Studies shall be performed using commercially developed and distributed software designed specifically for power system analysis.

B. Software algorithms shall comply with requirements of standards and guides specified in this Section.

C. Manual calculations are unacceptable.

D. Power System Analysis Software Qualifications:

1. Computer program shall be designed to perform coordination studies or have a function, component, or add-on module designed to perform coordination studies.

2. Computer program shall be developed under the charge of a licensed professional engineer who holds IEEE Computer Society's Certified Software Development Professional certification.

E. Power Systems Analysis Specialist Qualifications: Professional engineer licensed in the state where Project is located. All elements of the study shall be performed under the direct supervision and control of this professional engineer.

F. Field Adjusting Agency Qualifications:

1. Employer of a NETA ETT-Certified Technician Level III responsible for all field adjusting of the Work.

2. A member company of NETA.

3. Acceptable to authorities having jurisdiction.

PART 2 - PRODUCTS

2.1 POWER SYSTEM ANALYSIS SOFTWARE DEVELOPERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. CGI CYME.

2. ETRAP Corporation.

3. ESA Inc.

4. Operation Technology, Inc.

5. Power Analytics, Corporation.

6. SKM Systems Analysis, Inc.

B. Comply with IEEE 242 and IEEE 399.

C. Analytical features of device coordination study computer software program shall have the capability to calculate "mandatory," "very desirable," and "desirable" features as listed in IEEE 399.
D. Computer software program shall be capable of plotting and diagramming time-current-characteristic curves as part of its output. Computer software program shall report device settings and ratings of all overcurrent protective devices and shall demonstrate selective coordination by computer-generated, time-current coordination plots.

1. Optional Features:
 a. Arcing faults.
 b. Simultaneous faults.
 c. Explicit negative sequence.
 d. Mutual coupling in zero sequence.

2.2 COORDINATION STUDY REPORT CONTENTS

A. Executive summary of study findings.

B. Study descriptions, purpose, basis, and scope. Include case descriptions, definition of terms, and guide for interpretation of results.

C. One-line diagram of modeled power system, showing the following:

1. Protective device designations and ampere ratings, Types 8 Sizes of Breakers/Fuses.
2. Conductor types, sizes, and lengths.
3. Transformer kilovolt ampere (kVA) and voltage ratings.
4. Motor designations and kVA ratings.
5. Switchgear, switchboard, motor-control center, and panelboard designations.
6. Any revisions to electrical equipment required by the study.
7. Study Input Data: As described in "Power System Data" Article.

 a. Short-Circuit Study Output: As specified in "Short-Circuit Study Output Reports" Paragraph in "Short-Circuit Study Report Contents" Article in Section 26 05 73.13 "Short-Circuit Studies."

D. Protective Device Coordination Study:

1. Report recommended settings of protective devices, ready to be applied in the field. Use manufacturer's data sheets for recording the recommended setting of overcurrent protective devices when available.

 a. Phase and Ground Relays:

 1) Device tag.
 2) Relay current transformer ratio and tap, time dial, and instantaneous pickup value.
 3) Recommendations on improved relaying systems, if applicable.

 b. Circuit Breakers:

 1) Adjustable pickups and time delays (long time, short time, and ground).
 2) Adjustable time-current characteristic.
3) Adjustable instantaneous pickup.
4) Recommendations on improved trip systems, if applicable.

c. Fuses: Show current rating, voltage, and class.
d. Coordinated Selective Ratings, Sizes of Breakers/Fuses.

E. Time-Current Coordination Curves: Determine settings of overcurrent protective devices to achieve selective coordination. Graphically illustrate that adequate time separation exists between devices installed in series, including power utility company's upstream devices. Prepare separate sets of curves for the switching schemes and for emergency periods where the power source is local generation. Show the following information:

1. Device tag and title, one-line diagram with legend identifying the portion of the system covered.
2. Terminate device characteristic curves at a point reflecting maximum symmetrical or asymmetrical fault current to which the device is exposed.
3. Identify the device associated with each curve by manufacturer type, function, and, if applicable, tap, time delay, and instantaneous settings recommended.
4. Plot the following listed characteristic curves, as applicable:
 a. Power utility's overcurrent protective device.
 b. Medium-voltage equipment overcurrent relays.
 c. Medium- and low-voltage fuses including manufacturer's minimum melt, total clearing, tolerance, and damage bands.
 d. Low-voltage equipment circuit-breaker trip devices, including manufacturer's tolerance bands.
 e. Transformer full-load current, magnetizing inrush current, and ANSI through-fault protection curves.
 f. Cables and conductors damage curves.
 g. Ground-fault protective devices.
 h. Motor-starting characteristics and motor damage points.
 i. Generator short-circuit decrement curve and generator damage point.
 j. The largest feeder circuit breaker in each motor-control center and panelboard.

5. Maintain selectivity for tripping currents caused by overloads.
6. Maintain maximum achievable selectivity for tripping currents caused by overloads on series-rated devices.
7. Provide adequate time margins between device characteristics such that selective operation is achieved.
8. Comments and recommendations for system improvements.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine Project overcurrent protective device submittals for compliance with electrical distribution system coordination requirements and other conditions affecting performance of the Work. Devices to be coordinated are indicated on Drawings.
1. Proceed with coordination study only after relevant equipment submittals have been assembled. Overcurrent protective devices that have not been submitted and approved prior to coordination study may not be used in study.

3.2 POWER SYSTEM DATA

A. Obtain all data necessary for conduct of the overcurrent protective device study.

1. Verify completeness of data supplied in one-line diagram on Drawings. Call any discrepancies to Architect's attention.
2. For equipment included as Work of this Project, use characteristics submitted under provisions of action submittals and information submittals for this Project.
3. For relocated equipment and that which is existing to remain, obtain required electrical distribution system data by field investigation and surveys, conducted by qualified technicians and engineers. Qualifications of technicians and engineers shall be as defined by NFPA 70E.

B. Gather and tabulate all required input data to support the coordination study. List below is a guide. Comply with recommendations in IEEE 551 for the amount of detail required to be acquired in the field. Field data gathering shall be under direct supervision and control of the engineer in charge of performing the study, and shall be by the engineer or its representative who holds NETA ETT-Certified Technician Level III or NICET Electrical Power Testing Level III certification. Data include, but are not limited to, the following:

1. Product Data for overcurrent protective devices specified in other Sections and involved in overcurrent protective device coordination studies. Use equipment designation tags that are consistent with electrical distribution system diagrams, overcurrent protective device submittals, input and output data, and recommended device settings.
2. Electrical power utility impedance at the service.
3. Power sources and ties.
4. Short-circuit current at each system bus (three phase and line to ground).
5. Full-load current of all loads.
6. Voltage level at each bus.
7. For transformers, include kVA, primary and secondary voltages, connection type, impedance, X/R ratio, taps measured in percent, and phase shift.
8. For reactors, provide manufacturer and model designation, voltage rating, and impedance.
9. For circuit breakers and fuses, provide manufacturer and model designation. List type of breaker, type of trip and available range of settings, SCCR, current rating, and breaker settings.
10. For relays, provide manufacturer and model designation, current transformer ratios, potential transformer ratios, and relay settings.
11. Maximum demands from service meters.
12. Busway manufacturer and model designation, current rating, impedance, lengths, size, and conductor material.
13. Motor horsepower and NEMA MG 1 code letter designation.
14. Low-voltage cable sizes, lengths, number, conductor material, and conduit material (magnetic or nonmagnetic).
15. Medium-voltage cable sizes, lengths, conductor material, cable construction, metallic shield performance parameters, and conduit material (magnetic or nonmagnetic).
16. Data sheets to supplement electrical distribution system one-line diagram, cross-referenced with tag numbers on diagram, showing the following:

a. Special load considerations, including starting inrush currents and frequent starting and stopping.
b. Transformer characteristics, including primary protective device, magnetic inrush current, and overload capability.
c. Motor full-load current, locked rotor current, service factor, starting time, type of start, and thermal-damage curve.
d. Ratings, types, and settings of utility company's overcurrent protective devices.
e. Special overcurrent protective device settings or types stipulated by utility company.
f. Time-current-characteristic curves of devices indicated to be coordinated.
g. Manufacturer, frame size, interrupting rating in amperes root mean square (rms) symmetrical, ampere or current sensor rating, long-time adjustment range, short-time adjustment range, and instantaneous adjustment range for circuit breakers.
h. Manufacturer and type, ampere-tap adjustment range, time-delay adjustment range, instantaneous attachment adjustment range, and current transformer ratio for overcurrent relays.
i. Switchgear, switchboards, motor-control centers, and panelboards ampacity, and SCCR in amperes rms symmetrical.
j. Identify series-rated interrupting devices for a condition where the available fault current is greater than the interrupting rating of downstream equipment. Obtain device data details to allow verification that series application of these devices complies with NFPA 70 and UL 489 requirements.

3.3 COORDINATION STUDY

A. Comply with IEEE 242 for calculating short-circuit currents and determining coordination time intervals.

B. Comply with IEEE 399 for general study procedures.

C. Base study on device characteristics supplied by device manufacturer.

D. Extent of electrical power system to be studied is indicated on Drawings.

E. Begin analysis at the service, extending down to system overcurrent protective devices as follows:

1. To normal system low-voltage load buses where fault current is 10 kA or less.
2. Exclude equipment rated 240 V ac or less when supplied by a single transformer rated less than 125 kVA.

F. Study electrical distribution system from normal and alternate power sources throughout electrical distribution system for Project. Study all cases of system-switching configurations and alternate operations that could result in maximum fault conditions.

G. Transformer Primary Overcurrent Protective Devices:
1. Device shall not operate in response to the following:
 a. Inrush current when first energized.
 b. Self-cooled, full-load current or forced-air-cooled, full-load current, whichever is specified for that transformer.
 c. Permissible transformer overloads according to IEEE C57.96 if required by unusual loading or emergency conditions.

2. Device settings shall protect transformers according to IEEE C57.12.00, for fault currents.

H. Motor Protection:
 1. Select protection for low-voltage motors according to IEEE 242 and NFPA 70.
 2. Select protection for motors served at voltages more than 600 V according to IEEE 620.

I. Conductor Protection: Protect cables against damage from fault currents according to ICEA P-32-382, ICEA P-45-482, and protection recommendations in IEEE 242. Demonstrate that equipment withstands the maximum short-circuit current for a time equivalent to the tripping time of the primary relay protection or total clearing time of the fuse. To determine temperatures that damage insulation, use curves from cable manufacturers or from listed standards indicating conductor size and short-circuit current.

J. Include the ac fault-current decay from induction motors, synchronous motors, and asynchronous generators and apply to low- and medium-voltage, three-phase ac systems. Also account for fault-current dc decrement, to address asymmetrical requirements of interrupting equipment.

K. Calculate short-circuit momentary and interrupting duties for a three-phase bolted fault and a single line-to-ground fault at each equipment indicated on one-line diagram.

 1. For grounded systems, provide a bolted line-to-ground fault-current study for areas as defined for the three-phase bolted fault short-circuit study.

L. Protective Device Evaluation:
 1. Evaluate equipment and protective devices and compare to short-circuit ratings.
 2. Adequacy of switchgear, motor-control centers, and panelboard bus bars to withstand short-circuit stresses.
 3. Any application of series-rated devices shall be recertified, complying with requirements in NFPA 70.
 4. Include in the report identification of any protective device applied outside its capacity.

3.4 LOAD-FLOW AND VOLTAGE-DROP STUDY

 A. Perform a load-flow and voltage-drop study to determine the steady-state loading profile of the system. Analyze power system performance two times as follows:

 1. Determine load flow and voltage drop based on full-load currents obtained in "Power System Data" Article.
2. Determine load flow and voltage drop based on 80 percent of the design capacity of load buses.

3. Prepare load-flow and voltage-drop analysis and report to show power system components that are overloaded, or might become overloaded; show bus voltages that are less than as prescribed by NFPA 70.

3.5 MOTOR-STARTING STUDY

A. Perform a motor-starting study to analyze the transient effect of system's voltage profile during motor starting. Calculate significant motor-starting voltage profiles and analyze the effects of motor starting on the power system stability.

B. Prepare the motor-starting study report, noting light flicker for limits proposed by IEEE 141, and, and voltage sags so as not to affect operation of other utilization equipment on system supplying the motor.

3.6 FIELD ADJUSTING

A. Adjust relay and protective device settings according to recommended settings provided by the coordination study. Field adjustments shall be completed by the engineering service division of equipment manufacturer under the “Startup and Acceptance Testing” contract portion.

B. Make minor modifications to equipment as required to accomplish compliance with short-circuit and protective device coordination studies.

C. Testing and adjusting shall be by a full-time employee of the Field Adjusting Agency, who holds NETA ETT-Certified Technician Level III or NICET Electrical Power Testing Level III certification.

1. Perform each visual and mechanical inspection and electrical test stated in NETA ATS. Certify compliance with test parameters. Perform NETA tests and inspections for all adjustable overcurrent protective devices.

3.7 DEMONSTRATION

A. Engage Power Systems Analysis Specialist to train Owner's maintenance personnel in the following:

1. Acquaint personnel in fundamentals of operating the power system in normal and emergency modes.

2. Hand-out and explain the coordination study objectives, study descriptions, purpose, basis, and scope. Include case descriptions, definition of terms, and guide for interpreting time-current coordination curves.

3. For Owner's maintenance staff certified as NETA ETT-Certified Technicians Level III or NICET Electrical Power Testing Level III Technicians, teach how to adjust, operate, and maintain overcurrent protective device settings.

END OF SECTION
SECTION 26 05 73.19

ARC-FLASH HAZARD ANALYSIS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes a computer-based, arc-flash study to determine the arc-flash hazard distance and the incident energy to which personnel could be exposed during work on or near electrical equipment.

1.3 DEFINITIONS
A. Existing to Remain: Existing items of construction that are not to be removed and that are not otherwise indicated to be removed, removed and salvaged, or removed and reinstalled.
B. Field Adjusting Agency: An independent electrical testing agency with full-time employees and the capability to adjust devices and conduct testing indicated and that is a member company of NETA.
C. One-Line Diagram: A diagram that shows, by means of single lines and graphic symbols, the course of an electric circuit or system of circuits and the component devices or parts used therein.
D. Power System Analysis Software Developer: An entity that commercially develops, maintains, and distributes computer software used for power system studies.
E. Power Systems Analysis Specialist: Professional engineer in charge of performing the study and documenting recommendations, licensed in the state where Project is located.
F. Protective Device: A device that senses when an abnormal current flow exists and then removes the affected portion from the system.
G. SCCR: Short-circuit current rating.
H. Service: The conductors and equipment for delivering electric energy from the serving utility to the wiring system of the premises served.
1.4 ACTION SUBMITTALS

A. Product Data: For computer software program to be used for studies.

B. Study Submittals: Submit the following submittals after the approval of system protective devices submittals. Submittals shall be in digital form and printed form.

1. Arc-flash study input data, including completed computer program input data sheets.
2. Arc-flash study report; signed, dated, and sealed by Power Systems Analysis Specialist.
3. Submit study report for action prior to receiving final approval of distribution equipment submittals. If formal completion of studies will cause delay in equipment manufacturing, obtain approval from Architect for preliminary submittal of sufficient study data to ensure that selection of devices and associated characteristics is satisfactory.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data:

1. For Power Systems Analysis Software Developer.
2. For Power System Analysis Specialist.
3. For Field Adjusting Agency.

B. Product Certificates: For arc-flash hazard analysis software, certifying compliance with IEEE 1584 and NFPA 70E.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data:

1. Provide maintenance procedures in equipment manuals according to requirements in NFPA 70E.
2. Operation and Maintenance Procedures: In addition to items specified in Section 01 78 23 "Operation and Maintenance Data," provide maintenance procedures for use by Owner's personnel that comply with requirements in NFPA 70E.

1.7 QUALITY ASSURANCE

A. Study shall be performed using commercially developed and distributed software designed specifically for power system analysis.

B. Software algorithms shall comply with requirements of standards and guides specified in this Section.

C. Manual calculations are unacceptable.

D. Power System Analysis Software Qualifications: An entity that owns and markets computer software used for studies, having performed successful studies of similar magnitude on electrical distribution systems using similar devices.
1. Computer program shall be designed to perform arc-flash analysis or have a function, component, or add-on module designed to perform arc-flash analysis.

2. Computer program shall be developed under the charge of a licensed professional engineer who holds IEEE Computer Society's Certified Software Development Professional certification.

E. Power Systems Analysis Specialist Qualifications: Professional engineer in charge of performing the arc-flash study, analyzing the arc flash, and documenting recommendations, licensed in the state where Project is located. All elements of the study shall be performed under the direct supervision and control of this professional engineer.

F. Arc-Flash Study Certification: Arc-Flash Study Report shall be signed and sealed by Power Systems Analysis Specialist.

G. Field Adjusting Agency Qualifications:
 1. Employer of a NETA ETT-Certified Technician Level III or NICET Electrical Power Testing Level III certification responsible for all field adjusting of the Work.
 2. A member company of NETA.
 3. Acceptable to authorities having jurisdiction.

PART 2 - PRODUCTS

2.1 COMPUTER SOFTWARE DEVELOPERS
 A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. CGI CYME.
 2. ETAP Corporation.
 3. ESA Inc.
 4. Operation Technology, Inc.
 5. Power Analytics, Corporation.
 6. SKM Systems Analysis, Inc.

 B. Comply with IEEE 1584 and NFPA 70E.

 C. Analytical features of device coordination study computer software program shall have the capability to calculate "mandatory," "very desirable," and "desirable" features as listed in IEEE 399.

2.2 ARC-FLASH STUDY REPORT CONTENT
 A. Executive summary of study findings.
 B. Study descriptions, purpose, basis, and scope. Include case descriptions, definition of terms, and guide for interpretation of results.
C. One-line diagram, showing the following:

1. Protective device designations and ampere ratings.
2. Conductor types, sizes, and lengths.
3. Transformer kilovolt ampere (kVA) and voltage ratings, including derating factors and environmental conditions.
4. Motor designations and kVA ratings.
5. Switchgear, switchboard, motor-control center, panelboard designations, and ratings.

D. Study Input Data: As described in "Power System Data" Article.

E. Short-Circuit Study Output Data: As specified in "Short-Circuit Study Output Reports" Paragraph in "Short-Circuit Study Report Contents" Article in Section 26 05 73.13 “Short-Circuit Studies”

F. Protective Device Coordination Study Report Contents: As specified in "Coordination Study Report Contents" Article in Section 26 05 73.16 "Coordination Studies."

G. Arc-Flash Study Output Reports:

1. Interrupting Duty Report: Three-phase and unbalanced fault calculations, showing the following for each equipment location included in the report:

 a. Voltage.
 b. Calculated symmetrical fault-current magnitude and angle.
 c. Fault-point X/R ratio.
 d. No AC Decrement (NACD) ratio.
 e. Equivalent impedance.
 f. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a symmetrical basis.
 g. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a total basis.

H. Incident Energy and Flash Protection Boundary Calculations:

1. Arcing fault magnitude.
2. Protective device clearing time.
3. Duration of arc.
5. Restricted approach boundary.
7. Working distance.
8. Incident energy.

I. Fault study input data, case descriptions, and fault-current calculations including a definition of terms and guide for interpretation of computer printout.
2.3 ARC-FLASH WARNING LABELS

A. Comply with requirements in Section 26.05.53 "Identification for Electrical Systems" for self-adhesive equipment labels. Produce a 3.5-by-5-inch self-adhesive equipment label for each work location included in the analysis.

B. Label shall have an orange header with the wording, "WARNING, ARC-FLASH HAZARD," and shall include the following information taken directly from the arc-flash hazard analysis:

1. Location designation.
2. Nominal voltage.
3. Protection boundaries.
 a. Arc-flash boundary.
 b. Restricted approach boundary.
 c. Limited approach boundary.
4. Arc flash PPE category.
5. Required minimum arc rating of PPE in Cal/cm squared.
6. Available incident energy.
7. Working distance.
8. Engineering report number, revision number, and issue date.

C. Labels shall be machine printed, with no field-applied markings.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine Project overcurrent protective device submittals. Proceed with arc-flash study only after relevant equipment submittals have been assembled. Overcurrent protective devices that have not been submitted and approved prior to arc-flash study may not be used in study.

3.2 ARC-FLASH HAZARD ANALYSIS

A. Comply with NFPA 70E and its Annex D for hazard analysis study.

B. Preparatory Studies: Perform the Short-Circuit and Protective Device Coordination studies prior to starting the Arc-Flash Hazard Analysis or obtain results from another source.

 1. Short-Circuit Study Output: As specified in "Short-Circuit Study Output Reports" Paragraph in "Short-Circuit Study Report Contents" Article in Section 26.05.73.13 "Short-Circuit Studies."
 2. Coordination Study Report Contents: As specified in "Coordination Study Report Contents" Article in Section 26.05.73.16 "Coordination Studies."

C. Calculate maximum and minimum contributions of fault-current size.
1. Maximum calculation shall assume a maximum contribution from the utility and shall assume motors to be operating under full-load conditions.

2. Calculate arc-flash energy at 85 percent of maximum short-circuit current according to IEEE 1584 recommendations.

3. Calculate arc-flash energy at 38 percent of maximum short-circuit current according to NFPA 70E recommendations.

4. Calculate arc-flash energy with the utility contribution at a minimum and assume no motor contribution.

D. Calculate the arc-flash protection boundary and incident energy at locations in electrical distribution system where personnel could perform work on energized parts.

E. Include medium- and low-voltage equipment locations, except equipment rated 240 V ac or less fed from transformers less than 125 kVA.

F. Calculate the limited, restricted, and prohibited approach boundaries for each location.

G. Incident energy calculations shall consider the accumulation of energy over time when performing arc-flash calculations on buses with multiple sources. Iterative calculations shall take into account the changing current contributions, as the sources are interrupted or decremented with time. Fault contribution from motors and generators shall be decremented as follows:

1. Fault contribution from induction motors shall not be considered beyond three to five cycles.

2. Fault contribution from synchronous motors shall be decayed to match the actual decrement of each as closely as possible (for example, contributions from permanent magnet generators will typically decay from 10 per unit to three per unit after 10 cycles).

H. Arc-flash energy shall generally be reported for the maximum of line or load side of a circuit breaker. However, arc-flash computation shall be performed and reported for both line and load side of a circuit breaker as follows:

1. When the circuit breaker is in a separate enclosure.

2. When the line terminals of the circuit breaker are separate from the work location.

I. Base arc-flash calculations on actual overcurrent protective device clearing time. Cap maximum clearing time at two seconds based on IEEE 1584, Section B.1.2.

3.3 POWER SYSTEM DATA

A. Obtain all data necessary for conduct of the arc-flash hazard analysis.

1. Verify completeness of data supplied on one-line diagram on Drawings and under "Preparatory Studies" Paragraph in "Arc-Flash Hazard Analysis" Article. Call discrepancies to Architect's attention.

2. For new equipment, use characteristics from approved submittals under provisions of action submittals and information submittals for this Project.
3. For existing equipment, whether or not relocated, obtain required electrical distribution system data by field investigation and surveys conducted by qualified technicians and engineers.

B. Electrical Survey Data: Gather and tabulate the following input data to support study. Comply with recommendations in IEEE 1584 and NFPA 70E as to the amount of detail that is required to be acquired in the field. Field data gathering shall be under the direct supervision and control of the engineer in charge of performing the study, and shall be by the engineer or its representative who holds NETA ETT-Certified Technician Level III or NICET Electrical Power Testing Level III certification. Data include, but are not limited to, the following:

1. Product Data for overcurrent protective devices specified in other Sections and involved in overcurrent protective device coordination studies. Use equipment designation tags that are consistent with electrical distribution system diagrams, overcurrent protective device submittals, input and output data, and recommended device settings.
2. Obtain electrical power utility impedance or available short circuit current at the service.
3. Power sources and ties.
4. Short-circuit current at each system bus (three phase and line to ground).
5. Full-load current of all loads.
6. Voltage level at each bus.
7. For transformers, include kVA, primary and secondary voltages, connection type, impedance, X/R ratio, taps measured in percent, and phase shift.
8. For reactors, provide manufacturer and model designation, voltage rating and impedance.
9. For circuit breakers and fuses, provide manufacturer and model designation. List type of breaker, type of trip and available range of settings, SCCR, current rating, and breaker settings.
10. For relays, provide manufacturer and model designation, current transformer ratios, potential transformer ratios, and relay settings.
11. Busway manufacturer and model designation, current rating, impedance, lengths, size, and conductor material.
12. Motor horsepower and NEMA MG 1 code letter designation.
13. Low-voltage conductor sizes, lengths, number, conductor material and conduit material (magnetic or nonmagnetic).
14. Medium-voltage conductor sizes, lengths, conductor material, conductor construction and metallic shield performance parameters, and conduit material (magnetic or nonmagnetic).

3.4 LABELING

A. Apply one arc-flash label on the front cover of each section of the equipment and on side or rear covers with accessible live parts and hinged doors or removable plates for each equipment included in the study. Base arc-flash label data on highest values calculated at each location.

B. Each piece of equipment listed below shall have an arc-flash label applied to it:

1. Motor-control center.
2. Low-voltage switchboard.
3. Switchgear.
4. Medium-voltage switch.
5. Medium voltage transformers
6. Low voltage transformers. Exclude transformers with high voltage side 240 V or less and less than 125 kVA.
7. Panelboard and safety switch over 250 V.
8. Applicable panelboard and safety switch under 250 V.
9. Control panel.

C. Note on record Drawings the location of equipment where the personnel could be exposed to arc-flash hazard during their work.

1. Indicate arc-flash energy.
2. Indicate protection level required.

3.5 APPLICATION OF WARNING LABELS

A. Install arc-flash warning labels under the direct supervision and control of Power System Analysis Specialist.

3.6 DEMONSTRATION

A. Engage Power Systems Analysis Specialist to train Owner's maintenance personnel in potential arc-flash hazards associated with working on energized equipment and the significance of arc-flash warning labels.

END OF SECTION
SECTION 26 22 13

LOW-VOLTAGE DISTRIBUTION TRANSFORMERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes distribution, dry-type transformers with a nominal primary and secondary rating of 600 V and less, with capacities up to 1500 kVA.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each type and size of transformer.

2. Include rated nameplate data, capacities, weights, dimensions, minimum clearances, installed devices and features, and performance for each type and size of transformer.

B. Shop Drawings:

1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

2. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment.

3. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For testing agency.

B. Seismic Qualification Data: Certificates, for transformers, accessories, and components, from manufacturer.

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.

2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Source quality-control reports.

D. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For transformers to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Accredited by NETA.

1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Inspection: On receipt, inspect for and note any shipping damage to packaging and transformer.

1. If manufacturer packaging is removed for inspection, and transformer will be stored after inspection, re-package transformer using original or new packaging materials that provide protection equivalent to manufacturer's packaging.

B. Storage: Store in a warm, dry, and temperature-stable location in original shipping packaging.

C. Temporary Heating: Apply temporary heat according to manufacturer's written instructions within the enclosure of each ventilated-type unit, throughout periods during which equipment is not energized and when transformer is not in a space that is continuously under normal control of temperature and humidity.

D. Handling: Follow manufacturer's instructions for lifting and transporting transformers.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Eaton.
6. Square D; by Schneider Electric.

B. Source Limitations: Obtain each transformer type from single source from single manufacturer.

2.2 GENERAL TRANSFORMER REQUIREMENTS

A. Description: Factory-assembled and tested, air-cooled units for 60-Hz service.

B. Comply with NFPA 70.

1. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.

C. Transformers Rated 15 kVA and Larger:

1. Comply with 10 CFR 431 (DOE 2016) efficiency levels.
2. Marked as compliant with DOE 2016 efficiency levels by an NRTL.

D. Shipping Restraints: Paint or otherwise color-code bolts, wedges, blocks, and other restraints that are to be removed after installation and before energizing. Use fluorescent colors that are easily identifiable inside the transformer enclosure.

2.3 DISTRIBUTION TRANSFORMERS

A. Comply with NFPA 70, and list and label as complying with UL 1561.

B. Provide transformers that are constructed to withstand seismic forces specified in Section 26 05 48.16 "Seismic Controls for Electrical Systems."

C. Cores: Electrical grade, non-aging silicon steel with high permeability and low hysteresis losses.

1. One leg per phase.
2. Core volume shall allow efficient transformer operation at 10 percent above the nominal tap voltage.
3. Grounded to enclosure.

D. Coils: Continuous windings except for taps.

1. Coil Material: Copper.
2. Internal Coil Connections: Brazed or pressure type.
3. Terminal Connections: Bolted.

E. Encapsulation: Transformers smaller than 30 kVA shall have core and coils completely resin encapsulated.

F. Enclosure: Totally enclosed, nonventilated.

1. NEMA 250, Type 2: Core and coil shall be encapsulated within resin compound using a vacuum-pressure impregnation process to seal out moisture and air.
2. KVA Ratings: Based on convection cooling only and not relying on auxiliary fans.
3. Wiring Compartment: Sized for conduit entry and wiring installation.

4. Finish: Comply with NEMA 250.

G. Taps for Transformers 3 kVA and Smaller: One 5 percent tap above normal full capacity.

H. Taps for Transformers 7.5 to 24 kVA: Two 5 percent taps below rated voltage.

I. Taps for Transformers 25 kVA and Larger: Two 2.5 percent taps above and four 2.5 percent taps below normal full capacity.

J. Insulation Class, Smaller Than 30 kVA: 180 deg C, UL-component-recognized insulation system with a maximum of 115 deg C rise above 40 deg C ambient temperature.

K. Insulation Class, 30 kVA and Larger: 220 deg C, UL-component-recognized insulation system with a maximum of 150 deg C rise above 40 deg C ambient temperature.

L. Grounding: Provide ground-bar kit or a ground bar installed on the inside of the transformer enclosure.

M. K-Factor Rating: Transformers indicated to be K-factor rated shall comply with UL 1561 requirements for nonsinusoidal load current-handling capability to the degree defined by designated K-factor.

 1. Unit shall not overheat when carrying full-load current with harmonic distortion corresponding to designated K-factor, without exceeding the indicated insulation class in a 40 deg C maximum ambient and a 24-hour average ambient of 30 deg C.

 2. Indicate value of K-factor on transformer nameplate.

 3. Unit shall comply with requirements of DOE 2016 efficiency levels when tested according to NEMA TP 2 with a K-factor equal to one.

N. Electrostatic Shielding: Each winding shall have an independent, single, full-width copper electrostatic shield arranged to minimize interwinding capacitance.

 1. Arrange coil leads and terminal strips to minimize capacitive coupling between input and output terminals.

 2. Include special terminal for grounding the shield.

O. Neutral: Rated 200 percent of full load current for K-factor-rated transformers.

P. Wall Brackets: Wall brackets fabricated from design drawings signed and sealed by a licensed structural engineer.

Q. Low-Sound-Level Requirements: Maximum sound levels when factory tested according to IEEE C57.12.91, as follows:

 1. 9.00 kVA and Less: 40 dBA.

 2. 9.01 to 30.00 kVA: 45 dBA.

 3. 30.01 to 50.00 kVA: 45 dBA for K-factors of 1, 4, and 9.

 4. 50.01 to 150.00 kVA: 50 dBA for K-factors of 1, 4, and 9.
2.4 IDENTIFICATION

A. Nameplates: Engraved, laminated-acrylic or melamine plastic signs for each distribution transformer, mounted with corrosion-resistant screws. Nameplates and label products are specified in Section 26 05 53 "Identification for Electrical Systems."

B. Nameplates: Self-adhesive label for each distribution transformer. Self-adhesive labels are specified in Section 26 05 53 "Identification for Electrical Systems."

2.5 SOURCE QUALITY CONTROL

A. Test and inspect transformers according to IEEE C57.12.01 and IEEE C57.12.91.

1. Resistance measurements of all windings at rated voltage connections and at all tap connections.
2. Ratio tests at rated voltage connections and at all tap connections.
3. Phase relation and polarity tests at rated voltage connections.
4. No load losses, and excitation current and rated voltage at rated voltage connections.
5. Impedance and load losses at rated current and rated frequency at rated voltage connections.
6. Applied and induced tensile tests.
7. Regulation and efficiency at rated load and voltage.
8. Insulation-Resistance Tests:
 a. High-voltage to ground.
 b. Low-voltage to ground.
 c. High-voltage to low-voltage.
9. Temperature tests.

B. Factory Sound-Level Tests: Conduct prototype sound-level tests on production-line products.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine conditions for compliance with enclosure- and ambient-temperature requirements for each transformer.

B. Verify that field measurements are as needed to maintain working clearances required by NFPA 70 and manufacturer's written instructions.
C. Examine walls, floors, roofs, and concrete bases for suitable mounting conditions where transformers will be installed.

D. Verify that ground connections are in place and requirements in Section 26 05 26 "Grounding and Bonding for Electrical Systems" have been met. Maximum ground resistance shall be 5 ohms at location of transformer.

E. Environment: Enclosures shall be rated for the environment in which they are located. Covers for NEMA 250, Type 4X enclosures shall not cause accessibility problems.

F. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install wall-mounted transformers level and plumb with wall brackets fabricated from design drawings signed and sealed by a licensed structural engineer.

1. Coordinate installation of wall-mounted and structure-hanging supports with actual transformer provided.

B. Install transformers level and plumb on a concrete base with vibration-dampening supports. Locate transformers away from corners and not parallel to adjacent wall surface.

C. Construct concrete bases according to Section 03 30 00 "Cast-in-Place Concrete" and anchor floor-mounted transformers according to manufacturer's written instructions and requirements in Section 26 05 29 "Hangers and Supports for Electrical Systems."

1. Coordinate size and location of concrete bases with actual transformer provided. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.

D. Secure transformer to concrete base according to manufacturer's written instructions.

E. Secure covers to enclosure and tighten all bolts to manufacturer-recommended torques to reduce noise generation.

F. Remove shipping bolts, blocking, and wedges.

3.3 CONNECTIONS

A. Ground equipment according to Section 26 05 26 "Grounding and Bonding for Electrical Systems."

B. Connect wiring according to Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."

C. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.
D. Provide flexible connections at all conduit and conductor terminations and supports to eliminate sound and vibration transmission to the building structure.

3.4 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.

B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

D. Perform tests and inspections with the assistance of a factory-authorized service representative.

E. Small (Up to 167-kVA Single-Phase or 500-kVA Three-Phase) Dry-Type Transformer Field Tests:

1. Visual and Mechanical Inspection:
 a. Inspect physical and mechanical condition.
 b. Inspect anchorage, alignment, and grounding.
 c. Verify that resilient mounts are free and that any shipping brackets have been removed.
 d. Verify the unit is clean.
 e. Perform specific inspections and mechanical tests recommended by manufacturer.
 f. Verify that as-left tap connections are as specified.
 g. Verify the presence of surge arresters and that their ratings are as specified.

2. Electrical Tests:
 a. Measure resistance at each winding, tap, and bolted connection.
 b. Perform insulation-resistance tests winding-to-winding and each winding-to-ground. Apply voltage according to manufacturer's published data. In the absence of manufacturer's published data, comply with NETA ATS, Table 100.5. Calculate polarization index: the value of the index shall not be less than 1.0.
 c. Perform turns-ratio tests at all tap positions. Test results shall not deviate by more than one-half percent from either the adjacent coils or the calculated ratio. If test fails, replace the transformer.
 d. Verify correct secondary voltage, phase-to-phase and phase-to-neutral, after energization and prior to loading.

F. Large (Larger Than 167-kVA Single Phase or 500-kVA Three Phase) Dry-Type Transformer Field Tests:

1. Visual and Mechanical Inspection:
 a. Inspect physical and mechanical condition.
 b. Inspect anchorage, alignment, and grounding.
 c. Verify that resilient mounts are free and that any shipping brackets have been removed.
d. Verify the unit is clean.
e. Perform specific inspections and mechanical tests recommended by manufacturer.
f. Verify that as-left tap connections are as specified.
g. Verify the presence of surge arresters and that their ratings are as specified.

2. Electrical Tests:
 a. Measure resistance at each winding, tap, and bolted connection.
 b. Perform insulation-resistance tests winding-to-winding and each winding-to-ground. Apply voltage according to manufacturer's published data. In the absence of manufacturer's published data, comply with NETA ATS, Table 100.5. Calculate polarization index: the value of the index shall not be less than 1.0.
 c. Perform power-factor or dissipation-factor tests on all windings.
 d. Perform turns-ratio tests at all tap positions. Test results shall not deviate by more than one-half percent from either the adjacent coils or the calculated ratio. If test fails, replace the transformer.
 e. Perform an excitation-current test on each phase.
 f. Perform an applied voltage test on all high- and low-voltage windings to ground. See IEEE C57.12.91, Sections 10.2 and 10.9.
 g. Verify correct secondary voltage, phase-to-phase and phase-to-neutral, after energization and prior to loading.

G. Remove and replace units that do not pass tests or inspections and retest as specified above.

H. Infrared Scanning: Two months after Substantial Completion, perform an infrared scan of transformer connections.
 1. Use an infrared-scanning device designed to measure temperature or detect significant deviations from normal values. Provide documentation of device calibration.
 2. Perform two follow-up infrared scans of transformers, one at four months and the other at 11 months after Substantial Completion.
 3. Prepare a certified report identifying transformer checked and describing results of scanning. Include notation of deficiencies detected, remedial action taken, and scanning observations after remedial action.

I. Test Labeling: On completion of satisfactory testing of each unit, attach a dated and signed "Satisfactory Test" label to tested component.

3.5 ADJUSTING

A. Record transformer secondary voltage at each unit for at least 48 hours of typical occupancy period. Adjust transformer taps to provide optimum voltage conditions at secondary terminals. Optimum is defined as not exceeding nameplate voltage plus 5 percent and not being lower than nameplate voltage minus 3 percent at maximum load conditions. Submit recording and tap settings as test results.

B. Output Settings Report: Prepare a written report recording output voltages and tap settings.
3.6 CLEANING

A. Vacuum dirt and debris; do not use compressed air to assist in cleaning.

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Lighting and appliance branch-circuit panelboards.
 2. Load centers.

1.3 DEFINITIONS
 A. ATS: Acceptance testing specification.
 B. GFCI: Ground-fault circuit interrupter.
 C. GFEP: Ground-fault equipment protection.
 D. HID: High-intensity discharge.
 E. MCCB: Molded-case circuit breaker.
 F. SPD: Surge protective device.
 G. VPR: Voltage protection rating.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of panelboard.
 1. Include materials, switching and overcurrent protective devices, SPDs, accessories, and components indicated.
 2. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.
 B. Shop Drawings: For each panelboard and related equipment.
 1. Include dimensioned plans, elevations, sections, and details.
2. Show tabulations of installed devices with nameplates, conductor termination sizes, equipment features, and ratings.
3. Detail enclosure types including mounting and anchorage, environmental protection, knockouts, corner treatments, covers and doors, gaskets, hinges, and locks.
4. Detail bus configuration, current, and voltage ratings.
5. Short-circuit current rating of panelboards and overcurrent protective devices.
6. Include evidence of NRTL listing for series rating of installed devices.
7. Include evidence of NRTL listing for SPD as installed in panelboard.
8. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
9. Include wiring diagrams for power, signal, and control wiring.
10. Key interlock scheme drawing and sequence of operations.
11. Include time-current coordination curves for each type and rating of overcurrent protective device included in panelboards. Submit on translucent log-log graft paper; include selectable ranges for each type of overcurrent protective device. Include an Internet link for electronic access to downloadable PDF of the coordination curves.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For testing agency.

B. Panelboard Schedules: For installation in panelboards. Submit final versions after load balancing.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For panelboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 01 78 23 "Operation and Maintenance Data," include the following:

1. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
2. Time-current curves, including selectable ranges for each type of overcurrent protective device that allows adjustments.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Keys: Two spares for each type of panelboard cabinet lock.
2. Circuit Breakers Including GFCI and GFEP Types: Two spares for each panelboard.
3. Fuses for Fused Switches: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
4. Fuses for Fused Power-Circuit Devices: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
1.8 QUALITY ASSURANCE

A. Manufacturer Qualifications: ISO 9001 or ISO 9002 certified.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Remove loose packing and flammable materials from inside panelboards; install temporary electric heating (250 W per panelboard) to prevent condensation.

B. Handle and prepare panelboards for installation according to NECA 407.

1.10 FIELD CONDITIONS

A. Environmental Limitations:

1. Do not deliver or install panelboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above panelboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:

 a. Ambient Temperature: Not exceeding minus 22 deg F to plus 104 deg F.
 b. Altitude: Not exceeding 6600 feet.

B. Service Conditions: NEMA PB 1, usual service conditions, as follows:

1. Ambient temperatures within limits specified.
2. Altitude not exceeding 6600 feet.

C. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:

1. Notify Construction Manager / Owner no fewer than two days in advance of proposed interruption of electric service.
2. Do not proceed with interruption of electric service without Construction Manager's / Owner's written permission.
3. Comply with NFPA 70E.

1.11 WARRANTY

A. Manufacturer's Warranty: Manufacturer agrees to repair or replace panelboards that fail in materials or workmanship within specified warranty period.

 1. Panelboard Warranty Period: 24 months from date of Substantial Completion.

B. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace SPD that fails in materials or workmanship within specified warranty period.
1. SPD Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PANELBOARDS AND LOAD CENTERS COMMON REQUIREMENTS

A. Fabricate and test panelboards according to IEEE 344 to withstand seismic forces defined in Section 26 05 48.16 "Seismic Controls for Electrical Systems."

B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for panelboards including clearances between panelboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

D. Comply with NEMA PB 1.

E. Comply with NFPA 70.

F. Enclosures: Flush and Surface-mounted, dead-front cabinets.

1. Rated for environmental conditions at installed location.

 a. Indoor Dry and Clean Locations: NEMA 250, Type 1.
 b. Outdoor Locations: NEMA 250, Type 3R.
 c. Wash-Down Areas: NEMA 250, Type 4X, stainless steel.
 d. Other Wet or Damp Indoor Locations: NEMA 250, Type 4.
 e. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.

2. Height: 84 inches maximum.

3. Front: Secured to box with concealed trim clamps. For surface-mounted fronts, match box dimensions; for flush-mounted fronts, overlap box. Trims shall cover all live parts and shall have no exposed hardware.

4. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover. Trims shall cover all live parts and shall have no exposed hardware.

5. Skirt for Surface-Mounted Panelboards: Same gage and finish as panelboard front with flanges for attachment to panelboard, wall, and ceiling or floor.

6. Gutter Extension and Barrier: Same gage and finish as panelboard enclosure; integral with enclosure body. Arrange to isolate individual panel sections.

7. Finishes:

 a. Panels and Trim: Steel and galvanized steel, factory finished immediately after cleaning and pretreating with manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.
 b. Back Boxes: Same finish as panels and trim.
 c. Fungus Proofing: Permanent fungicidal treatment for overcurrent protective devices and other components.
G. Incoming Mains:

1. Location: Convertible between top and bottom.
2. Main Breaker: Main lug interiors up to 400 amperes shall be field convertible to main breaker.

H. Phase, Neutral, and Ground Buses:

 a. Plating shall run entire length of bus.
 b. Bus shall be fully rated the entire length.

2. Interiors shall be factory assembled into a unit. Replacing switching and protective devices shall not disturb adjacent units or require removing the main bus connectors.
3. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment grounding conductors; bonded to box.
4. Isolated Ground Bus: Adequate for branch-circuit isolated ground conductors; insulated from box.
5. Full-Sized Neutral: Equipped with full-capacity bonding strap for service entrance applications. Mount electrically isolated from enclosure. Do not mount neutral bus in gutter.
6. Extra-Capacity Neutral Bus: Neutral bus rated 200 percent of phase bus and listed and labeled by an NRTL acceptable to authority having jurisdiction, as suitable for nonlinear loads in electronic-grade panelboards and others designated on Drawings. Connectors shall be sized for double-sized or parallel conductors as indicated on Drawings. Do not mount neutral bus in gutter.
7. Split Bus: Vertical buses divided into individual vertical sections.

I. Conductor Connectors: Suitable for use with conductor material and sizes.

2. Terminations shall allow use of 75 deg C rated conductors without derating.
3. Size: Lugs suitable for indicated conductor sizes, with additional gutter space, if required, for larger conductors.
4. Main and Neutral Lugs: Mechanical type, with a lug on the neutral bar for each pole in the panelboard.
5. Ground Lugs and Bus-Configured Terminators: Mechanical type, with a lug on the bar for each pole in the panelboard.
6. Feed-Through Lugs: Mechanical type, suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.
7. Subfeed (Double) Lugs: Mechanical type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.
8. Gutter-Tap Lugs: Mechanical type suitable for use with conductor material and with matching insulating covers. Locate at same end of bus as incoming lugs or main device.

J. NRTL Label: Panelboards or load centers shall be labeled by an NRTL acceptable to authority having jurisdiction for use as service equipment with one or more main service disconnecting and overcurrent protective devices. Panelboards or load centers shall have meter enclosures,
wiring, connections, and other provisions for utility metering. Coordinate with utility company for exact requirements.

K. Future Devices: Panelboards or load centers shall have mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.

1. Percentage of Future Space Capacity: 20 percent.

L. Panelboard Short-Circuit Current Rating: Rated for series-connected system with integral or remote upstream overcurrent protective devices and labeled by an NRTL. Include label or manual with size and type of allowable upstream and branch devices listed and labeled by an NRTL for series-connected short-circuit rating.

1. Panelboards rated 240 V or less shall have short-circuit ratings as shown on Drawings, but not less than 10,000 A rms symmetrical.
2. Panelboards rated above 240 V and less than 600 V shall have short-circuit ratings as shown on Drawings, but not less than 14,000 A rms symmetrical.

M. Panelboard Short-Circuit Current Rating: Fully rated to interrupt symmetrical short-circuit current available at terminals. Assembly listed by an NRTL for 100 percent interrupting capacity.

1. Panelboards and overcurrent protective devices rated 240 V or less shall have short-circuit ratings as shown on Drawings, but not less than 10,000 A rms symmetrical.
2. Panelboards and overcurrent protective devices rated above 240 V and less than 600 V shall have short-circuit ratings as shown on Drawings, but not less than 14,000 A rms symmetrical.

2.2 PERFORMANCE REQUIREMENTS

A. Surge Suppression: Factory installed as an integral part of indicated panelboards, complying with UL 1449 SPD Type 2.

2.3 POWER PANELBOARDS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Eaton.
4. Square D; by Schneider Electric.

B. Panelboards: NEMA PB 1, distribution type.

C. Doors: Secured with vault-type latch with tumbler lock; keyed alike.

1. For doors more than 36 inches high, provide two latches, keyed alike.
D. Mains: Circuit breaker / Fused switch / Lugs only, as indicated on plans.

F. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes Larger Than 125 A: Bolt-on circuit breakers / Plug-in circuit breakers where individual positive-locking device requires mechanical release for removal.

G. Branch Overcurrent Protective Devices: Fused switches.

H. Contactors in Main Bus: NEMA ICS 2, Class A, mechanically held, general-purpose controller, with same short-circuit interrupting rating as panelboard.
 1. Internal Control-Power Source: Control-power transformer, with fused primary and secondary terminals, connected to main bus ahead of contactor connection.
 2. External Control-Power Source: 120-V branch circuit / 24-V control circuit, as required for the Control System.

2.4 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Eaton.
 4. Square D; by Schneider Electric.

B. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.

C. Mains: Circuit breaker or lugs only, as shown on plan.

D. Branch Overcurrent Protective Devices: Plug-in / Bolt-on circuit breakers, replaceable without disturbing adjacent units.

E. Contactors in Main Bus: NEMA ICS 2, Class A, mechanically held, general-purpose controller, with same short-circuit interrupting rating as panelboard.
 1. Internal Control-Power Source: Control-power transformer, with fused primary and secondary terminals, connected to main bus ahead of contactor connection.
 2. External Control-Power Source: 120-V branch circuit / 24-V control circuit as required by the Control System

F. Doors: Concealed hinges; secured with flush latch with tumbler lock; keyed alike.

G. Doors: Door-in-door construction with concealed hinges; secured with multipoint latch with tumbler lock; keyed alike. Outer door shall permit full access to the panel interior. Inner door shall permit access to breaker operating handles and labeling, but current carrying terminals and bus shall remain concealed.
H. Column-Type Panelboards: Single row of overcurrent devices with narrow gutter extension and overhead junction box equipped with ground and neutral terminal buses.
 1. Doors: Concealed hinges secured with multipoint latch with tumbler lock; keyed alike.

2.5 LOAD CENTERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Eaton.
 4. Square D; by Schneider Electric.

B. Load Centers: Comply with UL 67.

C. Mains: Circuit breaker or lugs only, as indicated on plan.

D. Branch Overcurrent Protective Devices: Plug-in circuit breakers, replaceable without disturbing adjacent units.

E. Doors: Concealed hinges secured with flush latch with tumbler lock; keyed alike.

F. Conductor Connectors: Mechanical type for main, neutral, and ground lugs and buses.

2.6 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Eaton.
 4. Square D; by Schneider Electric.

B. MCCB: Comply with UL 489, with series-connected rating / interrupting capacity to meet available fault currents.
 1. Thermal-Magnetic Circuit Breakers:
 a. Inverse time-current element for low-level overloads.
 b. Instantaneous magnetic trip element for short circuits.
 c. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
 3. Electronic Trip Circuit Breakers:
 a. RMS sensing.
b. Field-replaceable rating plug or electronic trip.
c. Digital display of settings, trip targets, and indicated metering displays.
d. Multi-button keypad to access programmable functions and monitored data.
e. Ten-event, trip-history log. Each trip event shall be recorded with type, phase, and magnitude of fault that caused the trip.
f. Integral test jack for connection to portable test set or laptop computer.
g. Field-Adjustable Settings:
 1) Instantaneous trip.
 2) Long- and short-time pickup levels.
 3) Long and short time adjustments.
 4) Ground-fault pickup level, time delay, and I squared T response.
4. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5.
5. GFCI Circuit Breakers: Single- and double-pole configurations with Class A ground-fault protection (6-mA trip).
6. GFEP Circuit Breakers: Class B ground-fault protection (30-mA trip).
9. MCCB Features and Accessories:
 a. Standard frame sizes, trip ratings, and number of poles.
 b. Breaker handle indicates tripped status.
 c. UL listed for reverse connection without restrictive line or load ratings.
 d. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor materials.
 e. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and HID lighting circuits.
 f. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
 g. Communication Capability: Integral / DIN-rail-mounted communication module with functions and features compatible with power monitoring and control system specified in Section 26.09.13 "Electrical Power Monitoring and Control."
 h. Shunt Trip: 120-V / 24-V trip coil energized from separate circuit, set to trip at 75 percent of rated voltage.
 i. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage with field-adjustable 0.1- to 0.6-second time delay.
 j. Rating Plugs: Three-pole breakers with ampere ratings greater than 150 amperes shall have interchangeable rating plugs or electronic adjustable trip units.
 k. Auxiliary Contacts: Two, SPDT switches with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts and "b" contacts operate in reverse of circuit-breaker contacts.
 l. Alarm Switch: Single-pole, normally open contact that actuates only when circuit breaker trips.
 m. Key Interlock Kit: Externally mounted to prohibit circuit-breaker operation; key shall be removable only when circuit breaker is in off position.
 n. Zone-Selective Interlocking: Integral with electronic trip unit; for interlocking ground-fault protection function with other upstream or downstream devices.
o. Multipole units enclosed in a factory assembled to operate as a single unit.
p. Handle Padlocking Device: Fixed attachment, for locking circuit-breaker handle in on or off position.
q. Handle Clamp: Loose attachment, for holding circuit-breaker handle in on position.

C. Fused Switch: NEMA KS 1, Type HD; clips to accommodate specified fuses; lockable handle.

1. Fuses and Spare-Fuse Cabinet: Comply with requirements specified in Section 26 28 13 "Fuses."
2. Fused Switch Features and Accessories:
 a. Standard ampere ratings and number of poles.
 b. Mechanical cover interlock with a manual interlock override, to prevent the opening of the cover when the switch is in the on position. The interlock shall prevent the switch from being turned on with the cover open. The operating handle shall have lock-off means with provisions for three padlocks.
 c. Auxiliary Contacts: Two normally open and normally closed contact(s) that operate with switch handle operation.

2.7 IDENTIFICATION
A. Panelboard Label: Manufacturer's name and trademark, voltage, amperage, number of phases, and number of poles shall be located on the interior of the panelboard door.
B. Breaker Labels: Faceplate shall list current rating, UL and IEC certification standards, and AIC rating.
C. Circuit Directory: Directory card inside panelboard door, mounted in metal frame with transparent protective cover.
 1. Circuit directory shall identify specific purpose with detail sufficient to distinguish it from all other circuits.
D. Circuit Directory: Computer-generated circuit directory mounted inside panelboard door with transparent plastic protective cover.
 1. Circuit directory shall identify specific purpose with detail sufficient to distinguish it from all other circuits.

2.8 ACCESSORY COMPONENTS AND FEATURES
A. Accessory Set: Include tools and miscellaneous items required for overcurrent protective device test, inspection, maintenance, and operation.
B. Portable Test Set: For testing functions of solid-state trip devices without removing from panelboard. Include relay and meter test plugs suitable for testing panelboard meters and switchboard class relays.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify actual conditions with field measurements prior to ordering panelboards to verify that equipment fits in allocated space in, and comply with, minimum required clearances specified in NFPA 70.

B. Receive, inspect, handle, and store panelboards according to NECA 407 / NEMA PB 1.1.

C. Examine panelboards before installation. Reject panelboards that are damaged, rusted, or have been subjected to water saturation.

D. Examine elements and surfaces to receive panelboards for compliance with installation tolerances and other conditions affecting performance of the Work.

E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

B. Comply with NECA 1.

C. Install panelboards and accessories according to NECA 407.

D. Equipment Mounting:

1. Install panelboards on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in Section 03 30 00 "Cast-in-Place Concrete."

2. Attach panelboard to the vertical finished or structural surface behind the panelboard.

E. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from panelboards.

F. Comply with mounting and anchoring requirements specified in Section 26 05 48.16 "Seismic Controls for Electrical Systems."

G. Mount top of trim 90 inches above finished floor unless otherwise indicated.

H. Mount panelboard cabinet plumb and rigid without distortion of box.

I. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.
J. Mount surface-mounted panelboards to steel slotted supports 5/8 inch in depth. Orient steel slotted supports vertically.

K. Install overcurrent protective devices and controllers not already factory installed.
 1. Set field-adjustable, circuit-breaker trip ranges.
 2. Tighten bolted connections and circuit breaker connections using calibrated torque wrench or torque screwdriver per manufacturer's written instructions.

L. Make grounding connections and bond neutral for services and separately derived systems to ground. Make connections to grounding electrodes, separate grounds for isolated ground bars, and connections to separate ground bars.

M. Install filler plates in unused spaces.

N. Stub four 1-inch empty conduits from panelboard into accessible ceiling space or space designated to be ceiling space in the future. Stub four 1-inch empty conduits into raised floor space or below slab not on grade.

O. Arrange conductors in gutters into groups and bundle and wrap with wire ties after completing load balancing.

P. Mount spare fuse cabinet in accessible location.

3.3 IDENTIFICATION

A. Identify field-installed conductors, interconnecting wiring, and components; install warning signs complying with requirements in Section 26 05 53 "Identification for Electrical Systems."

B. Create a directory to indicate installed circuit loads after balancing panelboard loads; incorporate Owner's final room designations. Obtain approval before installing. Handwritten directories are not acceptable. Install directory inside panelboard door.

C. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."

D. Device Nameplates: Label each branch circuit device in power panelboards with a nameplate complying with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."

E. Install warning signs complying with requirements in Section 26 05 53 "Identification for Electrical Systems" identifying source of remote circuit.

3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

B. Perform tests and inspections.
1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

C. Acceptance Testing Preparation:

1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
2. Test continuity of each circuit.

D. Tests and Inspections:

1. Perform each visual and mechanical inspection and electrical test for low-voltage air circuit breakers and low-voltage surge arrestors stated in NETA ATS, Paragraph 7.6 Circuit Breakers and Paragraph 7.19.1 Surge Arrestors, Low-Voltage. Do not perform optional tests. Certify compliance with test parameters.
2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
3. Perform the following infrared scan tests and inspections and prepare reports:
 a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each panelboard. Remove front panels so joints and connections are accessible to portable scanner.
 b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each panelboard 11 months after date of Substantial Completion.
 c. Instruments and Equipment:
 1) Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.

E. Panelboards will be considered defective if they do not pass tests and inspections.

F. Prepare test and inspection reports, including a certified report that identifies panelboards included and that describes scanning results, with comparisons of the two scans. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

B. Set field-adjustable circuit-breaker trip ranges as specified in Section 26 05 73.16 "Coordination Studies." Provide Circuit Breaker with recommended Trip Settings per Final Coordination Study.

C. Load Balancing: After Substantial Completion, but not more than 60 days after Final Acceptance, measure load balancing and make circuit changes. Prior to making circuit changes to achieve load balancing, inform Architect of effect on phase color coding.
1. Measure loads during period of normal facility operations.
2. Perform circuit changes to achieve load balancing outside normal facility operation schedule or at times directed by the Architect. Avoid disrupting services such as fax machines and on-line data processing, computing, transmitting, and receiving equipment.
3. After changing circuits to achieve load balancing, recheck loads during normal facility operations. Record load readings before and after changing circuits to achieve load balancing.
4. Tolerance: Maximum difference between phase loads, within a panelboard, shall not exceed 20 percent.

3.6 PROTECTION

A. Temporary Heating: Prior to energizing panelboards, apply temporary heat to maintain temperature according to manufacturer's written instructions.

END OF SECTION
SECTION 26 24 19

MOTOR-CONTROL CENTERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes MCCs for use with ac circuits rated 600 V and less, with combination controllers and having the following factory-installed components:
 1. Feeder-tap units.
 2. Measurement and control.
 3. Auxiliary devices.
 4. Panelboards.
 5. Transformers.

1.3 DEFINITIONS
A. CPT: Control power transformer.
B. MCC: Motor-control center.
C. MCCB: Molded-case circuit breaker.
D. MCP: Motor-circuit protector.
E. OCPD: Overcurrent protective device.
F. PID: Control action; proportional plus integral plus derivative.
G. PT: Potential transformer.
H. SPD: Surge protective device.
I. SCR: Silicon-controlled rectifier.
J. VFC: Variable-frequency controller.
K. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control, signaling power-limited circuits.
1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for MCCs.
 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories for each cell of the MCC.

B. Shop Drawings: For each MCC, manufacturer's custom and production drawings as defined in UL 845. In addition to requirements specified in UL 845, include dimensioned plans, elevations, and sections; and conduit entry locations and sizes, mounting arrangements, and details, including required clearances and service space around equipment.
 1. Show tabulations of installed devices, equipment features, and ratings. Include the following:
 a. Each installed unit's type and details.
 b. Factory-installed devices.
 c. Enclosure types and details.
 d. Nameplate legends.
 e. Short-circuit current (withstand) rating of complete MCC, and for bus structure and each unit.
 f. Features, characteristics, ratings, and factory settings of each installed controller and feeder device, and installed devices.
 g. Specified optional features and accessories.
 2. Schematic and Connection Wiring Diagrams: For power, signal, and control wiring for each installed controller.
 3. Nameplate legends.
 4. Vertical and horizontal bus capacities.
 5. Features, characteristics, ratings, and factory settings of each installed unit.

1.5 INFORMATIONAL SUBMITTALS

A. Standard Drawings: For each MCC, as defined in UL 845.

B. Production Drawings: For each MCC, as defined in UL 845.

C. Coordination Drawings: Floor plans, drawn to scale, showing dimensioned layout, required working clearances, and required area above and around MCCs where pipe and ducts are prohibited. Show MCC layout and relationships between electrical components and adjacent structural and mechanical elements. Show support locations, type of support, and weight on each support. Indicate field measurements.

D. Qualification Data: For testing agency.

E. Product Certificates: For each MCC.

F. Source quality-control reports.
G. Field quality-control reports.

H. Load-Current and Overload Relay Heater List: Compile after motors have been installed, and arrange to demonstrate that selection of heaters suits actual motor nameplate full-load currents.

I. Load-Current and List of Settings of Adjustable Overload Relays: Compile after motors have been installed, and arrange to demonstrate that switch settings for motor running overload protection suit actual motors to be protected.

J. Sample Warranty: For special warranty.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For MCCs, all installed devices, and components to include in emergency, operation, and maintenance manuals.

1. Manufacturer's Record Drawings: As defined in UL 845. In addition to requirements specified in UL 845, include field modifications and field-assigned wiring identification incorporated during construction by manufacturer, Contractor, or both.

2. Manufacturer's written instructions for testing and adjusting circuit breaker and MCP trip settings.

3. Manufacturer's written instructions for setting field-adjustable overload relays.

4. Manufacturer's written instructions for testing, adjusting, and reprogramming reduced-voltage, solid-state controllers.

5. Manufacturer's written instructions for testing, adjusting, and reprogramming microprocessor control modules.

6. Manufacturer's written instructions for setting field-adjustable timers, controls, and status and alarm points.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Power Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.

2. Control Power Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than two of each size and type.

3. Indicating Lights: Two of each type and color installed.

4. Auxiliary Contacts: Furnish one spare(s) for each size and type of magnetic controller installed.

5. Power Contacts: Furnish three spares for each size and type of magnetic contactor installed.

1.8 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of NETA.
1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

B. Source Limitations: Obtain MCCs and controllers of a single type from single source from single manufacturer.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, and marked for intended use.

D. UL Compliance: MCCs shall comply with UL 845 and shall be listed and labeled by a qualified testing agency.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Deliver MCCs in shipping splits of lengths that can be moved past obstructions in delivery paths.

B. Handle MCCs according to the following:
 1. NECA 402, "Recommended Practice for Installing and Maintaining Motor Control Centers."
 2. NEMA ICS 2.3, "Instructions for the Handling, Installation, Operation, and Maintenance of Motor Control Centers Rated Not More Than 600 Volts."

C. If stored in space that is not permanently enclosed and air conditioned, remove loose packing and flammable materials from inside MCCs; connect factory-installed space heaters to temporary electrical service.

1.10 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace MCC and SPD that fail in materials or workmanship within specified warranty period.

1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Eaton.
 2. General Electric Company.
 4. Square D.
2.2 SYSTEM DESCRIPTION

A. NEMA Compliance: Fabricate and label MCCs to comply with NEMA ICS 18.

B. Ambient Environment Ratings:

1. Ambient Temperature Rating: Not less than 0 deg F and not exceeding 104 deg F, with an average value not exceeding 95 deg F over a 24-hour period.
2. Ambient Storage Temperature Rating: Not less than minus 4 deg F and not exceeding 140 deg F
3. Humidity Rating: Less than 95 percent (noncondensing).
4. Altitude Rating: Not exceeding 6600 feet, or 3300 feet if MCC includes solid-state devices.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.3 PERFORMANCE REQUIREMENTS

A. Capacities and Characteristics:

1. MCC Enclosure and Assembly:
 b. Service Equipment Rated: No.
 c. Enclosure: NEMA 250, Type 4 or 12.

2. Integrated Short-Circuit Rating for MCC: Preliminary Values are shown; however, the final Short Circuit Rating Shall be determined in Overcurrent Protective Device Short Circuit Study, per Spec Section 26 05 74 “Protected Device-Arc-Flash Hazard Study.”
 a. Combination series rated; 42 kA.
 b. Fully rated; 42 kA.

3. Integrated Short-Circuit Rating for Each Unit: Preliminary Values are shown; however, the final Short Circuit Rating Shall be determined in Overcurrent Protective Device Short Circuit Study, per Spec Section 26 05 74 “Protected Device-Arc-Flash Hazard Study.”
 a. Combination series rated; 42 kA.
 b. Fully rated; 42 kA.

5. Bus: Preliminary Values are shown; however, the final Short Circuit Rating Shall be determined in Overcurrent Protective Device Short Circuit Study, per Spec Section 26 05 74 “Protected Device-Arc-Flash Hazard Study.”
 a. Horizontal Bus: 42 kA.
 b. Neutral Bus: None 150 percent.

6. Main Disconnect Device:
a. Main Disconnect: MCCB, UL 489, three pole as indicated on plans. Manually operated, electrically tripped.
b. SPD: UL 1449, Type 2.

7. VFCs:
 a. All VFD's shall have the following items:
 1) Bypass Mode: Field selectable, manual or automatic.
 2) Bypass Style: Three contactor style.
 3) Bypass Contactor Classification: Full-voltage.
 5) Isolated Overload Alarm Contact: NC / NO.

8. Controller-Mounted Auxiliary Devices:
 b. Push to test, indicating Lights: Green (off), Red (on).
 c. Feeder Tap Units: Main Disconnect: three pole, Manually operated, electrically tripped.

 a. Mains: MCCB / Main lugs only, 1/3 phase, Voltage and Current. Rating as shown on plan.
 b. Plug-in / Bolt-on circuit breakers.

10. Transformer(s): Ratings as shown on plan.
 a. Primary Circuit Breaker: MCCB, See Drawings.

2.4 MOTOR CONTROL CENTER ENCLOSURES

A. Indoor Enclosures: Freestanding steel cabinets unless otherwise indicated. NEMA 250, Type 12 unless otherwise indicated to comply with environmental conditions at installed location.

B. Space Heaters: Factory-installed electric space heaters of sufficient wattage in each vertical section to maintain enclosure temperature above expected dew point.
 1. Space-Heater Control: Thermostats to maintain temperature of each section above expected dew point with Manual switching of branch-circuit protective device.
 2. Space-Heater Power Source: Transformer, factory installed in MCC.

C. Enclosure Finish for Indoor Units: Factory-applied finish in manufacturer's standard gray finish over a rust-inhibiting primer on treated metal surface.

D. Outdoor Enclosures: Type 3R, non-walk-in aisle.
 1. Finish: Factory-applied finish in manufacturer's standard color; undersurfaces treated with corrosion-resistant undercoating.
 2. Enclosure: Flat roof; bolt-on rear covers for each section, with provisions for padlocking.
3. Doors: Personnel door at each end of aisle, minimum width of 30 inches; opening outwards; with panic hardware and provisions for padlocking.

4. Accessories: Fluorescent luminaires, ceiling mounted; wired to a three-way light switch at each end of aisle; GFCI duplex receptacle; emergency battery pack luminaire installed on wall of aisle midway between personnel doors.

5. Walk-in Aisle Heating and Ventilating:
 a. Factory-installed electric unit heater(s), wall or ceiling mounted, with integral thermostat and disconnect and with capacities to maintain switchboard interior temperature of 40 deg F with outside design temperature of plus 23 deg F.
 b. Factory-installed exhaust fan with capacities to maintain switchboard interior temperature of 60 deg F with outside design temperature of 104 deg F.
 c. Ventilating openings complete with replaceable fiberglass air filters.
 d. Thermostat: Single stage; wired to control heat and exhaust fan.

6. Power for Space Heaters, Ventilation, Lighting, and Receptacle: Include a CPT within the switchboard. Supply voltage shall be 120-V ac.

7. Power for space heaters, ventilation, lighting, and receptacle supplied from a remote source.

8. Transformer and Size: Panelboard with number & Sizes of Breakers. Based on Load for Space Head.

2.5 ASSEMBLY

A. Structure:
 1. Comply with UL requirements for service entrance equipment.
 2. Units up to and including Size 3 shall have drawout mountings with connectors that automatically line up and connect with vertical-section buses while being racked into their normal, energized positions.
 3. Units in Type B and Type C MCCs shall have pull-apart terminal strips for external control connections.
 4. Pull Boxes:
 a. Include provisions for ventilation to maintain temperature in pull box within same limits as the MCC.
 b. Set the box back from front to clear circuit-breaker removal mechanism.
 c. Covers: Removable covers forming top, front, and sides.
 d. Insulated bottom of fire-resistive material with separate holes for cable drops into MCC.
 e. Cable Supports: Arranged to facilitate cabling and adequate to support cables, including supports for future cables.
 f. When equipped with barriers, supply with access to check bus bolt tightness.

B. Compartments: Modular; individual lift-off doors with concealed hinges and quick-captive screw fasteners.
 1. Interlock compartment door to require that the disconnecting means is "off" before door can be opened or closed, except by operating a concealed release device.
2. Compartment construction shall allow for removal of units without opening adjacent doors, disconnecting adjacent compartments, or disturbing operation of other units in MCC.

3. The same-size compartments shall be interchangeable to allow rearrangement of units, such as replacing three single units with a unit requiring three spaces, without cutting or welding.

C. Bus Transition and Incoming Pull Sections: Included and aligned with the structure of the MCC.

D. Utility Metering Compartment: Fabricated, barrier compartment and section complying with utility company’s requirements; hinged sealed door; buses provisioned for mounting utility company’s current transformers and PTs or potential taps as required by utility company. If separate vertical section is required for utility metering, match and align with basic MCC. Install service entrance label and applicable service entrance features. Comply with requirements in Section 26 27 13 "Electricity Metering."

E. Owner’s Metering Compartment: A separate customer metering compartment and section with front hinged door, metering, and current transformers for each meter. Current transformer secondary wiring shall be terminated on shorting-type terminal blocks. Include PTs having primary and secondary fuses with disconnecting means and secondary wiring terminated on terminal blocks.

F. Interchangeability: Compartments constructed to allow for removal of units without opening adjacent doors, disconnecting adjacent compartments, or disturbing operation of other units in MCC; same-size compartments to permit interchangeability and ready rearrangement of units, such as replacing three single units with a unit requiring three spaces, without cutting or welding.

G. Wiring Spaces:
 1. Vertical wireways in each vertical section for vertical wiring to each unit compartment; supports to hold wiring in place.
 2. Horizontal wireways in [bottom] [and] [top] of each vertical section for horizontal wiring between vertical sections; supports to hold wiring in place.

H. Provisions for Future:
 1. Compartments marked “future” shall be bused, wired and equipped with guide rails or equivalent, and ready for insertion of drawout units.
 2. Compartments marked “spare” shall include provisions for connection to the vertical bus.

I. Integrated Short-Circuit Rating:
 1. Short-Circuit Current Rating for Each Unit: Fully rated; 65 kA.
 2. Short-Circuit Current Rating of MCC: Fully rated with its main overcurrent device; 65 kA.

J. Control Power:
 1. 120-V ac, supplied centrally from a CPT.
2. 24 / 120-V ac; obtained from CPT integral with controller; with primary and secondary fuses. The CPT shall be of sufficient capacity to operate integral devices and remotely located pilot, indicating, and control devices.

 a. Minimum CPT Spare Capacity: 50 VA.

3. Control Circuits: 24-V dc, supplied centrally from two redundant, automatically switched power supplies.

4. CPT Spare Capacity: 50 VA.

K. Factory-Installed Wiring: Factory installed, with bundling, lacing, and protection included. Use flexible conductors for No. 8 AWG and smaller, for conductors across hinges, and for conductors for interconnections between shipping units.

1. Wiring Class: NEMA ICS 18, Class II Class II-S, Type B, for starters larger than Size 3 Type B-D, for starters Size 3 and smaller Type B-T, for starters Size 3 and smaller Type C.

2. Control and Load Wiring: Factory installed, with bundling, lacing, and protection included. Use flexible conductors for No. 8 AWG and smaller, for conductors across hinges, and for conductors for interconnections between shipping units.

L. Bus:

1. Main Horizontal and Equipment Ground Buses: Uniform capacity for entire length of MCC's main and vertical sections. Provide for future extensions from both ends.

2. Vertical Phase and Equipment Ground Buses: Uniform capacity for entire usable height of vertical sections, except for sections incorporating single units.

3. Phase- and Neutral-Bus Material: Hard-drawn copper of 98 percent minimum conductivity or tin-plated alloy, with mechanical connectors for outgoing conductors.

4. Ground Bus: Hard-drawn copper of 98 percent minimum conductivity, with pressure connector for ground conductors, minimum size 1/4-by-2 inches. Equip with mechanical connectors for outgoing conductors.

5. Neutral Disconnect Link: Bolted, uninsulated, 1/4-by-2-inch copper bus, arranged to connect neutral bus to ground bus.

6. Bus-Bar Insulation: Factory-applied, flame-retardant, tape wrapping of individual bus bars or flame-retardant, spray-applied insulation. Insulation temperature rating shall not be less than 105 deg C.

2.6 MAIN DISCONNECT AND OVERCURRENT PROTECTIVE DEVICES(S)

A. MCCB (to 2500 A): Fixed mounted, manually operated air-circuit breaker. Comply with UL 489.

1. MCCB shall have quick-make, quick-break, over-center switching mechanism that is mechanically trip-free, its position shall be shown by the position of the handle, and manual push-to-trip push button.

2. Solid-state monitoring and tripping system to show system status monitoring, adjustable time-current protection, and shunt trip.
a. Interchangeable current sensors and timing circuits for adjustable time-current protection settings and status signals.

b. Trip-setting dials or interchangeable plugs to establish the continuous trip of the circuit breaker. Plugs shall not be interchangeable between frames, and the breaker may not be closed without the plug. With neutral ground-fault sensor.

c. Time-current adjustments to achieve protective-device coordination as follows:

1) Adjustable long-time delay.

2) Adjustable short-time setting and delay to shape the time-current curve.

3) Adjustable instantaneous setting.

4) Individually adjustable ground-fault setting and time delay.

d. Built-in connector to test the long-time delay, instantaneous, and ground-fault functions of the breaker. Provide one test set for testing the installed circuit breakers 225-A frame and higher.

e. Built-in digital ammeter display, showing load current and tripping cause.

3. Switch operator power shall be from control power specified in "Assembly" Article.

B. MCC Main Disconnect Device: Fusible switch; fixed-mounted, manually operated, electrically tripped, quick-make, quick-break switch. Comply with UL 98.

1. Indication whether the switch is open or closed, and provisions for padlocking the operating handle.

2. Fuse clips and fuses.

3. Electrically tripped switches shall include the following:

 a. Shunt trip.

 b. Ground-fault protection, with adjustable time delay and test panel.

 c. Single-phase protection, tripping the switch on loss of a source phase.

 d. Blown fuse protection, tripping the switch on a blown fuse, with blown fuse indication.

 e. Switch operator power shall be from control power specified in "Assembly" Article.

C. Surge Suppression: Factory installed as an integral part of the incoming feeder, complying with UL 1449, SPD Type 2.

2.7 MAGNETIC CONTROLLERS

A. Controller Units: Combination controllers.

B. Disconnects:

 1. Fusible Switch:

 a. UL 98 and NEMA KS 1, heavy-duty, horsepower-rated fusible switch, with clips or bolt pads to accommodate UL 248-8 Class J fuses.

 b. Lockable Handle: For three padlocks and interlocks with cover in closed position.

 c. Auxiliary Contacts: NO, arranged to activate before switch blades open.
2. MCP:
 a. UL 489, with interrupting capacity complying with available fault currents, instantaneous-only circuit breaker with front-mounted, field-adjustable, short-circuit trip coordinated with motor locked-rotor amperes.
 b. Lockable Handle: For three padlocks and interlocks with cover in closed position.
 c. Auxiliary contacts "a" and "b" arranged to activate with MCP handle.
 d. NC alarm contact that operates only when MCP has tripped.
 e. Current-limiting module to increase controller short-circuit current (withstanding) rating to 100 kA.

3. MCCB:
 a. UL 489, with interrupting capacity to comply with available fault currents; thermal-magnetic MCCB, with inverse time-current element for low-level overloads and instantaneous magnetic trip element for short circuits.
 b. Front-mounted, adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
 c. Lockable Handle: For three padlocks and interlocks with cover in closed position.
 d. Auxiliary contacts "a" and "b" arranged to activate with MCCB handle.
 e. NO alarm contact that operates only when MCCB has tripped.

4. Molded-Case Switch:
 a. UL 489, with in-line fuse block for UL 248-8 Class J power fuses (depending on ampere rating), providing an interrupting capacity to comply with available fault currents; MCCB with fixed, high-set instantaneous trip only.
 b. Lockable Handle: For three padlocks and interlocks with cover in closed position.
 c. Auxiliary contacts "a" and "b" arranged to activate with molded-case switch handle.
 d. NO alarm contact that operates only when molded-case switch has tripped.

C. Controllers: Comply with UL 508.

1. Full-Voltage Magnetic Controllers: Electrically held, full voltage, NEMA ICS 2, general purpose, Class A.
 a. Classification: Nonreversing.

2. Reduced-Voltage Magnetic Controllers: Electrically held, NEMA ICS 2, general purpose, Class A; open transition; adjustable time delay on transition. Mechanically held.
 a. Wye-Delta Controller: Four contactors, with a three-phase starting resistor/reactor bank.
 b. Part-Winding Controller: Separate START and RUN contactors, with separate overload relays for starting and running sequences.
 c. Autotransformer Reduced-Voltage Controller: Medium-duty service, with integral overtemperature protection; taps for starting at 50, 65, and 80 percent of line voltage; one RUN and two START contactors.
3. Multispeed Magnetic Controllers: Electrically held, full voltage, NEMA ICS 2, general purpose, Class A.
 a. Classification: Nonreversing; consequent pole.
 1) Two speed, with compelling relays to ensure that motor will start only at low speed.
 2) Timer Relays: Accelerating, for properly timed acceleration through speeds lower than that selected.
 3) Timer Relays: Decelerating, for automatically timed deceleration through each speed.

D. Overload Relays:
 1. Bimetallic Overload Relays:
 a. Inverse-time-current characteristic.
 b. Class 10 / Class 20 tripping characteristic.
 c. Heaters in each phase matched to nameplate full-load current of actual protected motor and with appropriate adjustment for duty cycle.
 d. Ambient compensated.
 e. Automatic resetting.
 2. Solid-State Overload Relays:
 a. Switch or dial selectable for motor-running overload protection.
 b. Sensors in each phase.
 c. Class 10/20 selectable tripping characteristic selected to protect motor against voltage and current unbalance and single phasing.
 d. UL 1053 Class II ground-fault protection, with start and run delays to prevent nuisance trip on starting.
 e. Analog communication module.
 3. NC / NO isolated overload alarm contact.
 4. External overload reset push button.

2.8 REDUCED-VOLTAGE SOLID-STATE CONTROLLERS

A. Controller Units: An integrated unit with disconnects, power SCRs, heat sink, microprocessor logic board, door-mounted digital display and keypad, bypass contactor, and overload relays. Comply with UL 508.
 1. Suitable for use with NEMA MG 1 Design B, polyphase induction motors.

B. Disconnects:
 1. Fusible Switch:
 a. UL 98 and NEMA KS 1, heavy-duty, horsepower-rated fusible switch, with clips or bolt pads to accommodate UL 248-8 Class J fuses.
b. Lockable Handle: For three padlocks and interlocks with cover in closed position.
c. Auxiliary Contacts: NC, arranged to activate before switch blades open.

2. MCP:
 a. UL 489, with interrupting capacity complying with available fault currents, instantaneous-only circuit breaker with front-mounted, field-adjustable, short-circuit trip coordinated with motor locked-rotor amperes.
 b. Lockable Handle: For three padlocks and interlocks with cover in closed position.
 c. Auxiliary contacts "a" and "b" arranged to activate with MCP handle.
 d. NC alarm contact that operates only when MCP has tripped.
 e. Current-limiting module to increase controller short-circuit current (withstand) rating to 100 kA.

3. MCCB:
 a. UL 489, with interrupting capacity to comply with available fault currents; thermal-magnetic MCCB, with inverse time-current element for low-level overloads and instantaneous magnetic trip element for short circuits.
 b. Front-mounted, adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
 c. Lockable Handle: For three padlocks and interlocks with cover in closed position.
 d. Auxiliary contacts "a" and "b" arranged to activate with MCCB handle.
 e. NC alarm contact that operates only when MCCB has tripped.

4. Molded-Case Switch:
 a. UL 489, with in-line fuse block for UL 248-8 Class J power fuses (depending on ampere rating), providing an interrupting capacity to comply with available fault currents; MCCB with fixed, high-set instantaneous trip only.
 b. Lockable Handle: For three padlocks and interlocks with cover in closed position.
 c. Auxiliary contacts "a" and "b" arranged to activate with molded-case switch handle.
 d. NC alarm contact that operates only when molded-case switch has tripped.

C. Configuration: Standard duty; nonreversible.

D. Starting Mode: Current limit Torque control with voltage boost; field selectable.

E. Stopping Mode: Adjustable braking; field selectable.

F. Bypass Contactor: Shall operate automatically to bypass the SCRs when the motor has reached rated speed and full voltage is applied to motor. Solid-state controller protective features shall remain active when the bypass relay is in the bypass mode.

1. Bypass Contactor: Manufacturer's standard product.
2. Bypass Contactor: NEMA ICS 2, general-purpose, Class A contactor, rated to start the load across the line.
3. Bypass Contactor Coils: Pressure-encapsulated type; manufacturer's standard operating voltage, matching control power or line voltage, depending on contactor size and line-voltage rating.
G. Acceleration Control: Adjustable, using voltage or current ramp, and adjustable starting torque control with up to 400 percent current limitation for 20 seconds.

H. SCR Bridge: At least two SCRs per phase, for stable and smooth acceleration without external feedback from the motor or driven equipment.

I. Keypad: Front accessible; for programming the controller parameters, functions, and features; shall be manufacturer's standard and include not less than the following functions:
 1. Adjusting motor full-load amperes, as a percentage of the controller's rating.
 2. Adjusting current limitation on starting, as a percentage of the motor full-load current rating.
 3. Adjusting linear acceleration and deceleration ramps, in seconds.
 4. Setting initial torque, as a percentage of the nominal motor torque.
 5. Adjusting torque limit, as a percentage of the nominal motor torque.
 6. Adjusting maximum start time, in seconds.
 7. Adjusting voltage boost, as a percentage of the nominal supply voltage.
 8. Selecting stopping mode and adjusting parameters.
 10. Activating and deactivating protection modes.
 11. Selecting or activating communications modes.

J. Digital Display: Front accessible; for showing motor, controller, and fault status; shall be manufacturer's standard and include not less than the following:
 2. Motor Condition: Amperes, voltage, power factor, power, and thermal state.
 3. Fault Conditions: Controller thermal fault, motor overload alarm and trip, motor underload, overcurrent, shorted SCRs, line or phase loss, phase reversal, and line frequency over or under normal.

K. Controller Diagnostics and Protection:
 1. Microprocessor-based thermal protection system for monitoring SCR and motor thermal characteristics, and providing controller overtemperature and motor overload alarm and trip; settings selectable via the keypad.
 2. Protection from line-side reverse phasing; line-side and motor-side phase loss; motor jam, stall, and underload conditions; and line frequency excursions to over- or under-normal. Accomplish protection by the following:
 a. Input isolation contactor that opens when the controller diagnostics detect a faulted solid-state component, or when the motor is stopped.
 b. Shunt trip that opens the disconnecting means when the controller diagnostics detect a faulted solid-state component.

L. Remote Output Features:
 1. All outputs prewired to terminal blocks.
 2. Form C status contacts that change state when controller is running.
 3. Form C alarm contacts that change state when a fault condition occurs.
M. Overload Relays:

1. Bimetallic Overload Relays:
 a. Inverse-time-current characteristic.
 b. Class 10 Class 20 Site Selectable tripping characteristic.
 c. Heaters in each phase matched to nameplate full-load current of actual protected motor and with appropriate adjustment for duty cycle.
 d. Ambient compensated.
 e. Automatic resetting.

2. Solid-State Overload Relays:
 a. Switch or dial selectable for motor-running overload protection.
 b. Sensors in each phase.
 c. Class 10/20 selectable tripping characteristic selected to protect motor against voltage and current unbalance and single phasing.
 d. UL 1053, Class II ground-fault protection, with start and run delays to prevent nuisance trip on starting.
 e. Analog communication module.

N. Optional Features:

1. Analog output for field-selectable assignment of motor operating characteristics; 4- to 20-mA dc.
2. Two additional field-assignable Form C contacts for alarm outputs.
3. Full-voltage/BYPASS selector switch. Power contacts shall be totally enclosed, double break, made of silver-cadmium oxide, and assembled to allow inspection and replacement without disturbing line or load wiring.

2.9 VFC

A. Controller Units: Combination controllers, consisting of variable-frequency power converter that is factory packaged in an enclosure, with integral disconnecting means and overcurrent and overload protection; listed and labeled by an NRTL as a complete unit; arranged for self-protection, protection, and variable-speed control of one or more three-phase induction motors by adjusting output voltage and frequency. Comply with NEMA ICS 7, NEMA ICS 61800-2, UL 508C, and UL 508E.

1. Units suitable for operation of NEMA MG 1, Design A and Design B motors as defined by NEMA MG 1, Section IV, Part 30, "Application Considerations for Constant Speed Motors Used on a Sinusoidal Bus with Harmonic Content and General Purpose Motors Used with Adjustable-Voltage or Adjustable-Frequency Controls or Both."
2. Units suitable for operation of inverter-duty motors as defined by NEMA MG 1, Section IV, Part 31, "Definite-Purpose Inverter-Fed Polyphase Motors."
3. Listed and labeled for integrated short-circuit current (withstand) rating by an NRTL acceptable to authorities having jurisdiction.
4. Listed and labeled for single-phase use by an NRTL acceptable to authorities having jurisdiction.
B. Disconnects:

1. Fusible Switch:
 a. UL 98 and NEMA KS 1, heavy-duty, horsepower-rated fusible switch, with clips or bolt pads to accommodate UL 248-8 Class J fuses.
 b. Lockable Handle: For three padlocks and interlocks with cover in closed position.
 c. Auxiliary Contacts: NC / NO, arranged to activate before switch blades open.

2. MCP:
 a. UL 489, with interrupting capacity complying with available fault currents, instantaneous-only circuit breaker with front-mounted, field-adjustable, short-circuit trip coordinated with motor locked-rotor amperes.
 b. Lockable Handle: For three padlocks and interlocks with cover in closed position.
 c. Auxiliary contacts "a" and "b" arranged to activate with MCP handle.
 d. NC / NO alarm contact that operates only when MCP has tripped.
 e. Current-limiting module to increase controller short-circuit current (withstand) rating to 100 kA.

3. MCCB:
 a. UL 489, with interrupting capacity to comply with available fault currents; thermal-magnetic MCCB, with inverse time-current element for low-level overloads and instantaneous magnetic trip element for short circuits.
 b. Front-mounted, adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
 c. Lockable Handle: For three padlocks and interlocks with cover in closed position.
 d. Auxiliary contacts "a" and "b" arranged to activate with MCCB handle.
 e. NC / NO alarm contact that operates only when MCCB has tripped.

4. Molded-Case Switch:
 a. UL 489, with in-line fuse block for UL 248-8 Class J power fuses (depending on ampere rating), providing an interrupting capacity to comply with available fault currents; MCCB with fixed, high-set instantaneous trip only.
 b. Lockable Handle: For three padlocks and interlocks with cover in closed position.
 c. Auxiliary contacts "a" and "b" arranged to activate with molded-case switch handle.
 d. NC / NO alarm contact that operates only when molded-case switch has tripped.

5. Disconnect Rating: Not less than 115 percent of VFC input current rating.
6. Disconnect Rating: Not less than 115 percent of NFPA 70 motor full-load current rating or VFC input current rating, whichever is larger.
7. Auxiliary Contacts: NC / NO, arranged to activate before switch blades open.
8. Auxiliary contacts "a" and "b" arranged to activate with circuit-breaker handle.
9. NC / NO alarm contact that operates only when circuit breaker has tripped.

C. Operating Requirements:

1. Input AC Voltage Tolerance: Plus 10 and minus 15 percent of VFC input voltage rating.
2. Input AC Voltage Unbalance: Not exceeding 5 percent.
3. Input Frequency Tolerance: Plus or minus 3 percent of VFC frequency rating.
4. Minimum Efficiency: 97 percent at 60 Hz, full load.
5. Minimum Displacement Primary-Side Power Factor: 98 percent under any load or speed condition.
6. Overload Capability:
 a. For variable-torque controllers, 1.1 times the base load current for 60 seconds; minimum of 1.8 times the base load current for three seconds.
 b. For constant-torque controllers, 1.5 times the base load current for 60 seconds; minimum of 1.8 times the base load current for three seconds.
7. Starting Torque: Minimum of 100 percent of rated torque from 3 to 60 Hz.
8. Speed Regulation: Plus or minus 5 percent.
10. Stop Modes: Programmable; includes fast, free-wheel, and dc injection braking.
11. Internal Adjustability Capabilities:
 a. Minimum Speed: 5 to 25 percent of maximum rpm.
 b. Maximum Speed: 80 to 100 percent of maximum rpm.
 c. Acceleration: 0.1 to 999.9 seconds.
 d. Deceleration: 0.1 to 999.9 seconds.
 e. Current Limit: 30 to a minimum of 150 percent of maximum rating.
12. Self-Protection and Reliability Features:
 a. Input transient protection by means of SPDs for three-phase protection against damage from supply voltage surges 10 percent or more above nominal line voltage.
 b. Loss of Input Signal Protection: Selectable response strategy including speed default to a percent of the most recent speed, a preset speed, or stop; with alarm.
 c. Under- and overvoltage trips.
 d. Inverter overcurrent trips.
 e. VFC and Motor Overload/Overtemperature Protection: Microprocessor-based thermal protection system for monitoring VFCs and motor thermal characteristics, and for providing VFC overtemperature and motor overload alarm and trip; settings selectable via the keypad; NRTL approved and listed and labeled by an NRTL.
 f. Critical frequency rejection, with three selectable, adjustable deadbands.
 g. Instantaneous line-to-line and line-to-ground overcurrent trips.
 h. Loss-of-phase protection.
 i. Reverse-phase protection.
 j. Short-circuit protection.
 k. Motor overtemperature fault.
13. Torque Boost: Automatically varies starting and continuous torque to at least 1.5 times the minimum torque to ensure high-starting torque and increased torque at slow speeds.
D. Operator Station:

1. Inverter Logic: Microprocessor based, 32 bit, isolated from all power circuits.
2. Isolated Control Interface: Allows VFCs to follow remote-control signal over a minimum 40:1 speed range.
3. Panel-mounted, manufacturer's standard front-accessible, sealed keypad and plain-English-language digital display; allows complete programming, program copying, operating, monitoring, and diagnostic capability.
 a. Keypad: In addition to required programming and control keys, include keys for HAND, OFF, and AUTO modes.
 b. Security Access: Electronic security access to controls through identification and password with at least three levels of access: View only; view and operate; and view, operate, and service.

E. Displays:

1. Historical Logging Information and Displays:
 a. Real-time clock with current time and date.
 b. Running log of total power versus time.
 c. Total run time.
 d. Fault log, maintaining last four faults with time and date stamp for each.

2. Indicating Devices: Digital display and additional readout devices as required, mounted flush in VFC door and connected to display VFC parameters including the following:
 a. Output frequency (Hz).
 b. Motor speed (rpm).
 c. Motor status (running, stop, fault).
 d. Motor current (amperes).
 e. Motor torque (percentage).
 f. Fault or alarming status (code).
 g. PID feedback signal (percentage).
 h. DC-link voltage (V dc).
 i. Set-point frequency (Hz).
 j. Motor output voltage (V ac).

F. Bypass Systems:

1. Bypass Operation: Safely transfers motor between power converter output and bypass circuit, manually, automatically, or both. Selector switches set modes, and indicator lights indicate mode selected. Unit is capable of stable operation (starting, stopping, and running) with motor completely disconnected from power converter.
2. Bypass Mode: Manual operation only; requires local operator selection at VFC. Transfer between power converter and bypass contactor and retransfer shall only be allowed with the motor at zero speed.
3. Bypass Mode: Field-selectable automatic or manual, allows local and remote transfer between power converter and bypass contactor and retransfer, either via manual operator interface or automatic control system feedback.
Bypass Controller: Two-contactor-style bypass allows motor operation via the power converter or the bypass controller; with input isolating switch and barrier arranged to isolate the power converter and permit safe troubleshooting and testing, both energized and de-energized, while motor is operating in bypass mode.

b. Output Isolating Contactor: Non-load-break, NEMA-rated contactor.
c. Isolating Switch: Non-load-break switch arranged to isolate power converter and permit safe troubleshooting and testing of the power converter, both energized and de-energized, while motor is operating in bypass mode; pad-lockable, door-mounted handle mechanism.

Bypass Controller: Three-contactor-style bypass allows motor operation via the power converter or the bypass controller; with input isolating switch and barrier arranged to isolate the power converter input and output and permit safe testing and troubleshooting of the power converter, both energized and de-energized, while motor is operating in bypass mode.

b. Input and Output Isolating Contactors: Non-load-break, NEMA-rated contactors.
c. Isolating Switch: Non-load-break switch arranged to isolate power converter and permit safe troubleshooting and testing of the power converter, both energized and de-energized, while motor is operating in bypass mode; pad-lockable, door-mounted handle mechanism.

Bypass Contactor Classification: Full-voltage (across-the-line) type.

NORMAL/BYPASS selector switch.

a. HAND/OFF/AUTO selector switch.
b. NORMAL/TEST Selector Switch: Allows testing and adjusting of VFC while the motor is running in the bypass mode.
c. Contactor Coils: Pressure-encapsulated type with coil transient suppressors.

1) Operating Voltage: Depending on contactor NEMA size and line-voltage rating, manufacturer's standard matching control power or line voltage.
2) Power Contacts: Totally enclosed, double break, and silver-cadmium oxide; assembled to allow inspection and replacement without disturbing line or load wiring.

Overload Relays: NEMA ICS 2.

a. Bimetallic Overload Relays:

1) Inverse-time-current characteristic.
2) Class 10 / Class 20 tripping characteristic.
3) Heaters in each phase matched to nameplate full-load current of actual protected motor and with appropriate adjustment for duty cycle.
4) Ambient compensated.
5) Automatic resetting.

b. Solid-State Overload Relays:
1) Switch or dial selectable for motor-running overload protection.
2) Sensors in each phase.
3) Class 10/20 selectable tripping characteristic selected to protect motor against voltage and current unbalance and single phasing.
4) Class II ground-fault protection, with start and run delays to prevent nuisance trip on starting.
5) Analog communication module.

c. NC isolated overload alarm contact.
d. External overload reset push button.

G. Automatic Reset/Restart: Attempt three restarts after drive fault or on return of power after an interruption and before shutting down for manual reset or fault correction; adjustable delay time between restart attempts.

H. Power-Interruption Protection: To prevent motor from re-energizing after a power interruption until motor has stopped, unless "Bidirectional Autospeed Search" feature is available and engaged.

I. Bidirectional Autospeed Search: Capable of starting VFC into rotating loads spinning in either direction and returning motor to set speed in proper direction, without causing damage to drive, motor, or load.

J. Firefighter's Override (Smoke Purge) Input: On a remote contact closure from the firefighter's control station smoke-control fan controller, the following password-protected input:

1. Overrides all other local and external inputs (analog/digital, serial communication, and all keypad commands).
2. Forces VFC to operate motor, without any other run or speed command, at a field-adjustable, preset speed.
3. Forces VFC to transfer to bypass mode and operate motor at full speed.
4. Causes display of override mode on the VFC display.
5. Reset VFC to normal operation on removal of override signal manually.

K. Communication Port: Ethernet or equivalent connection Capable of connecting a printer and a notebook computer.

2.10 CONTROLLER-MOUNTED AUXILIARY DEVICES

 a. Push Buttons: Covered Recessed types; maintained contact unless otherwise indicated.
 b. Pilot Lights: LED types; Red (On) Green (Off); push to test.
 c. Selector Switches: Rotary H.O.A type.

B. Elapsed-Time Meters: Heavy duty with digital readout in hours; nonresettable.
C. Meters: Panel type, 2-1/2-inch minimum size with 90- or 120-degree scale and plus or minus 2 percent accuracy, with selector switches having an off position.

D. Auxiliary Dry Contacts: NC, NO / Reversible NC/NO.

E. Control Relays:
 1. Time Delay: Auxiliary and adjustable solid-state time-delay relays.

2.11 MEASUREMENT AND CONTROL DEVICES

A. Instrument Transformers: IEEE C57.13, NEMA EI 21.1, and the following:
 1. PTs: IEEE C57.13; 120 V, 60 Hz, double secondary; disconnecting type with integral fuse mountings. Burden and accuracy shall be consistent with connected metering and relay devices.
 2. Current Transformers: IEEE C57.13; 5 A, 60 Hz, secondary; bar or window type; single secondary winding and secondary shorting device. Burden and accuracy shall be consistent with connected metering and relay devices.
 3. CPTs: Dry type, mounted in separate compartments for units larger than 3 kVA.

B. Multifunction Digital-Metering Monitor: Microprocessor-based unit suitable for three- or four-wire systems and with the following features:
 1. Listed or recognized by a nationally recognized testing laboratory.
 2. Inputs from sensors or 5-A current-transformer secondaries, and potential terminals rated to 600 V.
 3. Switch-selectable digital display of the following values with the indicated maximum accuracy tolerances:
 a. Phase Currents, Each Phase: Plus or minus 1 percent.
 b. Phase-to-Phase Voltages, Three Phase: Plus or minus 1 percent.
 c. Phase-to-Neutral Voltages, Three Phase: Plus or minus 1 percent.
 d. Three-Phase Real Power (Megawatts): Plus or minus 2 percent.
 e. Three-Phase Reactive Power (Megavars): Plus or minus 2 percent.
 f. Power Factor: Plus or minus 2 percent.
 g. Frequency: Plus or minus 0.5 percent.
 h. Accumulated Energy, Megawatt Hours: Plus or minus 2 percent; accumulated values unaffected by power outages up to 72 hours.
 i. Megawatt Demand: Plus or minus 2 percent; demand interval programmable from 5 to 60 minutes.
 j. Contact devices to operate remote impulse-totalizing demand meter.
4. Mounting: Display and control unit flush or semiflush mounted in instrument compartment door.

C. Control Power Fuses: Primary and secondary fuses for current-limiting and overload protection of transformer and fuses for protection of control circuits.

2.12 FEEDER TAP UNITS

A. MCCBs (to 1200 A): Fixed mounted, with inverse time-current element for low-level overloads and instantaneous magnetic trip element for short circuits. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger. Comply with UL 489, and NEMA AB 3, with interrupting capacity to comply with available fault currents.

2. Electronic Trip Circuit Breakers: Field-replaceable rating plug, rms sensing, with the following field-adjustable settings:
 a. Instantaneous trip.
 b. Long- and short-time pickup levels.
 c. Long- and short-time time adjustments.
 d. Ground-fault pickup level, time delay, and I^2t response.

3. Communication Capability: Circuit-breaker-mounted Integral communication module with functions and features compatible with power monitoring and control system specified in Section 26 09 13 "Electrical Power Monitoring and Control."
4. With built-in digital ammeter and a digital display, showing tripping cause.
5. Shunt Trip: Trip coil energized from separate circuit, with coil-clearing contact.
6. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional time delay.
7. Auxiliary Contacts: Two SPDT switches with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts, "b" contacts operate in reverse of circuit-breaker contacts.
8. Alarm Switch: One NC contact that operates only when circuit breaker has tripped.
9. Key Interlock Kit: Externally mounted to prohibit circuit-breaker operation; key shall be removable only when circuit breaker is in off position.
10. Zone-Selective Interlocking: Integral with electronic trip unit; for interlocking ground-fault protection function.

1. Indication whether the switch is open or closed, and provisions for padlocking the operating handle.
2. Include fuse clips and fuses.
3. Electrically tripped switches shall include the following:
 a. Shunt trip.
 b. Ground-fault protection, with adjustable time delay and test panel.
c. Single-phase protection, tripping the switch on loss of a source phase.

d. Blown fuse protection, tripping the switch on a blown fuse, with blown fuse indication.

2.13 PANELBOARDS

A. Comply with NEMA PB 1.

C. Branch OCPDs for Circuit-Breaker Frame Sizes Larger Than 125 A: Bolt-on circuit breakers; or plug-in circuit breakers where individual positive-locking device requires mechanical release for removal.

D. Contactors in Main Bus: NEMA ICS 2, Class A, mechanically held, general-purpose controller, with same short-circuit interrupting rating as panelboard.

2.14 TRANSFORMERS

A. Factory-assembled and -tested, air-cooled, two-winding, low-voltage dry-type transformers; with primary circuit breaker. Comply with NEMA ST 20.

B. Taps for Transformers Smaller Than 3 kVA: One 5 percent tap above normal full capacity.

C. Taps for Transformers 7.5 to 24 kVA: Two 5 percent taps below rated voltage.

D. Taps for Transformers 25 kVA and Larger: Two 2.5 percent taps above and two 2.5 percent taps below normal full capacity.

E. Insulation Class: 220 deg C, UL-component-recognized insulation system with a maximum of 150 deg C rise above 40 deg C ambient temperature.

F. Energy Efficiency for Transformers Rated 15 kVA and Larger:

 1. Complying with NEMA TP 1, Class 1 efficiency levels.
 2. Tested according to NEMA TP 2.

2.15 SOURCE QUALITY CONTROL

A. MCC Testing: Test and inspect MCCs according to requirements in NEMA ICS 18.

B. VFC Testing: Test and inspect VFCs according to requirements in NEMA ICS 61800-2.

 1. Test each VFC while connected to a motor that is comparable to that for which the VFC is rated.
2. Verification of Performance: Rate VFCs according to operation of functions and features specified.

C. MCCs will be considered defective if they do not pass tests and inspections.

D. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and surfaces to receive MCCs, with Installer present, for compliance with requirements for installation tolerances, and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. NEMA Industrial Control and Systems Standards: Comply with parts of NEMA ICS 2.3 for installation and startup of MCCs.

B. Floor Mounting: Install MCCs on 4-inch nominal-thickness concrete base.

1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.

2. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.

3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.

4. Install anchor bolts to elevations required for proper attachment to supported equipment.

C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.

D. Install fuses in each fusible switch.

E. Install heaters in thermal-overload relays. Select heaters based on actual nameplate full-load amperes after motors have been installed.

F. Install, connect, and fuse thermal-protector monitoring relays furnished with motor-driven equipment.

G. Install power factor correction capacitors. Connect to the line side of overload relays. If connected to the load side of overload relays, adjust overload heater sizes to accommodate the reduced motor full-load currents.

H. Comply with NECA 1.
3.3 IDENTIFICATION

A. Comply with requirements in Section 26 05 53 "Identification for Electrical Systems" for identification of MCC, MCC components, and control wiring.

1. Identify field-installed conductors, interconnecting wiring, and components.
2. Install required warning signs.
3. Label MCC and each cubicle with engraved nameplate.
4. Label each enclosure-mounted control and pilot device.
5. Mark up a set of manufacturer's connection wiring diagrams with field-assigned wiring identifications and return to manufacturer for inclusion in Record Drawings.

B. Operating Instructions: Frame printed operating instructions for MCCs, including control sequences and emergency procedures. Fabricate frame of finished metal, and cover instructions with clear acrylic plastic. Mount on front of MCCs.

3.4 CONTROL WIRING INSTALLATION

A. Install wiring between enclosed controllers / master terminal boards and remote devices and facility's BAS and facility's central-control system. Comply with requirements in Section 26 05 23 "Control-Voltage Electrical Power Cables."

B. Bundle, train, and support wiring in enclosures.

C. Connect selector switches and other automatic-control selection devices where applicable.

1. Connect selector switches to bypass only those manual- and automatic-control devices that have no safety functions when switch is in manual-control position.
2. Connect selector switches within enclosed controller circuit in both manual and automatic positions for safety-type control devices such as low- and high-pressure cutouts, high-temperature cutouts, and motor overload protectors.

3.5 CONNECTIONS

A. Comply with requirements for installation of conduit in Section 26 05 33 "Raceways and Boxes for Electrical Systems." Drawings indicate general arrangement of conduit, fittings, and specialties.

B. Comply with requirements in Section 26 05 26 "Grounding and Bonding for Electrical Systems."

3.6 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

C. Perform tests and inspections with the assistance of a factory-authorized service representative.
D. Acceptance Testing Preparation:
 1. Test insulation resistance for each enclosed controller, component, connecting supply, feeder, and control circuit.
 2. Test continuity of each circuit.

E. Tests and Inspections:
 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 2. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 4. Perform the following infrared (thermographic) scan tests and inspections and prepare reports:
 a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each multipole enclosed controller. Remove front panels so joints and connections are accessible to portable scanner.
 b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each multipole enclosed controller 11 months after date of Substantial Completion.
 c. Instruments and Equipment: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Submit calibration record for device.
 5. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.
 6. Mark up a set of manufacturer's drawings with all field modifications incorporated during construction and return to manufacturer for inclusion in Record Drawings.

F. MCCs will be considered defective if they do not pass tests and inspections.

G. Prepare test and inspection reports.

3.7 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.

 1. Complete installation and startup checks according to NETA Acceptance Testing Specification and manufacturer's written instructions.

3.8 ADJUSTING

A. Set field-adjustable switches, auxiliary relays, time-delay relays, timers, and overload relay pickup and trip ranges.
B. Adjust overload relay heaters or settings if power factor correction capacitors are connected to the load side of the overload relays.

C. Adjust the trip settings of MCPs and thermal-magnetic circuit breakers with adjustable, instantaneous trip elements. Initially adjust to six times the motor nameplate full-load amperes and attempt to start motors several times, allowing for motor cool-down between starts. If tripping occurs on motor inrush, adjust settings in increments until motors start without tripping. Do not exceed eight times the motor full-load amperes (or 11 times for NEMA Premium Efficient motors if required). Where these maximum settings do not allow starting of a motor, notify Construction Manager / Owner before increasing settings.

D. Set the taps on reduced-voltage autotransformer controllers at 50 / 65 percent.

E. Set field-adjustable switches and program microprocessors for required start and stop sequences in reduced-voltage, solid-state controllers.

F. Program microprocessors in VFCs for required operational sequences, status indications, alarms, event recording, and display features. Clear events memory after final acceptance testing and prior to Substantial Completion.

G. Set field-adjustable circuit-breaker trip ranges as specified in Section 26 05 73.16 “Coordination Studies.”

3.9 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain enclosed controllers, and to use and reprogram microprocessor-based, reduced-voltage, solid-state controllers.

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

 A. Section Includes:

 1. Standard-grade receptacles, 125 V, 20 A.
 2. GFCI receptacles, 125 V, 20 A.
 3. SPD receptacles, 125 V, 20 A.
 4. Twist-locking receptacles.
 5. Toggle switches, 120/277 V, 20 A.
 6. Occupancy sensors.
 7. Wall-box dimmers.
 8. Wall plates.
 9. Floor service fittings.

1.3 DEFINITIONS

 A. AFCI: Arc-fault circuit interrupter.
 B. BAS: Building automation system.
 C. EMI: Electromagnetic interference.
 D. GFCI: Ground-fault circuit interrupter.
 E. Pigtail: Short lead used to connect a device to a branch-circuit conductor.
 F. RFI: Radio-frequency interference.
 G. SPD: Surge protective device.

1.4 ACTION SUBMITTALS

 A. Product Data: For each type of product.
B. Shop Drawings: List of legends and description of materials and process used for premarking wall plates.

C. Samples: One for each type of device and wall plate specified, in each color specified.

1.5 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For wiring devices to include in all manufacturers' packing-label warnings and instruction manuals that include labeling conditions.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. General Wiring-Device Requirements

2.1 GENERAL WIRING-DEVICE REQUIREMENTS

A. Wiring Devices, Components, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.

B. Comply with NFPA 70.

C. RoHS compliant.

D. Comply with NEMA WD 1.

E. Devices that are manufactured for use with modular plug-in connectors may be substituted under the following conditions:

1. Connectors shall comply with UL 2459 and shall be made with stranding building wire.

2. Devices shall comply with requirements in this Section.

F. Devices for Owner-Furnished Equipment:
1. Receptacles: Match plug configurations.
2. Cord and Plug Sets: Match equipment requirements.

G. Device Color:

1. Wiring Devices Connected to Normal Power System: White or As selected by Architect unless otherwise indicated or required by NFPA 70 or device listing.
2. Wiring Devices Connected to Essential Electrical System: Red.
3. SPD Devices: Blue.
4. Isolated-Ground Receptacles: Orange or As specified above, with orange triangle on face.

H. Wall Plate Color: For plastic covers, match device color.

I. Source Limitations: Obtain each type of wiring device and associated wall plate from single source from single manufacturer.

2.2 STANDARD-GRADE RECEPTACLES, 125 V, 20 A

A. Duplex Receptacles, 125 V, 20 A:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. Eaton (Arrow Hart).
b. Hubbell Incorporated; Wiring Device-Kellems.
c. Leviton Manufacturing Co., Inc.
d. Pass & Seymour/Legrand (Pass & Seymour).

2. Description: Two pole, three wire, and self-grounding.
3. Configuration: NEMA WD 6, Configuration 5-20R.
4. Standards: Comply with UL 498 and FS W-C-596.

B. Isolated-Ground Duplex Receptacles, 125 V, 20 A:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. Eaton (Arrow Hart).
b. Hubbell Incorporated; Wiring Device-Kellems.
c. Leviton Manufacturing Co., Inc.
d. Pass & Seymour/Legrand (Pass & Seymour).

2. Description: Straight blade; equipment grounding contacts shall be connected only to green grounding screw terminal of the device and with inherent electrical isolation from mounting strap. Isolation shall be integral to receptacle construction and not dependent on removable parts. Two pole, three wire, and self-grounding.
3. Configuration: NEMA WD 6, Configuration 5-20R.
4. Standards: Comply with UL 498 and FS W-C-596.
C. Tamper-Resistant Duplex Receptacles, 125 V, 20 A:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Eaton (Arrow Hart).
 b. Hubbell Incorporated; Wiring Device-Kellems.
 c. Leviton Manufacturing Co., Inc.
 d. Pass & Seymour/Legrand (Pass & Seymour).

2. Description: Two pole, three wire, and self-grounding. Integral shutters that operate only when a plug is inserted in the receptacle.

3. Configuration: NEMA WD 6, Configuration 5-20R.

4. Standards: Comply with UL 498 and FS W-C-596.

5. Marking: Listed and labeled as complying with NFPA 70, "Tamper-Resistant Receptacles" Article.

D. Weather-Resistant Duplex Receptacle, 125 V, 20 A:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Eaton (Arrow Hart).
 b. Hubbell Incorporated; Wiring Device-Kellems.
 c. Leviton Manufacturing Co., Inc.
 d. Pass & Seymour/Legrand (Pass & Seymour).

2. Description: Two pole, three wire, and self-grounding. Integral shutters that operate only when a plug is inserted in the receptacle. Square face.

3. Configuration: NEMA WD 6, Configuration 5-20R.

5. Marking: Listed and labeled as complying with NFPA 70, "Receptacles in Damp or Wet Locations" Article.

E. Tamper- and Weather-Resistant Duplex Receptacles, 125 V, 20 A:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Eaton (Arrow Hart).
 b. Hubbell Incorporated; Wiring Device-Kellems.
 c. Leviton Manufacturing Co., Inc.
 d. Pass & Seymour/Legrand (Pass & Seymour).

2. Description: Two pole, three wire, and self-grounding. Integral shutters that operate only when a plug is inserted in the receptacle. Square face.

3. Configuration: NEMA WD 6, Configuration 5-20R.

5. Marking: Listed and labeled as complying with NFPA 70, "Tamper-Resistant Receptacles" and "Receptacles in Damp or Wet Locations" articles.
2.3 GFCI RECEPTACLES, 125 V, 20 A

A. Duplex GFCI Receptacles, 125 V, 20 A:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Eaton (Arrow Hart).
 b. Hubbell Incorporated; Wiring Device-Kellems.
 c. Leviton Manufacturing Co., Inc.
 d. Pass & Seymour/Legrand (Pass & Seymour).

2. Description: Integral GFCI with "Test" and "Reset" buttons and LED indicator light. Two pole, three wire, and self-grounding.

3. Configuration: NEMA WD 6, Configuration 5-20R.

4. Type: Feed through.

5. Standards: Comply with UL 498, UL 943 Class A, and FS W-C-596.

B. Tamper-Resistant Duplex GFCI Receptacles, 125 V, 20 A:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Hubbell Incorporated; Wiring Device-Kellems.
 b. Pass & Seymour/Legrand (Pass & Seymour).

2. Description: Integral GFCI with "Test" and "Reset" buttons and LED indicator light. Two pole, three wire, and self-grounding. Integral shutters that operate only when a plug is inserted in the receptacle.

3. Configuration: NEMA WD 6, Configuration 5-20R.

4. Type: Feed through.

5. Standards: Comply with UL 498, UL 943 Class A, and FS W-C-596.

C. Tamper- and Weather-Resistant, GFCI Duplex Receptacles, 125 V, 20 A:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Eaton (Arrow Hart).
 b. Hubbell Incorporated; Wiring Device-Kellems.
 c. Leviton Manufacturing Co., Inc.
 d. Pass & Seymour/Legrand (Pass & Seymour).

2. Description: Integral GFCI with "Test" and "Reset" buttons and LED indicator light. Two pole, three wire, and self-grounding. Integral shutters that operate only when a plug is inserted in the receptacle. Square face.

3. Configuration: NEMA WD 6, Configuration 5-15R.

4. Type: Non-feed through.

5. Standards: Comply with UL 498 and UL 943 Class A.
6. Marking: Listed and labeled as complying with NFPA 70, "Tamper-Resistant Receptacles" and "Receptacles in Damp or Wet Locations" articles.

2.4 SPD RECEPTACLES, 125 V, 20 A

A. Duplex SPD Receptacles, 125 V, 20 A:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Eaton (Arrow Hart).
 b. Hubbell Incorporated; Wiring Device-Kellems.
 c. Leviton Manufacturing Co., Inc.
 d. Pass & Seymour/Legrand (Pass & Seymour).

2. Description: Two pole, three wire, and self-grounding. Integral SPD in line to ground, line to neutral, and neutral to ground. LED indicator light.

3. SPD Components: Multiple metal-oxide varistors; with a nominal clamp-level rating of 400 V and minimum single transient pulse energy dissipation of 240 J, according to IEEE C62.41.2 and IEEE C62.45.

4. Active SPD Indication: Visual and audible, with light visible in face of device to indicate device is "active" or "no longer in service."

5. Configuration: NEMA WD 6, Configuration 5-20R.

6. Standards: Comply with NEMA WD 1, UL 498, UL 1449, and FS W-C-596.

B. Isolated-Ground Duplex SPD Receptacles, 125 V, 20 A:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Eaton (Arrow Hart).
 b. Hubbell Incorporated; Wiring Device-Kellems.
 c. Leviton Manufacturing Co., Inc.
 d. Pass & Seymour/Legrand (Pass & Seymour).

2. Description: Two pole, three wire, and self-grounding. Integral SPD in line to ground, line to neutral, and neutral to ground. LED indicator light.

3. SPD Components: Multiple metal-oxide varistors; with a nominal clamp-level rating of 400 V and minimum single transient pulse energy dissipation of 240 J, according to IEEE C62.41.2 and IEEE C62.45.

4. Active SPD Indication: Visual and audible, with light visible in face of device to indicate device is "active" or "no longer in service."

5. Grounding: Equipment grounding contacts shall be connected only to green grounding screw terminal of the device and with inherent electrical isolation from mounting strap. Isolation shall be integral to receptacle construction and not dependent on removable parts.

6. Configuration: NEMA WD 6, Configuration 5-20R.

7. Standards: Comply with UL 498, UL 1449, and FS W-C-596.
2.5 TWIST-LOCKING RECEPTACLES

A. Twist-Lock, Single Receptacles, 120 V, 20 A:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Eaton (Arrow Hart).
 b. Hubbell Incorporated; Wiring Device-Kellems.
 c. Leviton Manufacturing Co., Inc.
 d. Pass & Seymour/Legrand (Pass & Seymour).

2. Configuration: NEMA WD 6, Configuration L5-20R.

B. Twist-Lock, Single Receptacles, 250 V, 20 A:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Eaton (Arrow Hart).
 b. Hubbell Premise Wiring.
 c. Leviton Manufacturing Co., Inc.
 d. Pass & Seymour/Legrand (Pass & Seymour).

2. Configuration: NEMA WD 6, Configuration L6-20R.

2.6 TOGGLE SWITCHES, 120/277 V, 20 A

A. Single-Pole Switches, 120/277 V, 20 A:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Eaton (Arrow Hart).
 b. Hubbell Incorporated; Wiring Device-Kellems.
 c. Leviton Manufacturing Co., Inc.
 d. Pass & Seymour/Legrand (Pass & Seymour).

2. Standards: Comply with UL 20 and FS W-S-896.

B. Two-Pole Switches, 120/277 V, 20 A:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Eaton (Arrow Hart).
 b. Hubbell Incorporated; Wiring Device-Kellems.
 c. Leviton Manufacturing Co., Inc.
 d. Pass & Seymour/Legrand (Pass & Seymour).
2. Comply with UL 20 and FS W-S-896.

C. Three-Way Switches, 120/277 V, 20 A:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Eaton (Arrow Hart).
 b. Hubbell Incorporated; Wiring Device-Kellems.
 c. Leviton Manufacturing Co., Inc.
 d. Pass & Seymour/Legrand (Pass & Seymour).

2. Comply with UL 20 and FS W-S-896.

D. Four-Way Switches, 120/277 V, 20 A:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Eaton (Arrow Hart).
 b. Hubbell Incorporated; Wiring Device-Kellems.
 c. Leviton Manufacturing Co., Inc.
 d. Pass & Seymour/Legrand (Pass & Seymour).

2. Standards: Comply with UL 20 and FS W-S-896.

E. Pilot-Light, Single-Pole Switches: 120/277 V, 20 A:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Eaton (Arrow Hart).
 b. Hubbell Incorporated; Wiring Device-Kellems.
 c. Leviton Manufacturing Co., Inc.
 d. Pass & Seymour/Legrand (Pass & Seymour).

2. Description: Illuminated when switch is on.

F. Lighted Single-Pole Switches, 120/277 V, 20 A:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Eaton (Arrow Hart).
 b. Hubbell Premise Wiring.
 c. Leviton Manufacturing Co., Inc.
 d. Pass & Seymour/Legrand (Pass & Seymour).

2. Description: Handle illuminated when switch is off.
3. Standards: Comply with NEMA WD 1, UL 20, and FS W-S-896.
G. Key-Operated, Single-Pole Switches, 120/277 V, 20 A:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Eaton (Arrow Hart).
 b. Hubbell Incorporated; Wiring Device-Kellems.
 c. Leviton Manufacturing Co., Inc.
 d. Pass & Seymour/Legrand (Pass & Seymour).

2. Description: Factory-supplied key in lieu of switch handle.

H. Single-Pole, Double-Throw, Momentary-Contact, Center-off Switches, 120/277 V, 20 A:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Eaton (Arrow Hart).
 b. Hubbell Incorporated; Wiring Device-Kellems.
 c. Leviton Manufacturing Co., Inc.
 d. Pass & Seymour/Legrand (Pass & Seymour).

2. Description: For use with mechanically held lighting contactors.
3. Standards: Comply with NEMA WD 1, UL 20, and FS W-S-896.

I. Key-Operated, Single-Pole, Double-Throw, Momentary-Contact, Center-off Switches, 120/277 V, 20 A:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Eaton (Arrow Hart).
 b. Hubbell Incorporated; Wiring Device-Kellems.
 c. Leviton Manufacturing Co., Inc.
 d. Pass & Seymour/Legrand (Pass & Seymour).

2. Description: For use with mechanically held lighting contactors, with factory-supplied key in lieu of switch handle.
3. Standards: Comply with NEMA WD 1, UL 20, and FS W-S-896.

2.7 OCCUPANCY SENSORS

A. Wall Switch Sensor Light Switch, Dual Technology:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Eaton (Arrow Hart).
 b. Hubbell Incorporated; Wiring Device-Kellems.
 c. Leviton Manufacturing Co., Inc.
d. Pass & Seymour/Legrand (Pass & Seymour).

2. Description: Switchbox-mounted, combination lighting-control sensor and conventional switch lighting-control unit using dual (ultrasonic and passive infrared) technology.

4. Rated 960 W at 120 V ac for tungsten lighting, 10 A at 120 V ac or 10 A at 277 V ac for fluorescent or LED lighting, and 1/4 hp at 120 V ac.

5. Adjustable time delay of five / 10 / 15 / 20 minutes.

6. Able to be locked to Automatic / Manual-On mode.

8. Connections: Provisions for connection to BAS.

B. Wall Sensor Light Switch, Passive Infrared:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Cooper Industries.
 b. Hubbell Premise Wiring.
 c. Leviton Manufacturing Co., Inc.
 d. Pass & Seymour/Legrand (Pass & Seymour).

2. Description: Switchbox-mounted, combination, lighting-control sensor and conventional switch lighting-control unit using passive infrared technology.

4. Connections: Provisions for connection to BAS.

7. Rated 960 W at 120 V ac for tungsten lighting, 10 A at 120 V ac or 10 A at 277 V ac for fluorescent or LED lighting, and 1/4 hp at 120 V ac.

8. Integral relay for connection to BAS.

9. Adjustable time delay of five / 10 / 15 / 20 minutes.

10. Able to be locked to Automatic / Manual-On mode.

C. Wall Sensor Light Switch, Ultrasonic:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Eaton (Arrow Hart).
 b. Hubbell Incorporated; Wiring Device-Kellems.
 c. Leviton Manufacturing Co., Inc.

2. Description: Switchbox-mounted, combination, lighting-control sensor and conventional switch lighting-control unit using ultrasonic technology.

4. Connections: Provisions for connection to BAS.

7. Rated 960 W at 120 V ac for tungsten lighting, 10 A at 120 V ac or 10 A at 277 V ac for fluorescent or LED lighting, and 1/4 hp at 120 V ac.
8. Integral relay for connection to BAS.
9. Adjustable time delay of five / 10 / 15 / 20 minutes.
10. Able to be locked to Automatic / Manual-On mode.

2.8 DIMMERS

A. Wall-Box Dimmers:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Eaton (Arrow Hart).
 b. Hubbell Incorporated; Wiring Device-Kellems.
 c. Leviton Manufacturing Co., Inc.
 d. Lutron Electronics Co., Inc.
 e. Pass & Seymour/Legrand (Pass & Seymour).

2. Description: Modular, full-wave, solid-state dimmer switch with integral, quiet on-off switches, with audible frequency and EMI/RFI suppression filters.
3. Control: Continuously adjustable slider, toggle switch; with single-pole or three-way switching.
5. Incandescent Lamp Dimmers: 120 V; control shall follow square-law dimming curve. On-off switch positions shall bypass dimmer module.
 a. 1200 W; dimmers shall require no derating when ganged with other devices. Illuminated when "off."

6. Fluorescent Lamp Dimmer Switches: Modular; compatible with dimmer ballasts; trim potentiometer to adjust low-end dimming; dimmer-ballast combination capable of consistent dimming with low end not greater than 20 percent of full brightness.
7. LED Lamp Dimmer Switches: Modular; compatible with LED lamps; trim potentiometer to adjust low-end dimming; capable of consistent dimming with low end not greater than 20 percent of full brightness.

2.9 WALL PLATES

A. Single Source: Obtain wall plates from same manufacturer of wiring devices.

B. Single and combination types shall match corresponding wiring devices.

1. Plate-Securing Screws: Metal with head color to match plate finish.
4. Material for Damp Locations: Cast aluminum with spring-loaded lift cover, and listed and labeled for use in wet and damp locations.

C. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with Type 3R, weather-resistant, die-cast aluminum thermoplastic with lockable cover.

D. Antimicrobial Cover Plates:
1. Contact surfaces treated with a coating that kills 99.9 percent of certain common bacteria within two hours when regularly and properly cleaned.
2. Tarnish resistant.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with NECA 1, including mounting heights listed in that standard, unless otherwise indicated.

B. Coordination with Other Trades:
1. Protect installed devices and their boxes. Do not place wall finish materials over device boxes, and do not cut holes for boxes with routers that are guided by riding against outside of boxes.
2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
4. Install wiring devices after all wall preparation, including painting, is complete.

C. Conductors:
1. Do not strip insulation from conductors until right before they are spliced or terminated on devices.
2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
3. The length of free conductors at outlets for devices shall comply with NFPA 70, Article 300, without pigtails.
4. Existing Conductors:
 a. Cut back and pigtail, or replace all damaged conductors.
 b. Straighten conductors that remain and remove corrosion and foreign matter.
 c. Pigtailing existing conductors is permitted, provided the outlet box is large enough.

D. Device Installation:
1. Replace devices that have been in temporary use during construction and that were installed before building finishing operations were complete.
2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
4. Connect devices to branch circuits using pigtails that are not less than 6 inches in length.
5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, two-thirds to three-fourths of the way around terminal screw.
6. Use a torque screwdriver when a torque is recommended or required by manufacturer.
7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtails for device connections.
8. Tighten unused terminal screws on the device.
9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device-mounting screws in yokes, allowing metal-to-metal contact.

E. Receptacle Orientation:
1. Install ground pin of vertically mounted receptacles down, and on horizontally mounted receptacles to the left.
2. Install hospital-grade receptacles in patient-care areas with the ground pin or neutral blade at the top.

F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.

G. Dimmers:
1. Install dimmers within terms of their listing.
2. Verify that dimmers used for fan-speed control are listed for that application.
3. Install unshared neutral conductors on line and load side of dimmers according to manufacturers’ device, listing conditions in the written instructions.

H. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multigang wall plates.

I. Adjust locations of floor service outlets and service poles to suit arrangement of partitions and furnishings.

3.2 GFCI RECEPTACLES
A. Install non-feed-through GFCI receptacles where protection of downstream receptacles is not required.

3.3 IDENTIFICATION
A. Comply with Section 26 05 53 "Identification for Electrical Systems."
B. Identify each receptacle with panelboard identification and circuit number. Use hot, stamped, or engraved machine printing with white-filled lettering on face of plate, and durable wire markers or tags inside outlet boxes.

C. Essential Electrical System: Mark receptacles supplied from the essential electrical system to allow easy identification using a self-adhesive label.

3.4 FIELD QUALITY CONTROL

A. Test Instruments: Use instruments that comply with UL 1436.

B. Test Instrument for Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.

C. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

1. In healthcare facilities, prepare reports that comply with NFPA 99.
2. Test Instruments: Use instruments that comply with UL 1436.
3. Test Instrument for Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.

D. Tests for Receptacles:

1. Line Voltage: Acceptable range is 105 to 132 V.
2. Percent Voltage Drop under 15-A Load: A value of 6 percent or higher is unacceptable.
3. Ground Impedance: Values of up to 2 ohms are acceptable.
4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
5. Using the test plug, verify that the device and its outlet box are securely mounted.
6. Tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault-current path, defective devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new ones, and retest as specified above.

E. Test straight-blade convenience outlets for the retention force of the grounding blade according to NFPA 99. Retention force shall be not less than 4 oz..

F. Wiring device will be considered defective if it does not pass tests and inspections.

G. Prepare test and inspection reports.

END OF SECTION
SECTION 26 28 16

ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Fusible switches.
 2. Nonfusible switches.
 3. Receptacle switches.
 4. Shunt trip switches.
 5. Molded-case circuit breakers (MCCBs).
 7. Enclosures.

1.3 DEFINITIONS
 A. NC: Normally closed.
 B. NO: Normally open.
 C. SPDT: Single pole, double throw.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include nameplate ratings, dimensioned elevations, sections, weights, and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.
 1. Enclosure types and details for types other than NEMA 250, Type 1.
 2. Current and voltage ratings.
 3. Short-circuit current ratings (interrupting and withstand, as appropriate).
 4. Include evidence of a nationally recognized testing laboratory (NRTL) listing for series rating of installed devices.
 5. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices, accessories, and auxiliary components.
6. Include time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device. Provide in PDF electronic format.

B. Shop Drawings: For enclosed switches and circuit breakers.
 1. Include plans, elevations, sections, details, and attachments to other work.
 2. Include wiring diagrams for power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified testing agency.

B. Seismic Qualification Data: Certificates, for enclosed switches and circuit breakers, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For enclosed switches and circuit breakers to include in emergency, operation, and maintenance manuals.
 1. In addition to items specified in Section 01 78 23 "Operation and Maintenance Data," include the following:
 a. Manufacturer's written instructions for testing and adjusting enclosed switches and circuit breakers.
 b. Time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device. Provide in PDF and calculation program in electronic format.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
 2. Fuse Pullers: Two for each size and type.
1.8 QUALITY ASSURANCE

A. Testing Agency Qualifications: Accredited by NETA.

1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

1.9 FIELD CONDITIONS

A. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:

1. Ambient Temperature: Not less than minus 22 deg F and not exceeding 104 deg F.
2. Altitude: Not exceeding 6600 feet.

1.10 WARRANTY

A. Manufacturer's Warranty: Manufacturer and Installer agree to repair or replace components that fail in materials or workmanship within specified warranty period.

1. Warranty Period: One year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Enclosed switches and circuit breakers shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

2.2 GENERAL REQUIREMENTS

A. Source Limitations: Obtain enclosed switches and circuit breakers, overcurrent protective devices, components, and accessories, within same product category, from single manufacturer.

B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.

D. Comply with NFPA 70.
2.3 FUSIBLE SWITCHES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. ABB Inc.
2. Eaton.
5. Square D; by Schneider Electric.

B. Type HD, Heavy Duty:

2. Three / six pole.
3. 600-V ac.
4. 200 A and smaller.
5. UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate indicated fuses.
6. Lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

C. Accessories:

1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
3. Isolated Ground Kit: Internally mounted; insulated, labeled for copper and aluminum neutral conductors.
4. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
5. Auxiliary Contact Kit: Two NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open. Contact rating - 24-V ac / 120-V ac 12-V dc / 24-V dc.
6. Hookstick Handle: Allows use of a hookstick to operate the handle.
7. Lugs: Mechanical type, suitable for number, size, and conductor material.
8. Service-Rated Switches: Labeled for use as service equipment.

2.4 NONFUSIBLE SWITCHES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Eaton.
2. General Electric Company.
4. Square D; by Schneider Electric.

B. Type GD, General Duty, Three Pole, Single Throw, 240-V ac, 600 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept two padlocks, and interlocked with cover in closed position.
C. Type HD, Heavy Duty, Three Pole, Single Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

D. Type HD, Heavy Duty, Six Pole, Single Throw, 600-V ac, 200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

E. Type HD, Heavy Duty, Three Pole, Double Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

F. Accessories:
 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 3. Isolated Ground Kit: Internally mounted; insulated, labeled for copper and aluminum neutral conductors.
 4. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
 5. Auxiliary Contact Kit: Two NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open. Contact rating - 24-V ac / 120-V ac / 12-V dc / 24-V dc.
 6. Hookstick Handle: Allows use of a hookstick to operate the handle.
 7. Lugs: Mechanical type, suitable for number, size, and conductor material.
 8. Service-Rated Switches: Labeled for use as service equipment.

2.5 RECEPTACLE SWITCHES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Eaton.
 2. General Electric Company.
 4. Square D; by Schneider Electric.

B. Type HD, Heavy-Duty, Three Pole, Single-Throw Fusible Switch: 600-V ac, 30 / 60 / 100 A; UL 98 and NEMA KS 1; horsepower rated, with clips or bolt pads to accommodate required fuses; lockable handle with capability to accept three padlocks; interlocked with cover in closed position.

C. Type HD, Heavy-Duty, Three Pole, Single-Throw Nonfusible Switch: 600-V ac, 30 / 60 / 100 A; UL 98 and NEMA KS 1; horsepower rated, lockable handle with capability to accept three padlocks; interlocked with cover in closed position.

D. Interlocking Linkage: Provided between the receptacle and switch mechanism to prevent inserting or removing plug while switch is in the on position, inserting any plug other than specified, and turning switch on if an incorrect plug is inserted or correct plug has not been fully inserted into the receptacle.
E. Receptacle: Polarized, three-phase, four-wire receptacle (fourth wire connected to enclosure ground lug).

F. Accessories:

1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
3. Isolated Ground Kit: Internally mounted; insulated, labeled for copper and aluminum neutral conductors.
4. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
5. Auxiliary Contact Kit: Two NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open. Contact rating - 24-V ac / 120-V ac / 12-V dc / 24-V dc.
6. Hookstick Handle: Allows use of a hookstick to operate the handle.
7. Lugs: Mechanical type, suitable for number, size, and conductor material.
8. Service-Rated Switches: Labeled for use as service equipment.

2.6 SHUNT TRIP SWITCHES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Bussmann, an Eaton business.
2. Littelfuse, Inc.
3. Mersen USA.

B. General Requirements: Comply with ASME A17.1, UL 50, and UL 98, with Class J fuse block and 200-kA interrupting and short-circuit current rating.

C. Type HD, Heavy-Duty, Three Pole, Single-Throw Fusible Switch: 600-V ac, 30 / 60 / 100 A; UL 98 and NEMA KS 1; integral shunt trip mechanism; horsepower rated, with clips or bolt pads to accommodate required fuses; lockable handle with capability to accept three padlocks; interlocked with cover in closed position.

D. Type HD, Heavy-Duty, Three Pole, Single-Throw Nonfusible Switch: 600-V ac, 30 / 60 / 100 A; UL 98 and NEMA KS 1; integral shunt trip mechanism; horsepower rated, lockable handle with capability to accept three padlocks; interlocked with cover in closed position.

E. Control Circuit: 120-V ac; obtained from integral control power transformer, with primary and secondary fuses, with a control power transformer source of enough capacity to operate shunt trip, pilot, indicating and control devices.

F. Accessories:

1. Oiltight key switch for key-to-test function.
2. Oiltight red / green ON pilot light.
3. Isolated neutral lug; 200 percent rating.
4. Mechanically interlocked auxiliary contacts that change state when switch is opened and closed.
5. Form C alarm contacts that change state when switch is tripped.
6. Three-pole, double-throw, fire-safety and alarm relay; 120-V ac / 24-V dc coil voltage.
7. Three-pole, double-throw, fire-alarm voltage monitoring relay complying with NFPA 72.
8. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
9. Isolated Ground Kit: Internally mounted; insulated, labeled for copper and aluminum neutral conductors.
10. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
11. Auxiliary Contact Kit: Two NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open. Contact rating - 24-V ac / 120-V ac / 12-V dc / 24-V dc.
12. Hookstick Handle: Allows use of a hookstick to operate the handle.
13. Lugs: Mechanical type, suitable for number, size, and conductor material.

2.7 MOLDED-CASE CIRCUIT BREAKERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Eaton.
2. General Electric Company.
3. NOARK Electric North America.
5. Square D; by Schneider Electric.

B. Circuit breakers shall be constructed using glass-reinforced insulating material. Current carrying components shall be completely isolated from the handle and the accessory mounting area.

C. Circuit breakers shall have a toggle operating mechanism with common tripping of all poles, which provides quick-make, quick-break contact action. The circuit-breaker handle shall be over center, be trip free, and reside in a tripped position between on and off to provide local trip indication. Circuit-breaker escutcheon shall be clearly marked on and off in addition to providing international I/O markings. Equip circuit breaker with a push-to-trip button, located on the face of the circuit breaker to mechanically operate the circuit-breaker tripping mechanism for maintenance and testing purposes.

D. The maximum ampere rating and UL, IEC, or other certification standards with applicable voltage systems and corresponding interrupting ratings shall be clearly marked on face of circuit breaker. Circuit breakers shall be 100 percent rated or series rated. Circuit breaker/circuit breaker Fuse/circuit breaker combinations for series connected interrupting ratings shall be listed by UL as recognized component combinations. Any series rated combination used shall be marked on the end-use equipment along with the statement "Caution - Series Rated System. With Amps Available. Identical Replacement Component Required."

E. MCCBs shall be equipped with a device for locking in the isolated position.

F. Lugs shall be suitable for 140 deg F rated wire on 125-A circuit breakers and below 194 deg F rated wire, sized according to the 167 deg F temperature rating in NFPA 70.
G. Standard: Comply with UL 489 with interrupting capacity to comply with available fault currents.

I. Adjustable, Instantaneous-Trip Circuit Breakers: Magnetic trip element with front-mounted, field-adjustable trip setting.

J. Electronic Trip Circuit Breakers: Field-replaceable rating plug, rms sensing, with the following field-adjustable settings:
 1. Instantaneous trip.
 2. Long- and short-time pickup levels.
 3. Long- and short-time time adjustments.
 4. Ground-fault pickup level, time delay, and I-squared t response.

K. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller, and let-through ratings less than NEMA FU 1, RK-5.

L. Integrally Fused Circuit Breakers: Thermal-magnetic trip element with integral limiter-style fuse listed for use with circuit breaker and trip activation on fuse opening or on opening of fuse compartment door.

M. Ground-Fault Circuit-Interrupter (GFCI) Circuit Breakers: Single- and two-pole configurations with Class A ground-fault protection (6-mA trip).

N. Ground-Fault Equipment-Protection (GFEP) Circuit Breakers: With Class B ground-fault protection (30-mA trip).

O. Features and Accessories:
 1. Standard frame sizes, trip ratings, and number of poles.
 2. Lugs: Mechanical type, suitable for number, size, trip ratings, and conductor material.
 3. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge lighting circuits.
 4. Ground-Fault Protection: Comply with UL 1053; integrally mounted, self-powered type with mechanical ground-fault indicator; relay with adjustable pickup and time-delay settings, push-to-test feature, internal memory, and shunt trip unit; and three-phase, zero-sequence current transformer/sensor.
 5. Communication Capability: Circuit-breaker-mounted Integral communication module with functions and features compatible with power monitoring and control system, specified in Section 26 09 13 "Electrical Power Monitoring and Control."
 6. Shunt Trip: Trip coil energized from separate circuit, with coil-clearing contact.
 7. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional time delay.
 8. Auxiliary Contacts: One SPDT switch with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts, "b" contacts operate in reverse of circuit-breaker contacts.
 9. Alarm Switch: One NO / NC contact that operates only when circuit breaker has tripped.
10. Key Interlock Kit: Externally mounted to prohibit circuit-breaker operation; key shall be removable only when circuit breaker is in off position.
11. Zone-Selective Interlocking: Integral with electronic ground-fault trip unit; for interlocking ground-fault protection function.
12. Electrical Operator: Provide remote control for on, off, and reset operations.

2.8 MOLDED-CASE SWITCHES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Eaton.
2. General Electric Company.
3. NOARK Electric North America.
5. Square D; by Schneider Electric.

B. Description: MCCB with fixed, high-set instantaneous trip only, and short-circuit withstand rating equal to equivalent breaker frame size interrupting rating.

C. Standard: Comply with UL 489 with interrupting capacity to comply with available fault currents.

D. Features and Accessories:

1. Standard frame sizes and number of poles.
2. Lugs:
 a. Mechanical type, suitable for number, size, trip ratings, and conductor material.
 b. Lugs shall be suitable for 194 deg F rated wire, sized according to the 167 deg F temperature rating in NFPA 70.
3. Ground-Fault Protection: Comply with UL 1053; remote-mounted and powered type with mechanical ground-fault indicator; relay with adjustable pickup and time-delay settings, push-to-test feature, internal memory, and shunt trip unit; and three-phase, zero-sequence current transformer/sensor.
4. Shunt Trip: Trip coil energized from separate circuit, with coil-clearing contact.
5. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional time delay.
6. Auxiliary Contacts: One SPDT switch with "a" and "b" contacts; "a" contacts mimic switch contacts, "b" contacts operate in reverse of switch contacts.
7. Alarm Switch: One NO / NC contact that operates only when switch has tripped.
8. Key Interlock Kit: Externally mounted to prohibit switch operation; key shall be removable only when switch is in off position.
9. Zone-Selective Interlocking: Integral with ground-fault shunt trip unit; for interlocking ground-fault protection function.
10. Electrical Operator: Provide remote control for on, off, and reset operations.
11. Accessory Control Power Voltage: Integrrally mounted; 24-V ac / 120-V ac / 12-V dc / 24-V dc.
2.9 ENCLOSURES

A. Enclosed Switches and Circuit Breakers: UL 489, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.

B. Enclosure Finish: The enclosure shall be finished with gray baked enamel paint, electrodeposited on cleaned, phosphatized galvannealed steel (NEMA 250 Types 3R, 12).

C. Conduit Entry: NEMA 250 Types 4, 4X, and 12 enclosures shall contain no knockouts. NEMA 250 Types 7 and 9 enclosures shall be provided with threaded conduit openings in both endwalls.

D. Operating Mechanism: The circuit-breaker operating handle shall be externally operable with the operating mechanism being an integral part of the box, not the cover directly operable through the front cover of the enclosure (NEMA 250 Type 1) directly operable through the dead front trim of the enclosure (NEMA 250 Type 3R) / externally operable with the operating mechanism being an integral part of the cover (NEMA 250 Types 7, 9). The cover interlock mechanism shall have an externally operated override. The override shall not permanently disable the interlock mechanism, which shall return to the locked position once the override is released. The tool used to override the cover interlock mechanism shall not be required to enter the enclosure in order to override the interlock.

E. Enclosures designated as NEMA 250 Type 4, 4X stainless steel, 12, or 12K shall have a dual cover interlock mechanism to prevent unintentional opening of the enclosure cover when the circuit breaker is ON and to prevent turning the circuit breaker ON when the enclosure cover is open.

F. NEMA 250 Type 7/9 enclosures shall be furnished with a breather and drain kit to allow their use in outdoor and wet location applications.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

1. Commencement of work shall indicate Installer's acceptance of the areas and conditions as satisfactory.

3.2 PREPARATION

A. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
1. Notify Construction Manager / Owner no fewer than seven days in advance of proposed interruption of electric service.
2. Indicate method of providing temporary electric service.
3. Do not proceed with interruption of electric service without Construction Manager's / Owner's written permission.
4. Comply with NFPA 70E.

3.3 ENCLOSURE ENVIRONMENTAL RATING APPLICATIONS

A. Enclosed Switches and Circuit Breakers: Provide enclosures at installed locations with the following environmental ratings.

1. Indoor, Dry and Clean Locations: NEMA 250, Type 12.
2. Outdoor Locations: NEMA 250, Type 3R / Type 4X.
4. Other Wet or Damp, Indoor Locations: NEMA 250, Type 4.
5. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.
6. Hazardous Areas Indicated on Drawings: NEMA 250, Type 7 / Type 9 with cover attached by Type 316 stainless steel bolts.

3.4 INSTALLATION

A. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

B. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.

C. Comply with mounting and anchoring requirements specified in Section 26 05 48.16 "Seismic Controls for Electrical Systems."

D. Temporary Lifting Provisions: Remove temporary lifting of eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.

E. Install fuses in fusible devices.

F. Comply with NFPA 70 and NECA 1.

3.5 IDENTIFICATION

A. Comply with requirements in Section 26 05 53 "Identification for Electrical Systems."

1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
2. Label each enclosure with engraved metal or laminated-plastic nameplate.
3.6 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.

B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

D. Perform tests and inspections with the assistance of a factory-authorized service representative.

E. Tests and Inspections for Switches:

1. Visual and Mechanical Inspection:

 a. Inspect physical and mechanical condition.
 b. Inspect anchorage, alignment, grounding, and clearances.
 c. Verify that the unit is clean.
 d. Verify blade alignment, blade penetration, travel stops, and mechanical operation.
 e. Verify that fuse sizes and types match the Specifications and Drawings.
 f. Verify that each fuse has adequate mechanical support and contact integrity.
 g. Inspect bolted electrical connections for high resistance using one of the two following methods:

 1) Use a low-resistance ohmmeter.

 a) Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from those of similar bolted connections by more than 50 percent of the lowest value.

 2) Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data or NETA ATS Table 100.12.

 a) Bolt-torque levels shall be in accordance with manufacturer's published data. In the absence of manufacturer's published data, use NETA ATS Table 100.12.

 h. Verify that operation and sequencing of interlocking systems is as described in the Specifications and shown on the Drawings.
 i. Verify correct phase barrier installation.
 j. Verify lubrication of moving current-carrying parts and moving and sliding surfaces.

2. Electrical Tests:

 a. Perform resistance measurements through bolted connections with a low-resistance ohmmeter. Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.
b. Measure contact resistance across each switchblade fuseholder. Drop values shall not exceed the high level of the manufacturer's published data. If manufacturer's published data are not available, investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.

c. Perform insulation-resistance tests for one minute on each pole, phase-to-phase and phase-to-ground with switch closed, and across each open pole. Apply voltage in accordance with manufacturer's published data. In the absence of manufacturer's published data, use Table 100.1 from the NETA ATS. Investigate values of insulation resistance less than those published in Table 100.1 or as recommended in manufacturer's published data.

d. Measure fuse resistance. Investigate fuse-resistance values that deviate from each other by more than 15 percent.

e. Perform ground fault test according to NETA ATS 7.14 "Ground Fault Protection Systems, Low-Voltage."

F. Tests and Inspections for Molded Case Circuit Breakers:

1. Visual and Mechanical Inspection:

a. Verify that equipment nameplate data are as described in the Specifications and shown on the Drawings.

b. Inspect physical and mechanical condition.

c. Inspect anchorage, alignment, grounding, and clearances.

d. Verify that the unit is clean.

e. Operate the circuit breaker to ensure smooth operation.

f. Inspect bolted electrical connections for high resistance using one of the two following methods:

1) Use a low-resistance ohmmeter.

 a) Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from those of similar bolted connections by more than 50 percent of the lowest value.

2) Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data or NETA ATS Table 100.12.

 a) Bolt-torque levels shall be in accordance with manufacturer's published data. In the absence of manufacturer's published data, use NETA ATS Table 100.12.

 g. Inspect operating mechanism, contacts, and chutes in unsealed units.

 h. Perform adjustments for final protective device settings in accordance with the coordination study.

2. Electrical Tests:

a. Perform resistance measurements through bolted connections with a low-resistance ohmmeter. Compare bolted connection resistance values to values of similar
connections. Investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.

b. Perform insulation-resistance tests for one minute on each pole, phase-to-phase and phase-to-ground with circuit breaker closed, and across each open pole. Apply voltage in accordance with manufacturer's published data. In the absence of manufacturer's published data, use Table 100.1 from the NETA ATS. Investigate values of insulation resistance less than those published in Table 100.1 or as recommended in manufacturer's published data.

c. Perform a contact/pole resistance test. Drop values shall not exceed the high level of the manufacturer's published data. If manufacturer's published data are not available, investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.

d. Perform insulation resistance tests on all control wiring with respect to ground. Applied potential shall be 500-V dc for 300-V rated cable and 1000-V dc for 600-V rated cable. Test duration shall be one minute. For units with solid state components, follow manufacturer's recommendation. Insulation resistance values shall be no less than two megohms.

e. Determine the following by primary current injection:

1) Long-time pickup and delay. Pickup values shall be as specified. Trip characteristics shall not exceed manufacturer's published time-current characteristic tolerance band, including adjustment factors.

2) Short-time pickup and delay. Short-time pickup values shall be as specified. Trip characteristics shall not exceed manufacturer's published time-current characteristic tolerance band, including adjustment factors.

3) Ground-fault pickup and time delay. Ground-fault pickup values shall be as specified. Trip characteristics shall not exceed manufacturer's published time-current characteristic tolerance band, including adjustment factors.

4) Instantaneous pickup. Instantaneous pickup values shall be as specified and within manufacturer's published tolerances.

f. Test functionality of the trip unit by means of primary current injection. Pickup values and trip characteristics shall be as specified and within manufacturer's published tolerances.

g. Perform minimum pickup voltage tests on shunt trip and close coils in accordance with manufacturer's published data. Minimum pickup voltage of the shunt trip and close coils shall be as indicated by manufacturer.

h. Verify correct operation of auxiliary features such as trip and pickup indicators; zone interlocking; electrical close and trip operation; trip-free, anti-pump function; and trip unit battery condition. Reset all trip logs and indicators. Investigate units that do not function as designed.

i. Verify operation of charging mechanism. Investigate units that do not function as designed.

3. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

4. Perform the following infrared scan tests and inspections and prepare reports:

a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each enclosed switch and
circuit breaker. Remove front panels so joints and connections are accessible to portable scanner.

b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each enclosed switch and circuit breaker 11 months after date of Substantial Completion.

c. Instruments and Equipment: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.

5. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.

G. Enclosed switches and circuit breakers will be considered defective if they do not pass tests and inspections.

H. Prepare test and inspection reports.

1. Test procedures used.
2. Include identification of each enclosed switch and circuit breaker tested and describe test results.
3. List deficiencies detected, remedial action taken, and observations after remedial action.

3.7 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

B. Set field-adjustable circuit-breaker trip ranges as specified in Section 26 05 73.16 "Coordination Studies."

END OF SECTION
SECTION 26 29 13.03
MANUAL AND MAGNETIC MOTOR CONTROLLERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

2. Enclosed full-voltage magnetic motor controllers.
3. Combination full-voltage magnetic motor controllers.
4. Multispeed magnetic motor controllers.
5. Enclosures.
6. Accessories.
7. Identification.

1.3 DEFINITIONS

A. CPT: Control power transformer.
B. MCCB: Molded-case circuit breaker.
C. MCP: Motor circuit protector.
D. NC: Normally closed.
E. OCPD: Overcurrent protective device.
F. SCCR: Short-circuit current rating.
G. SCPD: Short-circuit protective device.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.
1. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
B. Shop Drawings: For each type of magnetic controller.

1. Include plans, elevations, sections, and mounting details.
2. Indicate dimensions, weights, required clearances, and location and size of each field connection.
3. Wire Termination Diagrams and Schedules: Include diagrams for signal and control wiring. Identify terminals and wiring designations and color-codes to facilitate installation, operation, and maintenance. Indicate recommended types, wire sizes, and circuiting arrangements for field-installed wiring, and show circuit protection features. Differentiate between manufacturer-installed and field-installed wiring.
4. Include features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.

C. Product Schedule: List the following for each enclosed controller:

1. Each installed magnetic controller type.
2. NRTL listing.
3. Factory-installed accessories.
5. SCCR of integrated unit.
6. For each combination magnetic controller include features, characteristics, ratings, and factory setting of the SCPD and OCPD.

 a. Listing document proving Type 2 coordination.

7. For each series-rated combination state the listed integrated short-circuit current (withstand) rating of SCPD and OCPDs by an NRTL acceptable to authorities having jurisdiction.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For testing agency.

B. Seismic Qualification Data: Certificates, for magnetic controllers, from manufacturer.

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For magnetic controllers to include in operation and maintenance manuals.
1. In addition to items specified in Section 01 77 00 "Closeout Procedures," include the following:
 a. Routine maintenance requirements for magnetic controllers and installed components.
 b. Manufacturer's written instructions for testing and adjusting circuit breaker and MCP trip settings.
 c. Manufacturer's written instructions for setting field-adjustable overload relays.
 d. Load-Current and Overload-Relay Heater List: Compile after motors have been installed, and arrange to demonstrate that selection of heaters suits actual motor nameplate full-load currents.
 e. Load-Current and List of Settings of Adjustable Overload Relays: Compile after motors have been installed, and arrange to demonstrate that switch settings for motor-running overload protection suit actual motors to be protected.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Fuses for Fused Switches: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
2. Control Power Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than two of each size and type.
3. Indicating Lights: Two of each type and color installed.
4. Auxiliary Contacts: Furnish one spare(s) for each size and type of magnetic controller installed.
5. Power Contacts: Furnish three spares for each size and type of magnetic contactor installed.

1.8 QUALITY ASSURANCE

A. Testing Agency Qualifications: Accredited by NETA.

1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Store controllers indoors in clean, dry space with uniform temperature to prevent condensation. Protect controllers from exposure to dirt, fumes, water, corrosive substances, and physical damage.

B. If stored in areas subject to weather, cover controllers to protect them from weather, dirt, dust, corrosive substances, and physical damage. Remove loose packing and flammable materials from inside controllers; connect factory-installed space heaters to temporary electrical service.
1.10 FIELD CONDITIONS

A. Ambient Environment Ratings: Rate equipment for continuous operation under the following conditions unless otherwise indicated:

1. Ambient Temperature: Not less than 23 °F and not exceeding 104 °F.
3. The effect of solar radiation is not significant.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.

B. UL Compliance: Fabricate and label magnetic motor controllers to comply with UL 508 and UL 60947-4-1.

C. NEMA Compliance: Fabricate motor controllers to comply with ICS 2.

D. Seismic Performance: Magnetic controllers shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

1. The term "withstand" means "the controller will remain in place without separation of any parts when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

2. Component Importance Factor: 1.5.

2.2 MANUAL MOTOR CONTROLLERS

A. Motor-Starting Switches (MSS): "Quick-make, quick-break" toggle or push-button action; marked to show whether unit is off or on.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Eaton.
 b. General Electric Company.
 d. Square D; by Schneider Electric.

2. Standard: Comply with NEMA ICS 2, general purpose, Class A.

3. Configuration: Nonreversing, Two speed.

4. Surface mounting or Motor Control Center (MCC) as indicated.

5. Red (on) pilot light.

B. Fractional Horsepower Manual Controllers (FHPMC): "Quick-make, quick-break" toggle or push-button action; marked to show whether unit is off, on, or tripped.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Eaton.
 b. General Electric Company.
 d. Square D; by Schneider Electric.

2. Configuration: Nonreversing.
3. Overload Relays: Inverse-time-current characteristics; NEMA ICS 2, Class 10 tripping characteristics; heaters matched to nameplate full-load current of actual protected motor; external reset push button; bimetallic type.
4. Overload Relays: NEMA ICS 2, bimetallic class as schedule on Drawings.

2.3 ENCLOSED FULL-VOLTAGE MAGNETIC MOTOR CONTROLLERS

A. Description: Across-the-line start, electrically held, for nominal system voltage of 600-V ac and less.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Eaton.
2. General Electric Company.
4. Square D; by Schneider Electric.

C. Standard: Comply with NEMA ICS 2, general purpose, Class A.

D. Configuration: Nonreversing.
E. Contactor Coils: Pressure-encapsulated type with coil transient suppressors when indicated.

1. Operating Voltage: Manufacturer's standard, unless indicated.

F. Control Power:

1. For on-board control power, obtain from line circuit or from integral CPT. The CPT shall have capacity to operate integral devices and remotely located pilot, indicating, and control devices.

 a. Spare CPT Capacity: 50 VA.

G. Overload Relays:

1. Thermal Overload Relays:

 a. Inverse-time-current characteristic.
 b. Class 20 tripping characteristic.
 c. Heaters in each phase shall be matched to nameplate full-load current of actual protected motor and with appropriate adjustment for duty cycle.
 d. Ambient compensated.
 e. Automatic resetting.

2. Solid-State Overload Relay:

 a. Switch or dial selectable for motor-running overload protection.
 b. Sensors in each phase.
 c. Class 10/20 selectable tripping characteristic selected to protect motor against voltage and current unbalance and single phasing.
 d. Class II ground-fault protection shall comply with UL 1053 to interrupt low-level ground faults. The ground-fault detection system shall include circuitry that will prevent the motor controller from tripping when the fault current exceeds the interrupting capacity of the controller. Equip with start and run delays to prevent nuisance trip on starting, and a trip indicator.

H. Digital communication module, using RS-485 Modbus, RTU protocol, 4-wire connection to host devices with a compatible port to transmit the following to the LAN:

1. Instantaneous rms current each phase, and 3-phase average.
2. Voltage: L-L for each phase, L-L 3-phase average, L-N each phase and L-N 3-phase average - rms.
3. Active Energy (kWh): 3-phase total.
4. Power Factor: Each phase and 3-phase total.

2.4 COMBINATION FULL-VOLTAGE MAGNETIC MOTOR CONTROLLER

A. Description: Factory-assembled, combination full-voltage magnetic motor controller consisting of the controller described in this article, indicated disconnecting means, SCPD and OCPD, in a single enclosure.
B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Eaton.
2. General Electric Company.
4. Square D; by Schneider Electric.

C. Standard: Comply with NEMA ICS 2, general purpose, Class A.

D. Configuration: Nonreversing.

E. Contactor Coils: Pressure-encapsulated type with coil transient suppressors when indicated.

1. Operating Voltage: Manufacturer's standard, unless indicated.

F. Control Power:

1. For on-board control power, obtain from line circuit or from integral CPT. The CPT shall have capacity to operate integral devices and remotely located pilot, indicating, and control devices.

 a. Spare CPT Capacity as Indicated on Drawings: 50 VA.

G. Overload Relays:

1. Thermal Overload Relays:

 a. Inverse-time-current characteristic.
 b. Class 20 tripping characteristic.
 c. Heaters in each phase shall be matched to nameplate full-load current of actual protected motor and with appropriate adjustment for duty cycle.
 d. Ambient compensated.
 e. Automatic resetting.

2. Solid-State Overload Relay:

 a. Switch or dial selectable for motor-running overload protection.
 b. Sensors in each phase.
 c. Class 10/20 selectable tripping characteristic selected to protect motor against voltage and current unbalance and single phasing.

H. Class II ground-fault protection shall comply with UL 1053 to interrupt low-level ground faults. The ground-fault detection system shall include circuitry that will prevent the motor controller from tripping when the fault current exceeds the interrupting capacity of the controller. Equip with start and run delays to prevent nuisance trip on starting, and a trip indicator.

I. Digital communication module, using RS-485 Modbus, RTU protocol, 4-wire connection to host devices with a compatible port to transmit the following to the LAN:

1. Instantaneous rms current each phase, and 3-phase average.
2. Voltage: L-L for each phase, L-L 3-phase average, L-N each phase and L-N 3-phase average - rms.
3. Active Energy (kWh): 3-phase total.
4. Power Factor: Each phase and 3-phase total.

J. Fusible Disconnecting Means:
1. NEMA KS 1, heavy-duty, horsepower-rated, fusible switch with clips or bolt pads to accommodate indicated fuses.
2. Lockable Handle: Accepts three padlocks and interlocks with cover in closed position.

K. Nonfusable Disconnecting Means:
1. NEMA KS 1, heavy-duty, horsepower-rated, nonfusible switch.
2. Lockable Handle: Accepts three padlocks and interlocks with cover in closed position.

L. MCP Disconnecting Means:
1. UL 489 and NEMA AB 3, with interrupting capacity to comply with available fault currents, instantaneous-only circuit breaker with front-mounted, field-adjustable, short-circuit trip coordinated with motor locked-rotor amperes.
2. Lockable Handle: Accepts three padlocks and interlocks with cover in closed position.

M. MCCB Disconnecting Means:
1. UL 489 and NEMA AB 3, with interrupting capacity to comply with available fault currents; thermal-magnetic MCCB, with inverse-time-current element for low-level overloads and instantaneous magnetic trip element for short circuits.
2. Front-mounted, adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
3. Lockable Handle: Accepts three padlocks and interlocks with cover in closed position.

2.5 MULTISPEED MAGNETIC CONTROLLERS

A. Description: Two speed, full voltage, across the line, electrically held.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Eaton.
2. General Electric Company.
4. Square D; by Schneider Electric.

C. Standard: Comply with NEMA ICS 2, general purpose, Class A.
2. Contactor Coils: Pressure-encapsulated type with coil transient suppressors.
 a. Operating Voltage: Manufacturer's standard, unless indicated.
3. Power Contacts: Totally enclosed, double break, silver-cadmium oxide; assembled to allow inspection and replacement without disturbing line or load wiring.

4. Control Power: 24 / 120-V ac; obtained from integral CPT, with primary and secondary fuses, with CPT of sufficient capacity to operate integral devices and remotely located pilot, indicating, and control devices.

 a. Spare CPT Capacity: 50 VA.

5. Compelling relays shall ensure that motor will start only at low speed.

6. Accelerating timer relays shall ensure properly timed acceleration through speeds lower than that selected.

7. Decelerating timer relays shall ensure automatically timed deceleration through each speed.

8. Antiplugging timer relays shall ensure a time delay when transferring from FORWARD to REVERSE and back.

D. Overload Relays:

1. Thermal Overload Relays: Bimetallic type.

 a. Inverse-time-current characteristic.
 b. Class 20 tripping characteristic.
 c. Heaters in each phase matched to nameplate full-load current of actual protected motor and with appropriate adjustment for duty cycle.
 d. Ambient compensated.
 e. Automatic resetting.

2. Solid-State Overload Relay:

 a. Switch or dial selectable for motor-running overload protection.
 b. Sensors in each phase.
 c. Class 10/20 selectable tripping characteristic selected to protect motor against voltage and current unbalance and single phasing.

E. Class II ground-fault protection shall comply with UL 1053 to interrupt low-level ground faults. The ground-fault detection system shall include circuitry that will prevent the motor controller from tripping when the fault current exceeds the interrupting capacity of the controller. Equip with start and run delays to prevent nuisance trip on starting, and a trip indicator.

F. Digital communication module, using RS-485 Modbus, RTU protocol, 4-wire connection to host devices with a compatible port to transmit the following to the LAN:

 1. Instantaneous rms current each phase, and 3-phase average.
 2. Voltage: L-L for each phase, L-L 3-phase average, L-N each phase and L-N 3-phase average - rms.
 3. Active Energy (kWh): 3-phase total.
 4. Power Factor: Each phase and 3-phase total.
2.6 ENCLOSURES

A. Comply with NEMA 250, type 12, complying with environmental conditions at installed location.

B. The construction of the enclosures shall comply with NEMA ICS 6.

C. Controllers in hazardous (classified) locations shall comply with UL 1203.

2.7 ACCESSORIES

A. General Requirements for Control Circuit and Pilot Devices: NEMA ICS 5; factory installed in controller enclosure cover unless otherwise indicated.

1. Push Buttons, Pilot Lights, and Selector Switches: Standard-duty, except as needed to match enclosure type. Heavy-duty or oil-tight where indicated in the controller schedule.
 a. Push Buttons: As indicated in the controller schedule.
 b. Pilot Lights: As indicated in the controller schedule.

2. Elapsed Time Meters: Heavy duty with digital readout in hours; resettable.

3. Meters: Panel type, 2-1/2-inch minimum size with 90- or 120-degree scale and plus or minus two percent accuracy. Where indicated, provide selector switches with an off position.

B. Motor protection relays shall be with solid-state sensing circuit and isolated output contacts for hardwired connections.

1. Phase-failure.
2. Phase-reversal, with bicolor LED to indicate normal and fault conditions. Automatic reset when phase reversal is corrected.
3. Under/overvoltage, operate when the circuit voltage reaches a preset value, and drop out when the operating voltage drops to a level below the preset value. Include adjustable time-delay setting.

C. Breather assemblies, to maintain interior pressure and release condensation in Type 4 enclosures installed outdoors or in unconditioned interior spaces subject to humidity and temperature swings.

D. Space heaters, with NC auxiliary contacts, to mitigate condensation in Type 12 enclosures installed outdoors or in unconditioned interior spaces subject to humidity and temperature swings.

E. Sun shields installed on fronts, sides, and tops of enclosures installed outdoors and subject to direct and extended sun exposure.
2.8 IDENTIFICATION

A. Controller Nameplates: Baked enamel signs / Metal backed butyrate signs, as described in Section 26 05 53 "Identification for Electrical Systems," for each compartment, mounted with corrosion-resistant screws.

B. Arc-Flash Warning Labels:

1. Comply with requirements in Section 26 05 75 "Protective Device Arc-Flash Hazard Study." Produce a 3.5-by-5-inch self-adhesive equipment label for each work location included in the analysis.

2. Comply with requirements in Section 26 05 53 "Identification for Electrical Systems." Produce a 3.5-by-5-inch self-adhesive equipment label for each work location included in the analysis. Labels shall be machine printed, with no field-applied markings.

a. The label shall have an orange header with the wording, "WARNING, ARC-FLASH HAZARD," and shall include the following information taken directly from the arc-flash hazard analysis:

1) Location designation.
2) Nominal voltage.
3) Flash protection boundary.
4) Hazard risk category.
5) Incident energy.
6) Working distance.
7) Engineering report number, revision number, and issue date.

b. Labels shall be machine printed, with no field-applied markings.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and space conditions for compliance with requirements for motor controllers, their relationship with the motors, and other conditions affecting performance of the Work.

3.2 INSTALLATION

A. Comply with NECA 1.

B. Wall-Mounted Controllers: Install magnetic controllers on walls with tops at uniform height indicated, and by bolting units to wall or mounting on lightweight structural-steel channels bolted to wall. For controllers not at walls, provide freestanding racks complying with Section 26 05 29 "Hangers and Supports for Electrical Systems" unless otherwise indicated.

C. Floor-Mounted Controllers: Install controllers on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in Section 03 30 00 "Cast-in-Place Concrete."
D. Comply with requirements for seismic control devices specified in Section 26 05 48.16 "Seismic Controls for Electrical Systems."

E. Maintain minimum clearances and workspace at equipment according to manufacturer's written instructions and NFPA 70.

F. Wiring within Enclosures: Bundle, lace, and train conductors to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Install lacing bars and distribution spools.

G. Setting of Overload Relays: Select and set overloads on the basis of full-load current rating as shown on motor nameplate. Adjust setting value for special motors as required by NFPA 70 for motors that are high-torque, high-efficiency, and so on.

3.3 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."

3.4 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.

B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

D. Perform tests and inspections with the assistance of a factory-authorized service representative.

E. Tests and Inspections:

2. Visual and Mechanical Inspection:

 a. Compare equipment nameplate data with drawings and specifications.
 b. Inspect physical and mechanical condition.
 c. Inspect anchorage, alignment, and grounding.
 d. Verify the unit is clean.
 e. Inspect contactors:
 1) Verify mechanical operation.
 2) Verify contact gap, wipe, alignment, and pressure are according to manufacturer's published data.
 f. Motor-Running Protection:
 1) Verify overload element rating is correct for its application.
 2) If motor-running protection is provided by fuses, verify correct fuse rating.
g. Inspect bolted electrical connections for high resistance using one of the two following methods:

1) Use a low-resistance ohmmeter. Compare bolted connection resistance values with values of similar connections. Investigate values that deviate from those of similar bolted connections by more than 50 percent of the lowest value.

2) Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method according to manufacturer's published data or NETA ATS Table 100.12. Bolt-torque levels shall be according to manufacturer's published data. In the absence of manufacturer's published data, use NETA ATS Table 100.12.

h. Verify appropriate lubrication on moving current-carrying parts and on moving and sliding surfaces.

3. Electrical Tests:

a. For the contactor and circuit breaker, perform insulation-resistance tests for one minute on each pole, phase-to-phase and phase-to-ground with switch closed, and across each open pole. Insulation-resistance values shall be according to manufacturer's published data or NETA ATS Table 100.1. In the absence of manufacturer's published data, use Table 100.5. Values of insulation resistance less than those of this table or manufacturer's recommendations shall be investigated and corrected.

b. Measure fuse resistance. Investigate fuse-resistance values that deviate from each other by more than 15 percent.

c. Test motor protection devices according to manufacturer's published data.

d. Test circuit breakers as follows:

1) Operate the circuit breaker to ensure smooth operation.

2) For adjustable circuit breakers, adjust protective device settings according to the coordination study. Comply with coordination study recommendations.

e. Perform operational tests by initiating control devices.

4. Infrared Inspection: Perform the survey during periods of maximum possible loading. Remove all necessary covers prior to the inspection.

b. After Substantial Completion, but not more than 60 days after Final Acceptance, perform infrared inspection of the electrical power connections of each motor controller.

c. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each motor controller 11 months after date of Substantial Completion.

d. Report of Infrared Inspection: Prepare a certified report that identifies the testing technician and equipment used, and lists the following results:

1) Description of equipment to be tested.

2) Discrepancies.
3) Temperature difference between the area of concern and the reference area.
4) Probable cause of temperature difference.
5) Areas inspected. Identify inaccessible and unobservable areas and equipment.
6) Load conditions at time of inspection.
7) Photographs and thermograms of the deficient area.
8) Recommended action.

e. Equipment: Inspect distribution systems with imaging equipment capable of detecting a minimum temperature difference of 1 deg C at 30 deg C. The equipment shall detect emitted radiation and convert detected radiation to a visual signal.
f. Act on inspection results and recommended action, and considering the recommendations of NETA ATS, Table 100.18. Correct possible and probable deficiencies as soon as Owner's operations permit. Retest until deficiencies are corrected.

F. Motor controller will be considered defective if it does not pass tests and inspections.

G. Prepare test and inspection reports.

3.5 SYSTEM FUNCTION TESTS

A. System function tests shall prove the correct interaction of sensing, processing, and action devices. Perform system function tests after field quality control tests have been completed and all components have passed specified tests.

1. Develop test parameters and perform tests for the purpose of evaluating performance of integral components and their functioning as a complete unit within design requirements and manufacturer's published data.
2. Verify the correct operation of interlock safety devices for fail-safe functions in addition to design function.
3. Verify the correct operation of sensing devices, alarms, and indicating devices.

B. Motor controller will be considered defective if it does not pass the system function tests and inspections.

C. Prepare test and inspection reports.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain switchgear.

END OF SECTION
SECTION 26 29 23

VARIABLE-FREQUENCY MOTOR CONTROLLERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes separately enclosed, preassembled, combination VFCs, rated 600 V and less, for speed control of three-phase, squirrel-cage induction motors.
 B. Related Requirements:
 1. Section 26 24 19 "Motor-Control Centers" for VFCs installed in motor-control centers.

1.3 DEFINITIONS
 A. CE: Conformite Europeene (European Compliance).
 B. CPT: Control power transformer.
 C. DDC: Direct digital control.
 D. EMI: Electromagnetic interference.
 E. LED: Light-emitting diode.
 F. NC: Normally closed.
 G. NO: Normally open.
 H. OCPD: Overcurrent protective device.
 I. PID: Control action, proportional plus integral plus derivative.
 J. RFI: Radio-frequency interference.
 K. VFC: Variable-frequency motor controller.
1.4 ACTION SUBMITTALS

A. Product Data: For each type and rating of VFC indicated.
 1. Include dimensions and finishes for VFCs.
 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Shop Drawings: For each VFC indicated.
 1. Include mounting and attachment details.
 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Include diagrams for power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Floor plans, drawn to scale, showing dimensioned layout on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Required working clearances and required area above and around VFCs.
 2. Show VFC layout and relationships between electrical components and adjacent structural and mechanical elements.
 3. Show support locations, type of support, and weight on each support.
 4. Indicate field measurements.

B. Qualification Data: For testing agency.

C. Product Certificates: For each VFC from manufacturer.

E. Source quality-control reports.

F. Field quality-control reports.

G. Sample Warranty: For special warranty.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For VFCs to include in emergency, operation, and maintenance manuals.
 1. In addition to items specified in Section 01 78 23 "Operation and Maintenance Data," include the following:
a. Manufacturer's written instructions for testing and adjusting thermal-magnetic circuit breaker and motor-circuit protector trip settings.
b. Manufacturer's written instructions for setting field-adjustable overload relays.
c. Manufacturer's written instructions for testing, adjusting, and reprogramming microprocessor control modules.
d. Manufacturer's written instructions for setting field-adjustable timers, controls, and status and alarm points.
e. Load-Current and Overload-Relay Heater List: Compile after motors have been installed, and arrange to demonstrate that selection of heaters suits actual motor nameplate, full-load currents.
f. Load-Current and List of Settings of Adjustable Overload Relays: Compile after motors have been installed, and arrange to demonstrate that switch settings for motor-running overload protection suit actual motors to be protected.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Power Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
2. Control Power Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than two of each size and type.
3. Indicating Lights: Two of each type and color installed.
4. Auxiliary Contacts: Furnish one spare(s) for each size and type of magnetic controller installed.
5. Power Contacts: Furnish three spares for each size and type of magnetic contactor installed.

1.8 QUALITY ASSURANCE

A. Testing Agency Qualifications: Accredited by NETA.

1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

1.9 DELIVERY, STORAGE, AND HANDLING

A. If stored in space that is not permanently enclosed and air conditioned, remove loose packing and flammable materials from inside controllers and connect factory-installed space heaters to temporary electrical service.

B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for VFCs, including clearances between VFCs, and adjacent surfaces and other items.
1.10 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace VFCs that fail in materials or workmanship within specified warranty period.

1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. ABB Low Voltage HVAC Drives.
2. Eaton.
4. Rockwell Automation, Inc.
5. Schneider Electric USA, Inc.

2.2 SYSTEM DESCRIPTION

A. General Requirements for VFCs:

1. VFCs and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2. Comply with NEMA ICS 7, NEMA ICS 61800-2, and UL 508A.

B. Application: Constant torque and variable torque.

C. VFC Description: Variable-frequency motor controller, consisting of power converter that employs pulse-width-modulated inverter, factory built and tested in an enclosure, with integral disconnecting means and overcurrent and overload protection; listed and labeled by an NRTL as a complete unit; arranged to provide self-protection, protection, and variable-speed control of one or more three-phase induction motors by adjusting output voltage and frequency.

1. Units suitable for operation of NEMA MG 1, Design A and Design B motors, as defined by NEMA MG 1, Section IV, Part 30, "Application Considerations for Constant Speed Motors Used on a Sinusoidal Bus with Harmonic Content and General Purpose Motors Used with Adjustable-Voltage or Adjustable-Frequency Controls or Both."
2. Units suitable for operation of inverter-duty motors as defined by NEMA MG 1, Section IV, Part 31, "Definite-Purpose Inverter-Fed Polyphase Motors."
3. Listed and labeled for integrated short-circuit current (withstand) rating by an NRTL acceptable to authorities having jurisdiction.

D. Design and Rating: Match load type, such as fans, blowers, and pumps; and type of connection used between motor and load such as direct or through a power-transmission connection.
E. Output Rating: Three phase; 10 to 66 Hz, with torque constant as speed changes; maximum voltage equals input voltage.

F. Unit Operating Requirements:
 1. Input AC Voltage Tolerance: Plus 10 and minus 15 percent of VFC input voltage rating.
 2. Input AC Voltage Unbalance: Not exceeding 3 percent.
 3. Input Frequency Tolerance: Plus or minus 3 percent of VFC frequency rating.
 4. Minimum Efficiency: 97 percent at 60 Hz, full load.
 5. Minimum Displacement Primary-Side Power Factor: 98 percent under any load or speed condition.
 7. Ambient Temperature Rating: Not less than 32 deg F and not exceeding 104 deg F.
 8. Humidity Rating: Less than 95 percent (noncondensing).
 11. Overload Capability: 1.1 times the base load current for 60 seconds; minimum of 1.8 times the base load current for three seconds.
 12. Starting Torque: Minimum 100 percent of rated torque from 3 to 60 Hz.
 13. Speed Regulation: Plus or minus 10 percent.
 14. Output Carrier Frequency: Selectable; 0.5 to 15 kHz.
 15. Stop Modes: Programmable; includes fast, free-wheel, and dc injection braking.

G. Inverter Logic: Microprocessor based, 32 bit, isolated from all power circuits.

H. Isolated Control Interface: Allows VFCs to follow remote-control signal over a minimum 40:1 speed range.

I. Internal Adjustability Capabilities:
 1. Minimum Speed: 5 to 25 percent of maximum rpm.
 2. Maximum Speed: 80 to 100 percent of maximum rpm.
 3. Acceleration: 0.1 to 999.9 seconds.
 4. Deceleration: 0.1 to 999.9 seconds.
 5. Current Limit: 30 to minimum of 150 percent of maximum rating.

J. Self-Protection and Reliability Features:
 1. Surge Suppression: Factory installed as an integral part of the VFC, complying with UL 1449 SPD, Type 1 or Type 2.
 3. Loss of Input Signal Protection: Selectable response strategy, including speed default to a percent of the most recent speed, a preset speed, or stop; with alarm.
 5. Inverter overcurrent trips.
 6. VFC and Motor-Overload/Overtemperature Protection: Microprocessor-based thermal protection system for monitoring VFCs and motor thermal characteristics, and for
providing VFC overtemperature and motor-overload alarm and trip; settings selectable via the keypad.

7. Critical frequency rejection, with three selectable, adjustable deadbands.
8. Instantaneous line-to-line and line-to-ground overcurrent trips.
11. Short-circuit protection.

K. Automatic Reset/Restart: Attempt three restarts after drive fault or on return of power after an interruption and before shutting down for manual reset or fault correction; adjustable delay time between restart attempts.

L. Power-Interruption Protection: To prevent motor from re-energizing after a power interruption until motor has stopped, unless "Bidirectional Autospeed Search" feature is available and engaged.

M. Bidirectional Autospeed Search: Capable of starting VFC into rotating loads spinning in either direction and returning motor to set speed in proper direction, without causing damage to drive, motor, or load.

N. Torque Boost: Automatically varies starting and continuous torque to at least 1.5 times the minimum torque to ensure high-starting torque and increased torque at slow speeds.

O. Motor Temperature Compensation at Slow Speeds: Adjustable current fall-back based on output frequency for temperature protection of self-cooled, fan-ventilated motors at slow speeds.

P. Integral Input Disconnecting Means and OCPD: UL 489, instantaneous-trip circuit breaker UL 489, thermal-magnetic circuit breaker NEMA KS 1, fusible switch with pad-lockable, door-mounted handle mechanism.

1. Disconnect Rating: Not less than 115 percent of VFC input current rating.
2. Disconnect Rating: Not less than 115 percent of NFPA 70 motor full-load current rating or VFC input current rating, whichever is larger.
3. Auxiliary Contacts: NO or NC, arranged to activate before switch blades open.
4. Auxiliary contacts "a" and "b" arranged to activate with circuit-breaker handle.
5. NO alarm contact that operates only when circuit breaker has tripped.

2.3 PERFORMANCE REQUIREMENTS

A. Seismic Performance: VFCs shall withstand the effects of earthquake motions determined according to ASCE/SEI 7. The designated VFCs shall be tested and certified by an NRTL as meeting the ICC-ES AC 156 test procedure requirements.

1. The term "withstand" means "the unit will remain in place without separation of any parts when subjected to the seismic forces specified."
2.4 CONTROLS AND INDICATION

A. Status Lights: Door-mounted LED indicators displaying the following conditions:

1. Power on.
2. Run.
3. Overvoltage.
4. Line fault.
5. Overcurrent.

B. Panel-Mounted Operator Station: Manufacturer's standard front-accessible, sealed keypad and plain-English-language digital display; allows complete programming, program copying, operating, monitoring, and diagnostic capability.

1. Keypad: In addition to required programming and control keys, include keys for HAND, OFF, and AUTO modes.
2. Security Access: Provide electronic security access to controls through identification and password with at least three levels of access: View only; view and operate; and view, operate, and service.
 a. Control Authority: Supports at least four conditions: Off, local manual control at VFC, local automatic control at VFC, and automatic control through a remote source.

C. Historical Logging Information and Displays:

1. Real-time clock with current time and date.
2. Running log of total power versus time.
3. Total run time.
4. Fault log, maintaining last four faults with time and date stamp for each.

D. Indicating Devices: Digital display and additional readout devices as required, mounted flush in VFC door and connected to display VFC parameters including, but not limited to:

1. Output frequency (Hz).
5. Motor torque (percent).
6. Fault or alarming status (code).
7. PID feedback signal (percent).
8. DC-link voltage (V dc).
9. Set point frequency (Hz).
10. Motor output voltage (V ac).

E. Control Signal Interfaces:

1. Electric Input Signal Interface:
a. A minimum of two programmable analog inputs: Operator-selectable "x"- to "y"-mA dc.

b. A minimum of six multifunction programmable digital inputs.

2. Pneumatic Input Signal Interface: 3 to 15 psig.

3. Remote Signal Inputs: Capability to accept any of the following speed-setting input signals from the DDC system for HVAC or other control systems:

 a. 0- to 10-V dc.
 b. 4- to 20-mA dc.
 c. Potentiometer using up/down digital inputs.
 d. Fixed frequencies using digital inputs.

4. Output Signal Interface: A minimum of one programmable analog output signal(s) (operator-selectable "x"- to "y"-mA dc), which can be configured for any of the following:

 a. Output frequency (Hz).
 b. Output current (load).
 c. DC-link voltage (V dc).
 d. Motor torque (percent).
 e. Motor speed (rpm).
 f. Set point frequency (Hz).

5. Remote Indication Interface: A minimum of two programmable dry-circuit relay outputs (120-V ac, 1 A) for remote indication of the following:

 a. Motor running.
 b. Set point speed reached.
 c. Fault and warning indication (overtemperature or overcurrent).
 d. PID high- or low-speed limits reached.

F. PID Control Interface: Provides closed-loop set point, differential feedback control in response to dual feedback signals. Allows for closed-loop control of fans and pumps for pressure, flow, or temperature regulation.

1. Number of Loops: One / Two.

G. Interface with DDC System for HVAC: Factory-installed hardware and software shall interface with DDC system for HVAC to monitor, control, display, and record data for use in processing reports. VFC settings shall be retained within VFC's nonvolatile memory.

1. Hardwired Points:

 b. Control: On-off operation.

2. Communication Interface: Comply with ASHRAE 135. Communication shall interface with DDC system for HVAC to remotely control and monitor lighting from a DDC system for HVAC operator workstation. Control features and monitoring points displayed locally at lighting panel shall be available through the DDC system for HVAC.
2.5 LINE CONDITIONING AND FILTERING

A. Input Line Conditioning: Based on the manufacturer's harmonic analysis study and report, provide input filtering, as required, to limit total demand (harmonic current) distortion and total harmonic voltage demand at the defined point of common coupling to meet IEEE 519 recommendations.

B. Output Filtering.

C. EMI/RFI Filtering: CE marked; certify compliance with IEC 61800-3 for Category C2.

D. EMI/RFI Filtering.

2.6 BYPASS SYSTEMS

A. Bypass Operation: Safely transfers motor between power converter output and bypass circuit, manually, automatically, or both. Selector switches set modes and indicator lights indicate mode selected. Unit is capable of stable operation (starting, stopping, and running) with motor completely disconnected from power converter.

B. Bypass Mode: Manual operation only; requires local operator selection at VFC. Transfer between power converter and bypass contactor, and retransfer shall only be allowed with the motor at zero speed.

C. Bypass Mode: Field-selectable automatic or manual, allows local and remote transfer between power converter and bypass contactor and retransfer, either via manual operator interface or automatic-control system feedback.

D. Bypass Controller: Two-contactor-style bypass allows motor operation via the power converter or the bypass controller; with input isolating switch and barrier arranged to isolate the power converter and permit safe troubleshooting and testing, both energized and de-energized, while motor is operating in bypass mode.

2. Output Isolating Contact: Non-load-break, NEMA-rated contactor.
3. Isolating Switch: Non-load-break switch arranged to isolate power converter and permit safe troubleshooting and testing of the power converter, both energized and de-energized, while motor is operating in bypass mode; pad-lockable, door-mounted handle mechanism.

E. Bypass Controller: Three-contactor-style bypass allows motor operation via the power converter or the bypass controller; with input isolating switch and barrier arranged to isolate the power converter input and output and permit safe testing and troubleshooting of the power converter, both energized and de-energized, while motor is operating in bypass mode.

2. Input and Output Isolating Contactors: Non-load-break, NEMA-rated contactors.
3. Isolating Switch: Non-load-break switch arranged to isolate power converter and permit safe troubleshooting and testing of the power converter, both energized and de-energized,
while motor is operating in bypass mode; pad-lockable, door-mounted handle mechanism.

F. Bypass Contactor Configuration: Full-voltage type.

1. NORMAL/BYPASS selector switch.
2. HAND/OFF/AUTO selector switch.
3. NORMAL/TEST Selector Switch: Allows testing and adjusting of VFC while the motor is running in the bypass mode.
 a. Operating Voltage: Depending on contactor NEMA size and line-voltage rating, manufacturer's standard matching control power or line voltage.
 b. Power Contacts: Totally enclosed, double break, and silver-cadmium oxide; assembled to allow inspection and replacement without disturbing line or load wiring.

5. Control Circuits: 120-V ac; obtained from integral CPT, with primary and secondary fuses, with CPT control power source of sufficient capacity to operate all integral devices and remotely located pilot, indicating, and control devices.
 a. CPT Spare Capacity: 50 VA.

 a. Bimetallic Overload Relays:
 1) Inverse-time-current characteristic.
 2) Class 20 tripping characteristic.
 3) Heaters in each phase matched to nameplate full-load current of actual protected motor and with appropriate adjustment for duty cycle.
 4) Ambient compensated.
 5) Automatic resetting.
 b. Solid-State Overload Relays:
 1) Switch or dial selectable for motor-running overload protection.
 2) Sensors in each phase.
 3) Class 10/20 selectable tripping characteristic selected to protect motor against voltage and current unbalance and single phasing.
 4) Class II ground-fault protection, with start and run delays to prevent nuisance trip on starting.
 5) Analog communication module.
 c. NC / NO isolated overload alarm contact.
 d. External overload, reset push button.
2.7 OPTIONAL FEATURES

A. Multiple-Motor Capability: VFC suitable for variable-speed service to multiple motors. Overload protection shuts down VFC and motors served by it, and generates fault indications when overload protection activates.

1. Configure to allow two or more motors to operate simultaneously at the same speed; separate overload relay for each controlled motor.
2. Configure to allow two motors to operate separately; operator selectable via local or remote switch or contact closures; single overload relay for both motors; separate output magnetic contactors for each motor.
3. Configure to allow two motors to operate simultaneously and in a lead/lag mode, with one motor operated at variable speed via the power converter and the other at constant speed via the bypass controller; separate overload relay for each controlled motor.

B. Damper control circuit with end-of-travel feedback capability.

C. Sleep Function: Senses a minimal deviation of a feedback signal and stops the motor. On an increase in speed-command signal deviation, VFC resumes normal operation.

D. Motor Preheat Function: Preheats motor when idle to prevent moisture accumulation in the motor.

E. Firefighter's Override (Smoke Purge) Input: On a remote contact closure from smoke-control fan controller, this password-protected input:

1. Overrides all other local and external inputs (analog/digital, serial communication, and all keypad commands).
2. Forces VFC to operate motor, without any other run or speed command, at a field-adjustable, preset speed.
3. Forces VFC to transfer to bypass mode and operate motor at full speed.
4. Causes display of override mode on the VFC display.
5. Reset VFC to normal operation on removal of override signal manually.

F. Remote Indicating Circuit Terminals: Mode selection, controller status, and controller fault.

G. Remote digital operator kit.

H. Communication Port: RS-232 port, USB 2.0 port, or equivalent connection capable of connecting a printer and a notebook computer.

2.8 ENCLOSURES

A. VFC Enclosures: NEMA 250, to comply with environmental conditions at installed location.

1. Dry and Clean Indoor Locations: Type 12.
2. Outdoor Locations: Type 4X.
4. Other Wet or Damp Indoor Locations: Type 4.
5. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: Type 12.

B. Plenum Rating: UL 1995; NRTL certification label on enclosure, clearly identifying VFC as "Plenum Rated."

2.9 ACCESSORIES

A. General Requirements for Control-Circuit and Pilot Devices: NEMA ICS 5; factory installed in VFC enclosure cover unless otherwise indicated.

1. Push Buttons: Covered / Lockable.
4. Stop and Lockout Push-Button Station: Momentary-break, push-button station with a factory-applied hasp arranged so padlock can be used to lock push button in depressed position with control circuit open.

B. Reversible NC/NO bypass contactor auxiliary contact(s).

C. Control Relays: Auxiliary and adjustable solid-state time-delay relays.

E. Supplemental Digital Meters:

1. Elapsed-time meter.
2. Kilowatt meter.

F. Breather and drain assemblies, to maintain interior pressure and release condensation in NEMA 250, Type 4 enclosures installed outdoors or in unconditioned interior spaces subject to humidity and temperature swings.

G. Space heaters, with NC auxiliary contacts, to mitigate condensation in NEMA 250, Type 12 enclosures installed outdoors or in unconditioned interior spaces subject to humidity and temperature swings.

H. Cooling Fan and Exhaust System: For NEMA 250, Type 12; UL 508 component recognized: Supply fan, with stainless-steel intake and exhaust grills and filters; 120-V ac; obtained from integral CPT.

I. Sun shields installed on fronts, sides, and tops of enclosures installed outdoors and subject to direct and extended sun exposure.
J. Spare control-wiring terminal blocks; wired.

2.10 SOURCE QUALITY CONTROL

A. Testing: Test and inspect VFCs according to requirements in NEMA ICS 61800-2.
 1. Test each VFC while connected to its specified motor or a motor that is comparable to that for which the VFC is rated.
 2. Verification of Performance: Rate VFCs according to operation of functions and features specified.

B. VFCs will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas, surfaces, and substrates to receive VFCs, with Installer present, for compliance with requirements for installation tolerances, and other conditions affecting performance of the Work.

B. Examine VFC before installation. Reject VFCs that are wet, moisture damaged, or mold damaged.

C. Examine roughing-in for conduit systems to verify actual locations of conduit connections before VFC installation.

D. Prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.

E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Wall-Mounting Controllers: Install with tops at uniform height and with disconnect operating handles not higher than 79 inches above finished floor, unless otherwise indicated, and by bolting units to wall or mounting on lightweight structural-steel channels bolted to wall. For controllers not on walls, provide freestanding racks complying with Section 26 05 29 "Hangers and Supports for Electrical Systems."

B. Floor-Mounting Controllers: Install VFCs on 4-inch nominal thickness concrete base.
 1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
 2. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.

4. Install anchor bolts to elevations required for proper attachment to supported equipment.

C. Roof-Mounting Controllers: Install VFC on roofs with tops at uniform height and with disconnect operating handles not higher than 79 inches above finished roof surface unless otherwise indicated, and by bolting units to curbs or mounting on freestanding, lightweight, structural-steel channels bolted to curbs. Seal roof penetrations after raceways are installed.

1. Structural-steel channels are specified in Section 26 05 29 "Hangers and Supports for Electrical Systems."

D. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.

E. Install fuses in each fusible-switch VFC.

F. Install heaters in thermal-overload relays. Select heaters based on actual nameplate full-load amperes after motors are installed.

G. Install, connect, and fuse thermal-protector monitoring relays furnished with motor-driven equipment.

H. Comply with NECA 1.

3.3 CONTROL WIRING INSTALLATION

A. Install wiring between VFCs and remote devices and facility's central-control system. Comply with requirements in Section 26 05 23 "Control-Voltage Electrical Power Cables."

B. Bundle, train, and support wiring in enclosures.

C. Connect selector switches and other automatic-control devices where applicable.

1. Connect selector switches to bypass only those manual- and automatic-control devices that have no safety functions when switches are in manual-control position.

2. Connect selector switches with control circuit in both manual and automatic positions for safety-type control devices such as low- and high-pressure cutouts, high-temperature cutouts, and motor-overload protectors.

3.4 IDENTIFICATION

A. Identify VFCs, components, and control wiring. Comply with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."

1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.

2. Label each VFC with engraved nameplate.

3. Label each enclosure-mounted control and pilot device.
B. Operating Instructions: Frame printed operating instructions for VFCs, including control sequences and emergency procedures. Fabricate frame of finished metal, and cover instructions with clear acrylic plastic. Mount on front of VFC units.

3.5 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

C. Perform tests and inspections with the assistance of a factory-authorized service representative.

D. Acceptance Testing Preparation:

1. Test insulation resistance for each VFC element, bus, component, connecting supply, feeder, and control circuit.
2. Test continuity of each circuit.

E. Tests and Inspections:

1. Inspect VFC, wiring, components, connections, and equipment installation. Test and adjust controllers, components, and equipment.
2. Test insulation resistance for each VFC element, component, connecting motor supply, feeder, and control circuits.
3. Test continuity of each circuit.
4. Verify that voltages at VFC locations are within 10 percent of motor nameplate rated voltages. If outside this range for any motor, notify Construction Manager / Owner before starting the motor(s).
5. Test each motor for proper phase rotation.
7. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
8. Perform the following infrared (thermographic) scan tests and inspections, and prepare reports:

 a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each VFC. Remove front panels so joints and connections are accessible to portable scanner.
 b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each VFC 11 months after date of Substantial Completion.
 c. Instruments and Equipment: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.

9. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.

F. VFCs will be considered defective if they do not pass tests and inspections.
G. Prepare test and inspection reports, including a certified report that identifies the VFC and describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations made after remedial action.

3.6 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.
 1. Complete installation and startup checks according to manufacturer's written instructions.

3.7 ADJUSTING

A. Program microprocessors for required operational sequences, status indications, alarms, event recording, and display features. Clear events memory after final acceptance testing and prior to Substantial Completion.

B. Set field-adjustable switches, auxiliary relays, time-delay relays, timers, and overload-relay pickup and trip ranges.

C. Adjust the trip settings of instantaneous-only circuit breakers and thermal-magnetic circuit breakers with adjustable, instantaneous trip elements. Initially adjust to 6 times the motor nameplate full-load amperes and attempt to start motors several times, allowing for motor cool-down between starts. If tripping occurs on motor inrush, adjust settings in increments until motors start without tripping. Do not exceed 8 times the motor full-load amperes (or 11 times for NEMA Premium Efficient motors if required). Where these maximum settings do not allow starting of a motor, notify Construction Manager / Owner before increasing settings.

D. Set the taps on reduced-voltage autotransformer controllers.

E. Set field-adjustable circuit-breaker trip ranges as specified in Section 26 05 73.16 "Coordination Studies."

F. Set field-adjustable pressure switches.

3.8 PROTECTION

A. Temporary Heating: Apply temporary heat to maintain temperature according to manufacturer's written instructions until controllers are ready to be energized and placed into service.

B. Replace VFCs whose interiors have been exposed to water or other liquids prior to Substantial Completion.

3.9 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, reprogram, and maintain VFCs.

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Metal conduits and fittings.
2. Nonmetallic conduits and fittings.
3. Optical-fiber-cable pathways and fittings.
4. Metal wireways and auxiliary gutters.
5. Metallic surface pathways.

1.3 DEFINITIONS

A. ARC: Aluminum rigid conduit.
B. GRC: Galvanized rigid conduit.
C. IMC: Intermediate metal conduit.
D. RTRC: Reinforced thermosetting resin conduit.

1.4 ACTION SUBMITTALS

A. Product data for the following:

1. Surface pathways
2. Wireways and fittings.
3. Tele-power poles.
5. Underground handholes and boxes.

B. Shop Drawings: For custom enclosures and cabinets. Include plans, elevations, sections, and attachment details.
C. Samples: For wireways surface pathways and for each color and texture specified, 12 inches long.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Pathway routing plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of items involved:

1. Structural members in paths of pathway groups with common supports.
2. HVAC and plumbing items and architectural features in paths of conduit groups with common supports.
3. Underground ducts, piping, and structures in location of underground enclosures and handholes.

B. Qualification Data: For professional engineer.

C. Source quality-control reports.

PART 2 - PRODUCTS

2.1 METAL CONDUITS AND FITTINGS

A. Description: Metal raceway of circular cross section with manufacturer-fabricated fittings.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Allied Tube & Conduit; a part of Atkore International.
2. Alpha Wire.
3. O-Z/Gedney; a brand of Emerson Industrial Automation.
5. Thomas & Betts Corporation; A Member of the ABB Group.
6. Western Tube and Conduit Corporation.
7. Wheatland Tube Company.

C. General Requirements for Metal Conduits and Fittings:

1. Listed and labeled as defined in NFPA 70, by a nationally recognized testing laboratory, and marked for intended location and application.
2. Comply with TIA-569-D.

D. GRC: Comply with ANSI C80.1 and UL 6.

E. ARC: Comply with ANSI C80.5 and UL 6A.

F. IMC: Comply with ANSI C80.6 and UL 1242.

G. PVC-Coated Steel Conduit: PVC-coated GRC.
1. Comply with NEMA RN 1.
2. Coating Thickness: 0.040 inch, minimum.

H. EMT: Comply with ANSI C80.3 and UL 797.

I. Fittings for Metal Conduit: Comply with NEMA FB 1 and UL 514B.
 1. Conduit Fittings for Hazardous (Classified) Locations: Comply with UL 1203 and NFPA 70.
 2. Fittings for EMT:
 a. Material: Steel.
 b. Type: Set screw.
 3. Expansion Fittings: PVC or steel to match conduit type, complying with UL-467, rated for environmental conditions where installed, and including flexible external bonding jumper.
 4. Coating for Fittings for PVC-Coated Conduit: Minimum thickness of 0.040 inch, with overlapping sleeves protecting threaded joints.

J. Joint Compound for IMC, GRC, or ARC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.2 OPTICAL-FIBER-CABLE PATHWAYS AND FITTINGS

A. Description: Comply with UL 2024; flexible-type pathway with a circular cross section, approved for plenum installation unless otherwise indicated.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Alpha Wire.
 2. Carlon; a brand of Thomas & Betts Corporation.
 3. Dura-Line.

C. Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.

D. Comply with TIA-569-D.

2.3 METAL WIREWAYS AND AUXILIARY GUTTERS

A. Description: Sheet metal trough of rectangular cross section fabricated to required size and shape, without holes or knockouts, and with hinged or removable covers.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. B-line, an Eaton business.
2. Hoffman; a brand of Pentair Equipment Protection.
3. MonoSystems, Inc.
4. Square D; by Schneider Electric.

C. General Requirements for Metal Wireways and Auxiliary Gutters:
 1. Comply with UL 870 and NEMA 250, Type 3R /Type 4/ Type 12 unless otherwise indicated, and sized according to NFPA 70.
 2. Metal wireways installed outdoors shall be listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.
 3. Comply with TIA-569-D.

D. Fittings and Accessories: Include covers, couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.

E. Wireway Covers: Hinged type unless otherwise indicated.

F. Finish: Manufacturer's standard enamel finish.

2.4 SURFACE METAL PATHWAYS

A. Description: Galvanized steel with snap-on covers, complying with UL 5.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. MonoSystems, Inc.
 2. Panduit Corp.
 3. Wiremold / Legrand.

C. Finish: Manufacturer's standard enamel finish in color selected by Architect.

D. Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.

E. Comply with TIA-569-D.

2.5 HOOKS

A. Description: Prefabricated sheet metal cable supports for telecommunications cable.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. MonoSystems, Inc.
 2. Panduit Corp.
 3. Wiremold / Legrand.
C. Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.

D. Comply with TIA-569-D.

E. Galvanized/ stainless steel.

F. J shape.

2.6 BOXES, ENCLOSURES, AND CABINETS

A. Description: Enclosures for communications.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Adalet.
2. Carlon; a brand of Thomas & Betts Corporation.
4. Hoffman; a brand of Pentair Equipment Protection.
5. Milbank Manufacturing Co.
7. O-Z/Gedney; a brand of Emerson Industrial Automation.
8. RACO; Hubbell.
9. Thomas & Betts Corporation; A Member of the ABB Group.
10. Wiremold / Legrand.

C. General Requirements for Boxes, Enclosures, and Cabinets:

1. Comply with TIA-569-D.
2. Boxes, enclosures, and cabinets installed in wet locations shall be listed and labeled as defined in NFPA 70, by an NRTL, and marked for use in wet locations.
3. Box extensions used to accommodate new building finishes shall be of same material as recessed box.
4. Device Box Dimensions: 4 inches square by 2-1/8 inches deep.
5. Gangable boxes are prohibited.

D. Sheet Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.

E. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, ferrous alloy, Type FD, with gasketed cover.

F. Metal Floor Boxes:

1. Material: Cast metal.
2. Type: Fully adjustable.
3. Shape: Rectangular.
4. Metal floor boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
G. Hinged-Cover Enclosures: Comply with UL 50 and NEMA 250, Type 3R /Type 4/ Type 12, with continuous-hinge cover with flush latch unless otherwise indicated.

1. Metal Enclosures: Steel, finished inside and out with manufacturer’s standard enamel.
2. Nonmetallic Enclosures:
 b. Finished inside with radio-frequency-resistant paint.

3. Interior Panels: Steel; all sides finished with manufacturer’s standard enamel.

H. Cabinets:

1. NEMA 250, Type 3R/ Type 12 galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
2. Hinged door in front cover with flush latch and concealed hinge.
3. Key latch to match panelboards.
4. Metal barriers to separate wiring of different systems and voltage.
5. Accessory feet where required for freestanding equipment.
6. Nonmetallic cabinets shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

PART 3 - EXECUTION

3.1 PATHWAY APPLICATION

A. Outdoors: Apply pathway products as specified below unless otherwise indicated:

1. Exposed Conduit: GRC/ IMC.
2. Concealed Conduit, Aboveground: GRC/ IMC, Type EPC-40-PVC.
4. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R.

B. Indoors: Apply pathway products as specified below unless otherwise indicated:

1. Exposed, Not Subject to Physical Damage: EMT.
2. Exposed, Not Subject to Severe Physical Damage: EMT.
3. Exposed and Subject to Severe Physical Damage: GRC/ IMC. Pathway locations include the following:
 a. Loading dock.
 b. Corridors used for traffic of mechanized carts, forklifts, and pallet-handling units.
 c. Mechanical rooms.
4. Concealed in Ceilings and Interior Walls and Partitions: EMT.
5. Damp or Wet Locations: GRC/ IMC.
6. Pathways for Optical-Fiber or Communications Cable in Spaces Used for Environmental Air: Plenum-type, optical-fiber-cable pathway /Plenum-type, communications-cable pathway EMT.
7. Pathways for Optical-Fiber or Communications-Cable Risers in Vertical Shafts: Riser-type, optical-fiber-cable pathway communications-cable pathway EMT.

8. Pathways for Concealed General-Purpose Distribution of Optical-Fiber or Communications Cable: Plenum-type, optical-fiber-cable pathway Plenum-type, communications-cable pathway EMT.

9. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4 stainless steel units in institutional and commercial kitchens and damp or wet locations.

C. Minimum Pathway Size: 3/4-inch trade size for copper and aluminum cables, and 1 inch for optical-fiber cables.

D. Pathway Fittings: Compatible with pathways and suitable for use and location.

1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.

2. PVC Externally Coated, Rigid Steel Conduits: Use only fittings listed for use with this type of conduit. Patch and seal all joints, nicks, and scrapes in PVC coating after installing conduits and fittings. Use sealant recommended by fitting manufacturer and apply in thickness and number of coats recommended by manufacturer.

E. Do not install aluminum conduits, boxes, or fittings in contact with concrete or earth.

F. Install surface pathways only where indicated on Drawings.

G. Do not install nonmetallic conduit where ambient temperature exceeds 120 deg F.

3.2 INSTALLATION

A. Comply with the following standards for installation requirements except where requirements on Drawings or in this Section are stricter:

1. NECA 1.
2. NECA/BICSI 568.
3. TIA-569-D.
4. NECA 101
5. NECA 102.
6. NECA 105.
7. NECA 111.

B. Comply with NFPA 70 limitations for types of pathways allowed in specific occupancies and number of floors.

C. Keep pathways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal pathway runs above water and steam piping.

D. Complete pathway installation before starting conductor installation.

E. Arrange stub-ups so curved portions of bends are not visible above finished slab.
F. Install no more than the equivalent of two 90-degree bends in any pathway run. Support within 12 inches of changes in direction. Utilize long radius ells for all optical-fiber cables.

G. Conceal rigid conduit within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.

H. Support conduit within 12 inches of enclosures to which attached.

I. Pathways Embedded in Slabs:
 1. Run conduit larger than 1-inch trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support. Secure pathways to reinforcement at maximum 10-foot intervals.
 2. Arrange pathways to cross building expansion joints at right angles with expansion fittings. Comply with requirements for expansion joints specified in this article.
 3. Arrange pathways to keep a minimum of 1 inch /2 inches of concrete cover in all directions.
 4. Do not embed threadless fittings in concrete unless specifically approved by Architect for each specific location.
 5. Change from nonmetallic conduit and fittings to GRC and fittings before rising above floor.

J. Stub-ups to Above Recessed Ceilings:
 1. Use EMT, IMC, or RMC for pathways.
 2. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.

K. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of pathway and fittings before making up joints. Follow compound manufacturer's written instructions.

L. Coat field-cut threads on PVC-coated pathway with a corrosion-preventing conductive compound prior to assembly.

M. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install insulated bushings on conduits terminated with locknuts.

N. Install pathways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus one additional quarter-turn.

O. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure, to assure a continuous ground path.

P. Cut conduit perpendicular to the length. For conduits of 2-inch trade size and larger, use roll cutter or a guide to ensure cut is straight and perpendicular to the length.

Q. Install pull wires in empty pathways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire. Secure pull wire, so it cannot fall into conduit. Cap pathways designated as spare alongside pathways in use.
R. Surface Pathways:

1. Install surface pathway for surface telecommunications outlet boxes only where indicated on Drawings.
2. Install surface pathway with a minimum 2-inch radius control at bend points.
3. Secure surface pathway with screws or other anchor-type devices at intervals not exceeding 48 inches and with no less than two supports per straight pathway section. Support surface pathway according to manufacturer's written instructions. Tape and glue are not acceptable support methods.

S. Pathways for Optical-Fiber and Communications Cable: Install pathways, metal and nonmetallic, rigid and flexible, as follows:

1. 3/4-Inch Trade Size and Smaller: Install pathways in maximum lengths of 50 feet.
2. 1-Inch Trade Size and Larger: Install pathways in maximum lengths of 75 feet.
3. Install with a maximum of two 90-degree bends or equivalent for each length of pathway unless Drawings show stricter requirements. Separate lengths with pull or junction boxes or terminations at distribution frames or cabinets where necessary to comply with these requirements.

T. Install pathway-sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed pathways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install pathway-sealing fittings according to NFPA 70.

U. Install devices to seal pathway interiors at accessible locations. Locate seals, so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all pathways at the following points:

1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
2. Where an underground service pathway enters a building or structure.
3. Where otherwise required by NFPA 70.

V. Comply with manufacturer's written instructions for solvent welding PVC conduit and fittings.

W. Expansion-Joint Fittings:

1. Install in each run of aboveground RNC that is located where environmental temperature change may exceed 30 deg F, and that has straight-run length that exceeds 25 feet. Install in each run of aboveground RMC and EMT that is located where environmental temperature change may exceed 100 deg F, and that has straight-run length that exceeds 100 feet.
2. Install type and quantity of fittings that accommodate temperature change listed for each of the following locations:
 a. Outdoor Locations Not Exposed to Direct Sunlight: 125 deg F temperature change.
 b. Outdoor Locations Exposed to Direct Sunlight: 155 deg F temperature change.
 c. Indoor Spaces Connected with Outdoors without Physical Separation: 125 deg F temperature change.
d. Attics: 135 deg F temperature change.

3. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per deg F of temperature change for PVC conduits. Install fitting(s) that provide expansion and contraction for at least 0.000078 inch per foot of length of straight run per deg F of temperature change for metal conduits.

4. Install expansion fittings at all locations where conduits cross building or structure expansion joints.

5. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.

X. Hooks:

1. Size to allow a minimum of 25 percent future capacity without exceeding design capacity limits.

2. Shall be supported by dedicated support wires. Do not use ceiling grid support wire or support rods.

3. Hook spacing shall allow no more than 6 inches of slack. The lowest point of the cables shall be no less than 6 inches adjacent to ceilings, mechanical ductwork and fittings, luminaires, power conduits, power and telecommunications outlets, and other electrical and communications equipment.

4. Space hooks no more than 5 feet o.c.

5. Provide a hook at each change in direction.

Y. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to bottom of box unless otherwise indicated.

Z. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall. Prepare block surface to provide a flat surface for a watertight connection between box and cover plate or supported equipment and box.

AA. Horizontally separate boxes mounted on opposite sides of walls, so they are not in the same vertical channel.

BB. Support boxes of three gangs or more from more than one side by spanning two framing members or mounting on brackets specifically designed for the purpose.

CC. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.

DD. Set metal floor boxes level and flush with finished floor surface.

EE. Set nonmetallic floor boxes level. Trim after installation to fit flush with finished floor surface.

3.3 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR COMMUNICATIONS PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies.
3.4 FIRESTOPPING

 A. Install firestopping at penetrations of fire-rated floor and wall assemblies.

3.5 PROTECTION

 A. Protect coatings, finishes, and cabinets from damage or deterioration.

 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
 2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. 50/125 micrometer, multimode, optical fiber cable (OM2).
 2. 850 nanometer laser-optimized 50/125 micrometer multimode optical fiber cable (OM3).
 3. 850 nanometer laser-optimized 50/125 micrometer multimode optical fiber cable (OM4).
 4. 9/125 micrometer single-mode, indoor-outdoor optical fiber cable (OS1).
 5. Optical fiber cable connecting hardware, patch panels, and cross-connects.

1.3 DEFINITIONS

B. Cross-Connect: A facility enabling the termination of cable elements and their interconnection or cross-connection.

C. RCDD: Registered Communications Distribution Designer.

1.4 OPTICAL FIBER BACKBONE CABLING DESCRIPTION

A. Optical fiber backbone cabling system shall provide interconnections between communications equipment rooms, main terminal space, and entrance facilities in the telecommunications cabling system structure. Cabling system consists of backbone cables, intermediate and main cross-connects, mechanical terminations, and patch cords or jumpers used for backbone-to-backbone cross-connection.

B. Backbone cabling cross-connects may be located in communications equipment rooms or at entrance facilities. Bridged taps and splitters shall not be used as part of backbone cabling.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product.
B. Shop Drawings: Reviewed and stamped by RCDD.

1. System Labeling Schedules: Electronic copy of labeling schedules, in software and format selected by Owner.
2. System Labeling Schedules: Electronic copy of labeling schedules that are part of the cabling and asset identification system of the software.
3. Cabling administration drawings and printouts.
4. Wiring diagrams to show typical wiring schematics including the following:
 a. Telecommunications rooms plans and elevations.
 b. Telecommunications pathways.
 c. Telecommunications system access points.
 d. Telecommunications grounding system.
 e. Cross-connects.
 f. Patch panels.
 g. Patch cords.
5. Cross-connects and patch panels. Detail mounting assemblies, and show elevations and physical relationship between the installed components.

C. Optical fiber cable testing plan.

1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer, installation supervisor, and field inspector.

B. Source quality-control reports.

C. Product Certificates: For each type of product.

D. Field quality-control reports.

1.7 CLOSEOUT SUBMITTALS

A. Maintenance Data: For optical fiber cable, splices, and connectors to include in maintenance manuals.

1.8 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Patch-Panel Units: One of each type.
 2. Plugs: Ten of each type.
 3. Jacks: Ten of each type.
1.9 QUALITY ASSURANCE

A. Installer Qualifications: Cabling Installer must have personnel certified by BICSI on staff.
 1. Layout Responsibility: Preparation of Shop Drawings and Cabling Administration Drawings, and field testing program development by an RCDD.
 2. Installation Supervision: Installation shall be under the direct supervision of Level 2 Installer, who shall be present at all times when Work of this Section is performed at Project site.
 3. Testing Supervisor: Currently certified by BICSI as an RCDD to supervise on-site testing.

B. Testing Agency Qualifications: Testing agency must have personnel certified by BICSI on staff.
 1. Testing Agency's Field Supervisor: Currently certified by BICSI as an Technician.

1.10 DELIVERY, STORAGE, AND HANDLING

A. Test cables upon receipt at Project site.
 1. Test optical fiber cable to determine the continuity of the strand end to end. Use optical loss test set.
 2. Test optical fiber cable while on reels. Use an optical time domain reflectometer to verify the cable length and locate cable defects, splices, and connector, including the loss value of each. Retain test data and include the record in maintenance data.

1.11 PROJECT CONDITIONS

A. Environmental Limitations: Do not deliver or install cables and connecting materials until wet work in spaces is complete and dry, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

1.12 COORDINATION

A. Coordinate layout and installation of telecommunications pathways and cabling with Owner's telecommunications and LAN equipment and service suppliers.

1.13 SOFTWARE SERVICE AGREEMENT

A. Technical Support: Beginning with Substantial Completion, provide software support for two years.

B. Upgrade Service: Update software to latest version at Project completion. Install and program software upgrades that become available within two years from date of Substantial Completion. Upgrading software shall include operating system. Upgrade shall include new or revised licenses for use of software.
1. Provide 30 days' notice to Owner to allow scheduling and access to system and to allow Owner to upgrade computer equipment if necessary.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. General Performance: Backbone cabling system shall comply with transmission standards in TIA-568-C.1, when tested according to test procedures of this standard.

B. Surface-Burning Characteristics: As determined by testing identical products according to ASTM E 84 by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 1. Flame-Spread Index: 25 or less.
 2. Smoke-Developed Index: 50 or less.

C. Telecommunications Pathways and Spaces: Comply with TIA-569-D.

D. Grounding: Comply with TIA-607-B.

2.2 50/125 MICROMETER, MULTIMODE, OPTICAL FIBER CABLE (OM2)

A. Description: Multimode, 50/125-micrometer, 8-fiber, nonconductive, tight buffer, optical fiber cable.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. AMP NETCONNECT; a TE Connectivity Ltd. company.
 2. Belden CDT Networking Division/NORDX.
 3. Berk-Tek Leviton; a Nexans/Leviton alliance.
 4. General Cable; General Cable Corporation.
 5. Hitachi Cable America Inc.

C. Standards:
 1. Comply with ICEA S-83-596 for mechanical properties.
 2. Comply with TIA-568-C.3 for performance specifications.
 3. Comply with TIA-492AAAB for detailed specifications.

D. Conductive cable shall be steel armored type.

E. Maximum Attenuation: 3.50 dB/km at 850 nm; 1.5 dB/km at 1300 nm.

F. Minimum Overfilled Modal Bandwidth-length Product: 500 MHz-km at 850 nm; 500 MHz-km at 1300 nm.

G. Jacket:
2. Cable cordage jacket, fiber, unit, and group color shall be according to TIA-598-D.
3. Imprinted with fiber count, fiber type, and aggregate length at regular intervals not to exceed 40 inches.

H. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444, UL 1651, and NFPA 70 for the following types:

1. Plenum Rated, Nonconductive: Type OFNP, complying with NFPA 262.
2. Plenum Rated, Nonconductive: Type OFNP in listed plenum communications raceway.
3. Plenum Rated, Nonconductive: Type OFNP, or Type OFNR in metallic conduit.
4. Plenum Rated, Nonconductive: Type OFNP, complying with NFPA 262; Type OFNP in listed plenum communications raceway; or Type OFNP, or Type OFNR in metallic conduit.
5. Riser Rated, Nonconductive: Type OFNP, complying with UL 1666.
6. Riser Rated, Nonconductive: Type OFNP in listed riser or plenum communications raceway.
7. Riser Rated, Nonconductive: Type OFN, Type OFNP, in metallic conduit installed per NFPA 70, Article 300.22, "Wiring in Ducts, Plenums, and Other Air-Handling Spaces."
8. Plenum Rated, Conductive: Type OFNP, complying with NFPA 262.
9. Plenum Rated, Conductive: Type OFCP or Type OFNP in listed plenum communications raceway.
10. Plenum Rated, Conductive: Type OFN, Type OFNG, Type OFCP, Type OFNP, Type OFCR, or Type OFNR in metallic conduit installed per NFPA 70, Article 300.22, "Wiring in Ducts, Plenums, and Other Air-Handling Spaces."
11. Riser Rated, Conductive: Type OFCP; complying with UL 1666 and ICEA S-103-701.
12. Riser Rated, Conductive: Type OFCP, Type OFNP, or Type OFCR or Type OFNP in listed riser or plenum communications raceway.
13. Riser Rated, Conductive: Type OFCP, Type OFNP, Type OFCR, or Type OFNR in metallic conduit.

2.3 850 NANOMETER LASER-OPTIMIZED, 50/125 MICROMETER, MULTIMODE OPTICAL FIBER CABLE (OM3)

A. Description: Multimode, 50/125-micrometer, 8-fiber, nonconductive, tight buffer, optical fiber cable.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. AMP NETCONNECT; a TE Connectivity Ltd. company.
2. Belden CDT Networking Division/NORDX.
3. Hitachi Cable America Inc.
4. TE Connectivity Ltd.

C. Standards:

1. Comply with ICEA S-83-596 for mechanical properties.
2. Comply with TIA-568-C.3 for performance specifications.
3. Comply with TIA-492AAAC for detailed specifications.
D. Conductive cable shall be steel armored type.

E. Maximum Attenuation: 3.50 dB/km at 850 nm; 1.5 dB/km at 1300 nm.

F. Minimum Overfilled Modal Bandwidth-length Product: 1500 MHz-km at 850 nm; 500 MHz-km at 1300 nm.

G. Minimum Effective Modal Bandwidth-length Product: 2000 MHz-km at 850 nm.

H. Jacket:
 2. Cable cordage jacket, fiber, unit, and group color shall be according to TIA-598-D.
 3. Imprinted with fiber count, fiber type, and aggregate length at regular intervals not to exceed 40 inches.

I. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444, UL 1651, and NFPA 70 for the following types:
 1. Plenum Rated, Nonconductive: Type OFNP, complying with NFPA 262.
 2. Plenum Rated, Nonconductive: Type OFNP in listed plenum communications raceway.
 3. Plenum Rated, Nonconductive: Type OFNP, or Type OFNR in metallic conduit.
 4. Plenum Rated, Nonconductive: Type OFNP, complying with NFPA 262; Type OFNP in listed plenum communications raceway; or Type OFNP, or Type OFNR in metallic conduit.
 5. Riser Rated, Nonconductive: Type OFNP, complying with UL 1666.
 6. Riser Rated, Nonconductive: Type OFNP in listed riser or plenum communications raceway.
 7. Riser Rated, Nonconductive: Type OFNP, in metallic conduit installed per NFPA 70, Article 300.22, "Wiring in Ducts, Plenums, and Other Air-Handling Spaces."
 8. Plenum Rated, Conductive: Type OFNP, complying with NFPA 262.
 9. Plenum Rated, Conductive: Type OFNP in listed plenum communications raceway.
 10. Plenum Rated, Conductive: Type OFNG, Type OFNP, or Type OFNR in metallic conduit installed per NFPA 70, Article 300.22, "Wiring in Ducts, Plenums, and Other Air-Handling Spaces."
 11. Riser Rated, Conductive: Type OFCP; complying with UL 1666 and ICEA S-103-701.
 12. Riser Rated, Conductive: Type OFNP, or Type OFNP in listed riser or plenum communications raceway.
 13. Riser Rated, Conductive: Type OFNP, or Type OFNR in metallic conduit.

2.4 850 NANOMETER LASER-OPTIMIZED, 50/125 MICROMETER, MULTIMODE OPTICAL FIBER CABLE (OM4)

A. Description: Multimode, 50/125-micrometer, 12-fiber, nonconductive, tight buffer, optical fiber cable.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Belden CDT Networking Division/NORDX.
2. Hitachi Cable America Inc.
3. Mohawk; a division of Belden Networking, Inc.

C. Standards:
1. Comply with ICEA S-83-596 for mechanical properties.
2. Comply with TIA-568-C.3 for performance specifications.
3. Comply with TIA-492AAAD for detailed specifications.

D. Conductive cable shall be steel armored type.

E. Maximum Attenuation: 3.50 dB/km at 850 nm; 1.5 dB/km at 1300 nm.

F. Minimum Overfilled Modal Bandwidth-length Product: 3500 MHz-km at 850 nm; 500 MHz-km at 1300 nm.

G. Minimum Effective Modal Bandwidth-length Product: 4700 MHz-km at 850 nm.

H. Jacket:
2. Cable cordage jacket, fiber, unit, and group color shall be according to TIA-598-D.
3. Imprinted with fiber count, fiber type, and aggregate length at regular intervals not to exceed 40 inches.

I. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444, UL 1651, and NFPA 70 for the following types:
1. Plenum Rated, Nonconductive: Type OFNP, complying with NFPA 262.
2. Plenum Rated, Nonconductive: Type OFNP in listed plenum communications raceway.
3. Plenum Rated, Nonconductive: Type OFNP, or Type OFNR in metallic conduit.
4. Plenum Rated, Nonconductive: Type OFNP, complying with NFPA 262; Type OFNP in listed plenum communications raceway; or Type OFN, Type OFNG, Type OFNP, or Type OFNR in metallic conduit.
5. Riser Rated, Nonconductive: Type OFNR or Type OFNP, complying with UL 1666.
6. Riser Rated, Nonconductive: Type OFNP or Type OFNR in listed riser or plenum communications raceway.
7. Riser Rated, Nonconductive: Type OFNP, or Type OFNR in metallic conduit installed per NFPA 70, Article 300.22, "Wiring in Ducts, Plenums, and Other Air-Handling Spaces."
8. Plenum Rated, Conductive: Type OFCP, complying with NFPA 262.
9. Plenum Rated, Conductive: Type OFCP or Type OFNP in listed plenum communications raceway.
10. Plenum Rated, Conductive: Type OFCP, Type OFNP, Type OFCR, or Type OFNR in metallic conduit installed per NFPA 70, Article 300.22, "Wiring in Ducts, Plenums, and Other Air-Handling Spaces."
11. Riser Rated, Conductive: Type OFCP, Type OFNP, or Type OFCR or Type OFNP in listed riser or plenum communications raceway.
12. Riser Rated, Conductive: Type OFCP, Type OFNP, Type OFCR, or Type OFNR in metallic conduit.
2.5 9/125 MICROMETER SINGLE-MODE, INDOOR-OUTDOOR OPTICAL FIBER CABLE (OS1)

A. Description: Single mode, 9/125-micrometer, 12 fibers, single loose tube, armored optical fiber cable.

B. Description: Single mode, 9/125-micrometer, 24 fibers, stranded loose tube, armored optical fiber cable.

C. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. 3M.
 2. Belden CDT Networking Division/NORDX.
 3. General Cable; General Cable Corporation.
 4. Mohawk; a division of Belden Networking, Inc.

D. Standards:
 1. Comply with TIA-492CAAA for detailed specifications.
 2. Comply with TIA-568-C.3 for performance specifications.
 3. Comply with ICEA S-104-696 for mechanical properties.

E. Armored cable shall be steel armored type.

F. Maximum Attenuation: 0.5 dB/km at 1310 nm; 0.5 dB/km at 1550 nm.

G. Jacket:
 2. Cable cordage jacket, fiber, unit, and group color shall be according to TIA-598-D.
 3. Imprinted with fiber count, fiber type, and aggregate length at regular intervals not to exceed 40 inches.

H. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444, UL 1651, and NFPA 70 for the following types:
 1. Plenum Rated, Nonconductive: Type OFNP, complying with NFPA 262.
 2. Plenum Rated, Nonconductive: Type OFNP in listed plenum communications raceway.
 3. Plenum Rated, Nonconductive: Type OFNP, or Type OFNR in metallic conduit.
 4. Plenum Rated, Nonconductive: Type OFNP, complying with NFPA 262; Type OFNP in listed plenum communications raceway; or Type OFN, Type OFNG, Type OFNP, or Type OFNR in metallic conduit.
 5. Riser Rated, Nonconductive: Type OFNR or Type OFNP, complying with UL 1666.
 6. Riser Rated, Nonconductive: Type OFNP or Type OFNR in listed riser or plenum communications raceway.
 7. Riser Rated, Nonconductive: Type OFNP, or Type OFNR in metallic conduit installed per NFPA 70, Article 300.22, "Wiring in Ducts, Plenums, and Other Air-Handling Spaces."
 8. Plenum Rated, Armored (Conductive): Type OFCP, complying with NFPA 262.
9. Plenum Rated, Armored (Conductive): Type OFCP or Type OFNP in listed plenum communications raceway.
10. Plenum Rated, Armored (Conductive): Type OFCP, Type OFNP, Type OFCR, or Type OFNR in metallic conduit installed per NFPA 70, Article 300.22, "Wiring in Ducts, Plenums, and Other Air-Handling Spaces."
11. Riser Rated, Armored (Conductive): Type OFCR or Type OFCP; complying with UL 1666 and ICEA S-103-701.
12. Riser Rated, Armored (Conductive): Type OFCP, Type OFNP, or Type OFCR or Type OFNP in listed riser or plenum communications raceway.
13. Riser Rated, Armored (Conductive): Type OFCP, Type OFNP, Type OFCR, or Type OFNR in metallic conduit.

2.6 OPTICAL FIBER CABLE HARDWARE

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. ADC.
 3. Belden CDT Networking Division/NORDX.
 4. Hubbell Premise Wiring.
 5. Siemon Co. (The).

B. Standards:
 2. Comply with TIA-568-C.3.

C. Cross-Connects and Patch Panels: Modular panels housing multiple-numbered, duplex cable connectors.
 1. Number of Connectors per Field: One for each fiber of cable or cables assigned to field, plus spares and blank positions adequate to suit specified expansion criteria.

D. Patch Cords: Factory-made, dual-fiber cables in 36-inch lengths.

E. Connector Type: Type SC complying with TIA-604-3-B,/ Type ST complying with TIA-604-2-B, /Type LC complying with TIA-604-10-B,/ Type MT-RJ complying with TIA-604-12, /Type MPO complying with TIA-604-5-D, connectors.

F. Plugs and Plug Assemblies:
 1. Male; color-coded modular telecommunications connector designed for termination of a single optical fiber cable.
 2. Insertion loss not more than 0.25 dB.
 3. Marked to indicate transmission performance.

G. Jacks and Jack Assemblies:
1. Female; quick-connect, simplex and duplex; fixed telecommunications connector designed for termination of a single optical fiber cable.
2. Insertion loss not more than 0.25 dB.
3. Marked to indicate transmission performance.
4. Designed to snap-in to a patch panel or faceplate.

2.7 GROUNDING

A. Comply with requirements in Section 27 05 26 "Grounding and Bonding for Communications Systems" for grounding conductors and connectors.
B. Comply with TIA-607-B.

2.8 IDENTIFICATION PRODUCTS

A. Comply with TIA-606-B and UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

2.9 SOURCE QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to evaluate cables.
B. Factory test multimode optical fiber cables according to TIA-526-14-B and TIA-568-C.3.
C. Factory test pre-terminated optical fiber cable assemblies according to TIA-526-14-B and TIA-568-C.3.
D. Cable will be considered defective if it does not pass tests and inspections.
E. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 ENTRANCE FACILITIES

A. Coordinate backbone cabling with the protectors and demarcation point provided by communications service provider.

3.2 WIRING METHODS

A. Wiring Method: Install cables in raceways and cable trays except within consoles, cabinets, desks, and counters and except in accessible ceiling spaces, in attics, and in gypsum board partitions where unenclosed wiring method may be used. Conceal raceway and cables except in unfinished spaces.
1. Install plenum cable in environmental air spaces, including plenum ceilings.
2. Comply with requirements for pathways specified in Section 27 05 28 "Pathways for Communications Systems."

B. Wiring Method: Conceal conductors and cables in accessible ceilings, walls, and floors where possible.

C. Wiring within Enclosures: Bundle, lace, and train cables within enclosures. Connect to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Provide and use lacing bars and distribution spools.

3.3 INSTALLATION OF OPTICAL FIBER BACKBONE CABLES

A. Comply with NECA 1, NECA 301, and NECA/BICSI 568.

B. General Requirements for Optical Fiber Cabling Installation:

1. Comply with TIA-568-C.1 and TIA-568-C.3.
2. Comply with BICSI ITSIMM, Ch. 6, "Cable Termination Practices."
3. Terminate all cables; no cable shall contain unterminated elements. Make terminations only at indicated outlets, terminals, cross-connects, and patch panels.
4. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches and not more than 6 inches from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
5. Install lacing bars to restrain cables, to prevent straining connections, and to prevent bending cables to smaller radii than minimums recommended by manufacturer.
6. Bundle, lace, and train cable to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIMM, "Cabling Termination Practices" Chapter. Use lacing bars and distribution spools.
7. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.
8. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used for heating.
9. In the communications equipment room, provide a 10-foot-long service loop on each end of cable.
10. Pulling Cable: Comply with BICSI ITSIMM, Ch. 4, "Pulling Cable." Monitor cable pull tensions.
11. Cable may be terminated on connecting hardware that is rack or cabinet mounted.

C. Open-Cable Installation:

1. Install cabling with horizontal and vertical cable guides in telecommunications spaces with terminating hardware and interconnection equipment.
2. Cable shall not be run through structural members or in contact with pipes, ducts, or other potentially damaging items.

D. Installation of Cable Routed Exposed under Raised Floors:

1. Install plenum-rated cable only.
2. Install cabling after the flooring system has been installed in raised floor areas.
3. Coil cable 6 feet long not less than 12 inches in diameter below each feed point.

E. Group connecting hardware for cables into separate logical fields.

3.4 FIRESTOPPING

A. Comply with requirements in Section 07 84 13 "Penetration Firestopping."

B. Comply with TIA-569-D, Annex A, "Firestopping."

C. Comply with BICSI ITSIMM, "Firestopping" Chapter.

3.5 GROUNDING

A. Install grounding according to BICSI ITSIMM, "Grounding (Earthing), Bonding, and Electrical Protection" Chapter.

B. Comply with TIA-607-B and NECA/BICSI-607.

C. Locate grounding bus bar to minimize the length of bonding conductors. Fasten to wall allowing at least 2-inch clearance behind the grounding bus bar. Connect grounding bus bar with a minimum No. 4 AWG grounding electrode conductor from grounding bus bar to suitable electrical building ground.

D. Bond metallic equipment to the grounding bus bar, using not smaller than No. 6 AWG equipment grounding conductor.

3.6 IDENTIFICATION

A. Identify system components, wiring, and cabling complying with TIA-606-B. Comply with requirements for identification specified in Section 27 05 53 "Identification for Communications Systems."

1. Color-code cross-connect fields and apply colors to voice and data service backboards, connections, covers, and labels.

B. Paint and label colors for equipment identification shall comply with TIA-606-B for Class 2 Class 3 and Class 4 level of administration including optional identification requirements of this standard.

C. Comply with requirements in Section 27 15 23 "Communications Optical Fiber Horizontal Cabling" for cable and asset management software.

D. Cable Schedule: Install in a prominent location in each equipment room and wiring closet. List incoming and outgoing cables and their designations, origins, and destinations. Protect with rigid frame and clear plastic cover. Furnish an electronic copy of final comprehensive schedules for Project.
E. Cabling Administration Drawings: Show building floor plans with cabling administration-point labeling. Identify labeling convention and show labels for telecommunications closets, backbone pathways and cables, terminal hardware and positions, horizontal cables, work areas and workstation terminal positions, grounding buses and pathways, and equipment grounding conductors.

F. Cable and Wire Identification:

1. Label each cable within 4 inches of each termination and tap, where it is accessible in a cabinet or junction or outlet box, and elsewhere as indicated.
2. Each wire connected to building-mounted devices is not required to be numbered at device if color of wire is consistent with associated wire connected and numbered within panel or cabinet.
3. Exposed Cables and Cables in Cable Trays and Wire Troughs: Label each cable at intervals not exceeding 15 feet.
4. Label each unit and field within distribution racks and frames.
5. Identification within Connector Fields in Equipment Rooms and Wiring Closets: Label each connector and each discrete unit of cable-terminating and connecting hardware. Where similar jacks and plugs are used for both voice and data communication cabling, use a different color for jacks and plugs of each service.

G. Labels shall be preprinted or computer-printed type with printing area and font color that contrasts with cable jacket color but still complies with requirements in TIA 606-B, for the following:

1. Flexible vinyl or polyester that flexes as cables are bent.

3.7 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.

B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

D. Perform tests and inspections with the assistance of a factory-authorized service representative.

E. Tests and Inspections:

1. Visually inspect optical fiber jacket materials for NRTL certification markings. Inspect cabling terminations in communications equipment rooms for compliance with color-coding for pin assignments, and inspect cabling connections for compliance with TIA-568-C.1.
2. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.
3. Optical Fiber Cable Tests:
a. Test instruments shall meet or exceed applicable requirements in TIA-568-C.1. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.

b. Link End-to-End Attenuation Tests:

1) Horizontal and multimode backbone link measurements: Test at 850 or 1300 nm in one direction according to TIA-526-14-B, Method B, One Reference Jumper.

2) Attenuation test results for backbone links shall be less than 2.0 dB. Attenuation test results shall be less than those calculated according to equation in TIA-568-C.1.

F. Data for each measurement shall be documented. Data for submittals shall be printed in a summary report that is formatted similar to Table 10.1 in BICSI TDMM, or transferred from the instrument to the computer, saved as text files, and printed and submitted.

G. Remove and replace cabling where test results indicate that it does not comply with specified requirements.

H. End-to-end cabling will be considered defective if it does not pass tests and inspections.

I. Prepare test and inspection reports.

END OF SECTION
SECTION 28 46 21.11
ADDRESSABLE FIRE-ALARM SYSTEM

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 2. System smoke detectors.
 4. Device guards.
B. Related Requirements:
 1. Section 26 05 19 (Low Voltage Electrical Power, Conductor & Cable) for fire-alarm systems.

1.3 DEFINITIONS
A. EMT: Electrical Metallic Tubing.
B. FACP: Fire Alarm Control Panel.
C. HLI: High Level Interface.
E. PC: Personal computer.
F. VESDA: Very Early Smoke-Detection Apparatus.

1.4 SUBMITTALS
A. Product Data: For each type of product, including furnished options and accessories.
 1. Include construction details, material descriptions, dimensions, profiles, and finishes.
 2. Include rated capacities, operating characteristics, and electrical characteristics.
B. Shop Drawings: For fire-alarm system.

1. Comply with recommendations and requirements in the "Documentation" section of the "Fundamentals" chapter in NFPA 72.
2. Include plans, elevations, sections, details, and attachments to other work.
3. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and locations. Indicate conductor sizes, indicate termination locations and requirements, and distinguish between factory and field wiring.
4. Detail assembly and support requirements.
5. Include voltage drop calculations for notification-appliance circuits.
6. Include statement from manufacturer that all equipment and components have been tested as a system and meet all requirements in this Specification and in NFPA 72.
7. Include performance parameters and installation details for each detector.
8. Verify that each duct detector is listed for complete range of air velocity, temperature, and humidity possible when air-handling system is operating.
9. Include floor plans to indicate final outlet locations showing address of each addressable device. Show size and route of cable and conduits and point-to-point wiring diagrams.

C. General Submittal Requirements:

1. Submittals shall be approved by authorities having jurisdiction prior to submitting them to Architect.
2. Shop Drawings shall be prepared by persons with the following qualifications:
 a. Trained and certified by manufacturer in fire-alarm system design.
 b. NICET-certified, fire-alarm technician; Level IV minimum.
 c. Licensed or certified by authorities having jurisdiction.

D. Informational Submittals

1. Qualification Data: For Installer.
2. Field quality-control reports.

E. Closeout Submittals

1. Operation and Maintenance Data: For fire-alarm systems and components to include in emergency, operation, and maintenance manuals.
 a. In addition to items specified in Section 01 78 23 "Operation and Maintenance Data," include the following and deliver copies to authorities having jurisdiction:
 1) Comply with the "Records" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72.
 2) Provide "Fire Alarm and Emergency Communications System Record of Completion Documents" according to the "Completion Documents" Article in the "Documentation" section of the "Fundamentals" chapter in NFPA 72.
 3) Complete wiring diagrams showing connections between all devices and equipment. Each conductor shall be numbered at every junction point with indication of origination and termination points.
 4) Riser diagram.
5) Device addresses.
6) Manufacturer's required maintenance related to system warranty requirements.
7) Abbreviated operating instructions for mounting at fire-alarm control unit and each annunciator unit.

2. Software and Firmware Operational Documentation:
 a. Software operating and upgrade manuals.
 b. Program Software Backup: On magnetic media or compact disk, complete with data files.
 c. Device address list.
 d. Printout of software application and graphic screens.

F. Maintenance Material Submittals
 1. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 a. Lamps for Strobe Units: Quantity equal to 10 percent of amount installed, but no fewer than one unit.
 b. Audible and Visual Notification Appliances: 2 of each type installed.

1.5 QUALITY ASSURANCE
 A. Installer Qualifications: Personnel shall be trained and certified by manufacturer for installation of units required for this Project.
 B. Installer Qualifications: Installation shall be by personnel certified by NICET as fire-alarm Level IV technician.
 C. NFPA Certification: Obtain certification according to NFPA 72 by an NRTL (nationally recognized testing laboratory).
 D. NFPA Certification: Obtain certification according to NFPA 72 by a UL-listed alarm company.
 E. NFPA Certification: Obtain certification according to NFPA 72 in the form of a placard by an FM Global-approved alarm company.
 F. NFPA Certification: Obtain certification according to NFPA 72 by.

1.6 PROJECT CONDITIONS
 A. Perform a full test of the existing system prior to starting work. Document any equipment or components not functioning as designed.
 B. Interruption of Existing Fire-Alarm Service: Do not interrupt fire-alarm service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary guard service according to requirements indicated:
1. Notify Owner no fewer than seven days in advance of proposed interruption of fire-alarm service.
2. Do not proceed with interruption of fire-alarm service without Owner's written permission.

C. Use of Devices during Construction: Protect devices during construction unless devices are placed in service to protect the facility during construction.

1.7 SEQUENCING AND SCHEDULING
A. Existing Fire-Alarm Equipment: Maintain existing equipment fully operational until new equipment has been tested and accepted.

1.8 WARRANTY
A. Special Warranty: Manufacturer agrees to repair or replace fire-alarm system equipment and components that fail in materials or workmanship within specified warranty period.
 1. Warranty Extent: All equipment and components not covered in the Maintenance Service Agreement.
 2. Warranty Period: Two (2) years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION
A. Source Limitations for Fire-Alarm System and Components: Provide system manufacturer's certification that all components provided have been tested as, and will operate as, a system.
B. Noncoded, UL-certified addressable system, with multiplexed signal transmission and horn/strobe evacuation.
C. Automatic sensitivity control of certain smoke detectors.
D. All components provided shall be listed for use with the selected system.
E. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.2 SYSTEMS OPERATIONAL DESCRIPTION
A. Fire-alarm signal initiation shall be by one or more of the following devices and systems:
 1. Smoke detectors.
 2. Duct smoke detectors.
B. Fire-alarm signal shall initiate the following actions:
1. Continuously operate alarm notification appliances.
2. Identify alarm and specific initiating device at fire-alarm control unit.
3. Transmit an alarm signal to the remote alarm receiving station.
4. Switch heating, ventilating, and air-conditioning equipment controls to fire-alarm mode.
5. Indicate device in alarm on the graphic annunciator.

2.3 NOTIFICATION APPLIANCES

A. Manufacturers: Subject to compliance with requirements, provide products by the following:

1. Match existing.

B. General Requirements for Notification Appliances: Individually addressed, connected to a signaling-line circuit, equipped for mounting as indicated, and with screw terminals for system connections.

C. General Requirements for Notification Appliances: Connected to notification-appliance signal circuits, zoned as indicated, equipped for mounting as indicated, and with screw terminals for system connections.

1. Combination Devices: Factory-integrated audible and visible devices in a single-mounting assembly, equipped for mounting as indicated, and with screw terminals for system connections.

D. Chimes, Low-Level Output: Vibrating type, 75-dBA minimum rated output.

E. Chimes, High-Level Output: Vibrating type, 81-dBA minimum rated output.

F. Horns: Electric-vibrating-polarized type, 24-V dc; with provision for housing the operating mechanism behind a grille. Comply with UL 464. Horns shall produce a sound-pressure level of 90 dBA, measured 10 feet from the horn, using the coded signal prescribed in UL 464 test protocol.

G. Visible Notification Appliances: Xenon strobe lights complying with UL 1971, with clear or nominal white polycarbonate lens mounted on an aluminum faceplate. The word "FIRE" is engraved in minimum 1-inch-high letters on the lens.

1. Rated Light Output:

 a. 15/30/75/110/177 cd as required per NFPA72 and/or AHJ.
 b. 15/30/75/110 cd, selectable in the field.

2. Mounting: Wall mounted unless otherwise indicated.
3. For units with guards to prevent physical damage, light output ratings shall be determined with guards in place.
4. Flashing shall be in a temporal pattern, synchronized with other units.
5. Strobe Leads: Factory connected to screw terminals.
2.4 ADDRESSABLE INTERFACE DEVICE

A. General:
 1. Include address-setting means on the module.
 2. Store an internal identifying code for control panel use to identify the module type.
 3. Listed for controlling HVAC fan motor controllers.

B. Monitor Module: Microelectronic module providing a system address for alarm-initiating
devices for wired applications with normally open contacts.

C. Integral Relay: Capable of providing a direct signal to elevator controller to initiate elevator recall and to circuit-breaker shunt trip for power shutdown.
 1. Allow the control panel to switch the relay contacts on command.
 2. Have a minimum of four normally open and four normally closed contacts available for field wiring.

D. Control Module:
 1. Operate notification devices.
 2. Operate solenoids for use in sprinkler service.

2.5 DEVICE GUARDS

A. Description: Welded wire mesh of size and shape for the manual station, smoke detector, gong, or other device requiring protection. Provide on devices where it is required per site conditions.
 1. Factory fabricated and furnished by device manufacturer.
 2. Finish: Paint of color to match the protected device.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and conditions for compliance with requirements for ventilation, temperature, humidity, and other conditions affecting performance of the Work.
 1. Verify that manufacturer's written instructions for environmental conditions have been permanently established in spaces where equipment and wiring are installed, before installation begins.

B. Examine roughing-in for electrical connections to verify actual locations of connections before installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."

B. Install framed instructions in a location visible from fire-alarm control unit.

3.3 GROUNDING

A. Ground fire-alarm control unit and associated circuits; comply with IEEE 1100. Install a ground wire from main service ground to fire-alarm control unit.

B. Ground shielded cables at the control panel location only. Insulate shield at device location.

3.4 FIELD QUALITY CONTROL

A. Field tests shall be witnessed by Architect/authorities having jurisdiction/Owner’s Representative.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

C. Perform tests and inspections.

D. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

1. Visual Inspection: Conduct visual inspection prior to testing.
 a. Inspection shall be based on completed record Drawings and system documentation that is required by the "Completion Documents, Preparation" table in the "Documentation" section of the "Fundamentals" chapter in NFPA 72.
 b. Comply with the "Visual Inspection Frequencies" table in the "Inspection" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72; retain the "Initial/Reacceptance" column and list only the installed components.

3. Test audible appliances for the public operating mode according to manufacturer's written instructions. Perform the test using a portable sound-level meter complying with Type 2 requirements in ANSI S1.4.

4. Test audible appliances for the private operating mode according to manufacturer's written instructions.

5. Test visible appliances for the public operating mode according to manufacturer's written instructions.

6. Factory-authorized service representative shall prepare the "Fire Alarm System Record of Completion" in the "Documentation" section of the "Fundamentals" chapter in NFPA 72 and the "Inspection and Testing Form" in the "Records" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72.
E. Reacceptance Testing: Perform reacceptance testing to verify the proper operation of added or replaced devices and appliances.

F. Fire-alarm system will be considered defective if it does not pass tests and inspections.

G. Prepare test and inspection reports.

H. Maintenance Test and Inspection: Perform tests and inspections listed for weekly, monthly, quarterly, and semiannual periods. Use forms developed for initial tests and inspections.

I. Annual Test and Inspection: One year after date of Substantial Completion, test fire-alarm system complying with visual and testing inspection requirements in NFPA 72. Use forms developed for initial tests and inspections.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain fire-alarm system.

END OF SECTION