VOLUME III

PROJECT MANUAL

MY MARKETPLACE SUBMISSION

TETRA TECH
240 Continental Drive, Suite 200
Newark, Delaware 19713
phone: 302.738.7351
fax: 302.454.5989

Cape Henlopen School District

R. Shields Elementary School

Addition and Renovation

Lewes, Delaware

200-81485-16005

FEBRUARY 14, 2020
SECTION 00 01 10

TABLE OF CONTENTS

VOLUME I

DIVISION 00 – PROCUREMENT AND CONTRACTING REQUIREMENTS

00 01 01 Title Page/Consultant Directory
00 01 07 Seals Page
00 01 10 Table of Contents
00 01 15 List of Drawings
00 11 16 Advertisement for Bid
00 21 13 Instructions to Bidders
00 41 26 Bid Form
Sub Listing
Non-Collusion Statement
Affidavit of Employee Drug Testing Program
00 43 13 State of Delaware Bid Bond
00 52 26 Standard form of Agreement between Owner and Contractor (AIA A132-2009)
00 61 13.13 State of Delaware Performance Bond
00 61 13.16 State of Delaware Payment Bond
00 62 76 Monthly Requisition & Continuation Sheet (AIA G732-2009 & G703-1992)
00 63 00 Standard Forms Certificates and Modification Forms
00 72 26 General Conditions of the Contract for Construction (AIA A232-2009)
00 73 13 Supplementary General Conditions A232-2009 including Attachment “A” Construction Manager General Conditions
00 73 16 Insurance including sample Certificate of Insurance
00 73 46 Delaware Prevailing Wage Rates
00 80 13 General Requirements
00 81 14 Drug Testing Forms
00 93 00 Reference Materials
Geotechnical Reports (Boring Logs)
Payroll Report Form
Asbestos Report

DIVISION 01 – GENERAL REQUIREMENTS

01 11 00 Summary of Work
01 12 00 Multiple Contract Summary
01 12 16 Alteration Project Procedures
01 14 00 Work Restrictions
01 20 00 Price and Payment Procedures
01 21 00 Allowances
01 22 00 Unit Prices
01 23 00 Alternates
01 25 00 Substitution Procedures
01 25 01 Substitution Request Sample Form
01 26 00 Contract Modification Procedures
01 29 00 Payment Procedures
Schedule of Values
Project Management and Coordination
Project Coordination
Construction Schedule
Construction Progress Documentation
Submittal Procedures
CADD Release Form
Field Engineering
Safety
Quality Control
Regulatory Requirements
References
Reference Standards
Temporary Construction Utilities, Facilities & Controls
Materials and Equipment Product Requirements
Contract Closeout
Cutting and Patching
Construction Waste Management
Facility Startup/Commissioning
Closeout Procedures
Warranties
Statement of Special Inspections
Commissioning Requirements

N

O

T

FO

R

BI

D
D

IN

G

PU

R

PO
SE

01 29 73
01 31 00
01 31 13
01 32 16
01 32 33
01 33 00
01 33 01
01 33 19
01 35 00
01 40 00
01 41 00
01 42 00
01 42 19
01 50 00
01 60 00
01 70 00
01 73 29
01 74 19
01 75 00
01 77 00
01 78 36
01 80 00
01 91 10

200-81485-16005

S

CAPE HENLOPEN SCHOOL DISTRICT
R. SHIELDS ELEMENTARY SCHOOL

Tetra Tech

TABLE OF CONTENTS
00 01 10 - 2


TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Division</th>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>02</td>
<td>00</td>
<td>Demolition and Removal</td>
</tr>
<tr>
<td>02</td>
<td>16</td>
<td>Structural Demolition</td>
</tr>
<tr>
<td>02</td>
<td>19</td>
<td>Selective Demolition</td>
</tr>
<tr>
<td>03</td>
<td>00</td>
<td>Cast-In-Place Concrete</td>
</tr>
<tr>
<td>04</td>
<td>10</td>
<td>Masonry Cleaning</td>
</tr>
<tr>
<td>04</td>
<td>20.63</td>
<td>Brick Masonry Repair</td>
</tr>
<tr>
<td>04</td>
<td>40.63</td>
<td>Stone Repair</td>
</tr>
<tr>
<td>04</td>
<td>00</td>
<td>Unit Masonry</td>
</tr>
<tr>
<td>04</td>
<td>20</td>
<td>Cast Stone Masonry</td>
</tr>
<tr>
<td>05</td>
<td>00</td>
<td>Structural Steel</td>
</tr>
<tr>
<td>05</td>
<td>13</td>
<td>Architecturally Exposed Structural Steel Framing</td>
</tr>
<tr>
<td>05</td>
<td>21</td>
<td>Steel Joist Framing</td>
</tr>
<tr>
<td>05</td>
<td>31</td>
<td>Steel Decking</td>
</tr>
<tr>
<td>05</td>
<td>40</td>
<td>Cold-Formed Metal Framing</td>
</tr>
<tr>
<td>05</td>
<td>50</td>
<td>Metal Fabrications</td>
</tr>
<tr>
<td>05</td>
<td>51</td>
<td>Metal Pan Stairs</td>
</tr>
<tr>
<td>05</td>
<td>52</td>
<td>Pipe and Tube Railings</td>
</tr>
<tr>
<td>06</td>
<td>60</td>
<td>Translucent Resin Panel System</td>
</tr>
<tr>
<td>06</td>
<td>10</td>
<td>Rough Carpentry</td>
</tr>
<tr>
<td>06</td>
<td>16</td>
<td>Sheathing</td>
</tr>
<tr>
<td>06</td>
<td>40</td>
<td>Exterior Architectural Woodwork</td>
</tr>
<tr>
<td>06</td>
<td>40</td>
<td>Interior Architectural Woodwork</td>
</tr>
<tr>
<td>07</td>
<td>01</td>
<td>Preparation for Reroofing</td>
</tr>
<tr>
<td>07</td>
<td>19</td>
<td>Foamed-in-Place Insulation</td>
</tr>
<tr>
<td>07</td>
<td>25</td>
<td>Weather Barriers</td>
</tr>
<tr>
<td>07</td>
<td>26</td>
<td>Fluid-Applied Membrane Air Barriers</td>
</tr>
<tr>
<td>07</td>
<td>31</td>
<td>Asphalt Shingles</td>
</tr>
<tr>
<td>07</td>
<td>41</td>
<td>Standing-Seam Metal Roof Panels</td>
</tr>
<tr>
<td>07</td>
<td>42.13</td>
<td>Formed Metal Wall Panels</td>
</tr>
<tr>
<td>07</td>
<td>42.23</td>
<td>Composite Material Wall Panels</td>
</tr>
<tr>
<td>07</td>
<td>42.33</td>
<td>Phenolic Wall Panels</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

DIVISION 08 – OPENINGS

08 06 71 Door Hardware Schedule
08 11 13 Hollow Metal Doors and Frames
08 14 16 Flush Wood Doors
08 14 33 Stile & Rail Wood Doors
08 16 13 Fiberglass Doors
08 31 13 Access Doors and Frames
08 33 13 Coiling Counter Doors
08 33 23 Overhead Coiling Doors
08 41 13 Aluminum-Framed Entrances and Storefronts
08 41 23 Fire-Rated Steel-Framed Entrances and Storefronts
08 44 13 Glazed Aluminum Curtain Walls
08 51 23 Aluminum Historical Replication Windows
08 52 13 Aluminum-Clad Wood Windows (Alt. No. 10)
08 62 00 Unit Skylights
08 71 00 Door Hardware
08 80 00 Glazing
08 88 13 Fire-Resistant Glazing
08 91 19 Fixed Louvers

DIVISION 09 – FINISHES

09 00 00 Finish Schedule
09 22 16 Non-Structural Metal Framing
09 23 00 Gypsum Plastering
09 27 13 Glass-Fiber-Reinforced Gypsum Fabrications
09 29 00 Gypsum Board
09 30 13 Ceramic Tiling
09 51 13 Acoustical Panel Ceilings
09 64 00 Wood Flooring Repairs
09 64 53 Resilient Wood Flooring Assemblies
09 65 13 Resilient Base and Accessories
09 65 19 Resilient Tile Flooring
09 65 36 Static-Control Resilient Flooring
09 66 13 Portland Cement Terrazzo Flooring Repair
09 67 23 Resinous Flooring
09 68 13 Tile Carpeting

Tetra Tech

NOT FOR BIDDING PURPOSES
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>09 77 23</td>
<td>Fabric-Wrapped Panels</td>
</tr>
<tr>
<td>09 84 33</td>
<td>Sound-Absorbing Wall Units</td>
</tr>
<tr>
<td>09 91 13</td>
<td>Exterior Painting</td>
</tr>
<tr>
<td>09 91 23</td>
<td>Interior Painting</td>
</tr>
<tr>
<td>10 11 00</td>
<td>Visual Display Units</td>
</tr>
<tr>
<td>10 12 00</td>
<td>Display Cases</td>
</tr>
<tr>
<td>10 21 13.19</td>
<td>Plastic Toilet Compartments</td>
</tr>
<tr>
<td>10 21 23</td>
<td>Cubicle Curtains and Track</td>
</tr>
<tr>
<td>10 22 19</td>
<td>Demountable Partitions</td>
</tr>
<tr>
<td>10 28 00</td>
<td>Toilet, Bath, and Laundry Accessories</td>
</tr>
<tr>
<td>10 44 13</td>
<td>Fire Protection Cabinets</td>
</tr>
<tr>
<td>10 44 16</td>
<td>Fire Extinguishers</td>
</tr>
<tr>
<td>10 51 13</td>
<td>Metal Lockers</td>
</tr>
<tr>
<td>10 51 23</td>
<td>Plastic-Laminate-Clad Lockers</td>
</tr>
<tr>
<td>10 75 00</td>
<td>Flag Poles</td>
</tr>
<tr>
<td>11 13 13</td>
<td>Loading Dock Bumpers</td>
</tr>
<tr>
<td>11 30 13</td>
<td>Residential Appliances</td>
</tr>
<tr>
<td>11 40 00</td>
<td>Foodservice Equipment</td>
</tr>
<tr>
<td>11 61 43</td>
<td>Stage Curtains</td>
</tr>
<tr>
<td>11 66 23</td>
<td>Gymnasium Equipment</td>
</tr>
<tr>
<td>11 66 53</td>
<td>Gymnasium Dividers</td>
</tr>
<tr>
<td>12 24 13</td>
<td>Roller Window Shades</td>
</tr>
<tr>
<td>12 32 16</td>
<td>Manufactured Plastic-Laminate-Clad Casework</td>
</tr>
<tr>
<td>12 36 61.16</td>
<td>Solid Surfacing Countertops</td>
</tr>
<tr>
<td>12 61 00</td>
<td>Fixed Audience Seating</td>
</tr>
<tr>
<td>14 24 00</td>
<td>Hydraulic Elevators</td>
</tr>
</tbody>
</table>

DIVISION 11 – EQUIPMENT

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 13 13</td>
<td>Loading Dock Bumpers</td>
</tr>
<tr>
<td>11 30 13</td>
<td>Residential Appliances</td>
</tr>
<tr>
<td>11 40 00</td>
<td>Foodservice Equipment</td>
</tr>
<tr>
<td>11 61 43</td>
<td>Stage Curtains</td>
</tr>
<tr>
<td>11 66 23</td>
<td>Gymnasium Equipment</td>
</tr>
<tr>
<td>11 66 53</td>
<td>Gymnasium Dividers</td>
</tr>
</tbody>
</table>

DIVISION 12 – FURNISHINGS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 24 13</td>
<td>Roller Window Shades</td>
</tr>
<tr>
<td>12 32 16</td>
<td>Manufactured Plastic-Laminate-Clad Casework</td>
</tr>
<tr>
<td>12 36 61.16</td>
<td>Solid Surfacing Countertops</td>
</tr>
<tr>
<td>12 61 00</td>
<td>Fixed Audience Seating</td>
</tr>
</tbody>
</table>

DIVISION 14 – CONVEYING EQUIPMENT

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 24 00</td>
<td>Hydraulic Elevators</td>
</tr>
</tbody>
</table>
VOLUME III

DIVISION 21 – FIRE PROTECTION

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 05 13</td>
<td>Common Motor Requirements for Fire Suppression Equipment</td>
</tr>
<tr>
<td>21 05 17</td>
<td>Sleeves and Sleeve Seals for Fire Suppression Piping</td>
</tr>
<tr>
<td>21 05 18</td>
<td>Escutcheons for Fire-Suppression Piping</td>
</tr>
<tr>
<td>21 05 23</td>
<td>General-duty valves for water-based fire suppression piping</td>
</tr>
<tr>
<td>21 05 53</td>
<td>Identification for Fire-Suppression piping and equipment</td>
</tr>
<tr>
<td>21 11 00</td>
<td>Facility Fire Suppression Water Service piping</td>
</tr>
<tr>
<td>21 11 19</td>
<td>Fire-Department Connections</td>
</tr>
<tr>
<td>21 12 00</td>
<td>Fire Suppression Standpipes</td>
</tr>
<tr>
<td>21 13 13</td>
<td>Wet-Pipe Sprinkler Systems</td>
</tr>
<tr>
<td>21 31 13</td>
<td>Electric-drive centrifugal Fire Pumps</td>
</tr>
<tr>
<td>21 34 00</td>
<td>Pressure-Maintenance Pumps</td>
</tr>
<tr>
<td>21 35 00</td>
<td>Fire Protection Cabinets</td>
</tr>
</tbody>
</table>

DIVISION 22 – PLUMBING

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>22 05 13</td>
<td>Common Motor Requirements for Plumbing Equipment</td>
</tr>
<tr>
<td>22 05 16</td>
<td>Expansion Fittings and Loops for Plumbing Piping</td>
</tr>
<tr>
<td>22 05 17</td>
<td>Sleeves and Sleeve Seals for Plumbing Piping</td>
</tr>
<tr>
<td>22 05 18</td>
<td>Escutcheons for Plumbing Piping</td>
</tr>
<tr>
<td>22 05 19</td>
<td>Meters and Gages for Plumbing Piping</td>
</tr>
<tr>
<td>22 05 23.12</td>
<td>Ball Valves for Plumbing Piping</td>
</tr>
<tr>
<td>22 05 23.13</td>
<td>Butterfly Valves for Plumbing Piping</td>
</tr>
<tr>
<td>22 05 23.14</td>
<td>Check Valves for Plumbing Piping</td>
</tr>
<tr>
<td>22 05 23.15</td>
<td>Gate Valves for Plumbing Piping</td>
</tr>
<tr>
<td>22 05 29</td>
<td>Hangers and Supports for Plumbing Piping and Equipment</td>
</tr>
<tr>
<td>22 05 53</td>
<td>Identification for Plumbing Piping and Equipment</td>
</tr>
<tr>
<td>22 07 19</td>
<td>Plumbing Piping Insulation</td>
</tr>
<tr>
<td>22 11 13</td>
<td>Facility Water Distribution Piping</td>
</tr>
<tr>
<td>22 11 16</td>
<td>Domestic Water Piping</td>
</tr>
<tr>
<td>22 11 19</td>
<td>Domestic Water Piping Specialties</td>
</tr>
<tr>
<td>22 11 23</td>
<td>Domestic Water Pumps</td>
</tr>
<tr>
<td>22 12 23</td>
<td>Facility Indirect-Portable-Water Storage Tanks</td>
</tr>
<tr>
<td>22 13 13</td>
<td>Facility Sanitary Sewers</td>
</tr>
<tr>
<td>22 13 16</td>
<td>Sanitary Waste and Vent Piping</td>
</tr>
<tr>
<td>22 13 19</td>
<td>Sanitary Waste Piping Specialties</td>
</tr>
<tr>
<td>22 14 13</td>
<td>Facility Storm Drainage Piping</td>
</tr>
<tr>
<td>22 14 23</td>
<td>Storm Drainage Piping Specialties</td>
</tr>
<tr>
<td>22 14 29</td>
<td>Sump Pumps</td>
</tr>
<tr>
<td>22 16 23</td>
<td>Natural-Gas Piping</td>
</tr>
<tr>
<td>22 35 00</td>
<td>Fuel-Fire, Domestic-Water Heater</td>
</tr>
<tr>
<td>22 42 13.13</td>
<td>Commercial Water Closets</td>
</tr>
<tr>
<td>22 42 13.16</td>
<td>Commercial Urinals</td>
</tr>
<tr>
<td>22 42 16.13</td>
<td>Commercial Lavatories</td>
</tr>
<tr>
<td>22 42 16.16</td>
<td>Commercial Sinks</td>
</tr>
<tr>
<td>22 42 23</td>
<td>Commercial Showers</td>
</tr>
<tr>
<td>22 45 00</td>
<td>Emergency Plumbing Fixtures</td>
</tr>
<tr>
<td>22 47 16</td>
<td>Pressure Water Coolers</td>
</tr>
</tbody>
</table>
DIVISION 23 – HEATING, VENTILATING AND AIR CONDITIONING

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>23 05 13</td>
<td>Common Motor Requirements For HVAC Equipment</td>
</tr>
<tr>
<td>23 05 17</td>
<td>Sleeves And Sleeve Seals For HVAC Piping</td>
</tr>
<tr>
<td>23 05 18</td>
<td>Scutcheons For HVAC Piping</td>
</tr>
<tr>
<td>23 05 29</td>
<td>Hangers And Supports For HVAC Piping And Equipment</td>
</tr>
<tr>
<td>23 05 48.13</td>
<td>Vibration Controls For HVAC</td>
</tr>
<tr>
<td>23 05 53</td>
<td>Identification For HVAC Piping And Equipment</td>
</tr>
<tr>
<td>23 05 93</td>
<td>Testing, Adjusting, And Balancing For HVAC</td>
</tr>
<tr>
<td>23 07 13</td>
<td>Duct Insulation</td>
</tr>
<tr>
<td>23 07 19</td>
<td>HVAC Piping Insulation</td>
</tr>
<tr>
<td>23 09 23</td>
<td>Direct Digital Control (DDC) System For HVAC</td>
</tr>
<tr>
<td>23 09 23.12</td>
<td>Control Dampers</td>
</tr>
<tr>
<td>23 09 23.19</td>
<td>Moisture Instruments</td>
</tr>
<tr>
<td>23 09 23.23</td>
<td>Pressure Instruments</td>
</tr>
<tr>
<td>23 09 23.27</td>
<td>Temperature Instruments</td>
</tr>
<tr>
<td>23 09 23.43</td>
<td>Weather Stations</td>
</tr>
<tr>
<td>23 21 13</td>
<td>Hydronic Piping</td>
</tr>
<tr>
<td>23 23 00</td>
<td>Refrigerant Piping</td>
</tr>
<tr>
<td>23 31 13</td>
<td>Metal Ducts</td>
</tr>
<tr>
<td>23 33 00</td>
<td>Air Duct Accessories</td>
</tr>
<tr>
<td>23 33 46</td>
<td>Flexible Ducts</td>
</tr>
<tr>
<td>23 34 23</td>
<td>HVAC Power Ventilators</td>
</tr>
<tr>
<td>23 35 33</td>
<td>Listed Kitchen Ventilation System Exhaust Ducts</td>
</tr>
<tr>
<td>23 37 13.13</td>
<td>Air Diffusers</td>
</tr>
<tr>
<td>23 37 13.23</td>
<td>Registers And Grilles</td>
</tr>
<tr>
<td>23 37 16</td>
<td>Fabric Air-Distribution Devices</td>
</tr>
<tr>
<td>23 72 23.23</td>
<td>Packaged, Outdoor, Heat Wheel Energy Recovery Units</td>
</tr>
<tr>
<td>23 74 16.11</td>
<td>Packaged, Small-Capacity, Rooftop Air-Conditioning Units</td>
</tr>
<tr>
<td>23 74 16.13</td>
<td>Packaged, Large-Capacity, Rooftop Air-Conditioning Units</td>
</tr>
<tr>
<td>23 74 23.13</td>
<td>Packaged, Direct-Fired, Outdoor, Heating-Only Makeup-Air Units</td>
</tr>
<tr>
<td>23 74 33</td>
<td>Dedicated Outdoor-Air Units</td>
</tr>
<tr>
<td>23 81 23.11</td>
<td>Small Capacity (5 Tons (21 Kw) And Smaller), Computer-Room Air-Conditioners, Floor-Mounted Units</td>
</tr>
<tr>
<td>23 81 26</td>
<td>Split-System Air-Conditioners</td>
</tr>
<tr>
<td>23 81 29</td>
<td>Variable Refrigerant-Flow HVAC Systems</td>
</tr>
<tr>
<td>23 82 39.13</td>
<td>Cabinet Unit Heaters</td>
</tr>
</tbody>
</table>

DIVISION 26 – ELECTRICAL

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>26 00 00</td>
<td>General Provisions – Electrical</td>
</tr>
<tr>
<td>26 00 55</td>
<td>Electrical Identification</td>
</tr>
<tr>
<td>26 01 10</td>
<td>Raceways</td>
</tr>
<tr>
<td>26 01 20</td>
<td>Wires and Cables</td>
</tr>
<tr>
<td>26 01 21</td>
<td>Wire Connections and Devices</td>
</tr>
<tr>
<td>26 01 30</td>
<td>Manholes</td>
</tr>
<tr>
<td>26 01 31</td>
<td>Handholes</td>
</tr>
<tr>
<td>26 01 35</td>
<td>Electrical Boxes & Fittings</td>
</tr>
<tr>
<td>26 01 40</td>
<td>Wiring Devices</td>
</tr>
<tr>
<td>26 01 55</td>
<td>Motor Starters</td>
</tr>
<tr>
<td>26 01 60</td>
<td>Panelboards</td>
</tr>
<tr>
<td>26 01 65</td>
<td>Switchboards</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>26 01 70</td>
<td>Motor and Circuit Disconnects</td>
</tr>
<tr>
<td>26 01 80</td>
<td>Overcurrent Protective Devices</td>
</tr>
<tr>
<td>26 01 90</td>
<td>Supporting Devices</td>
</tr>
<tr>
<td>26 01 95</td>
<td>Power System Studies</td>
</tr>
<tr>
<td>26 04 00</td>
<td>Electrical Distribution</td>
</tr>
<tr>
<td>26 04 02</td>
<td>Underground Electric Service</td>
</tr>
<tr>
<td>26 04 52</td>
<td>Grounding</td>
</tr>
<tr>
<td>26 04 60</td>
<td>Transformers</td>
</tr>
<tr>
<td>26 04 70</td>
<td>Distribution Circuits</td>
</tr>
<tr>
<td>26 04 71</td>
<td>Feeder Circuits</td>
</tr>
<tr>
<td>26 04 72</td>
<td>Branch Circuits</td>
</tr>
<tr>
<td>26 04 75</td>
<td>Elevator Electrical Systems</td>
</tr>
<tr>
<td>26 05 10</td>
<td>Building Lighting</td>
</tr>
<tr>
<td>26 05 20</td>
<td>Roadway & Parking Area Lighting</td>
</tr>
<tr>
<td>26 06 01</td>
<td>Lightning Protection Systems</td>
</tr>
<tr>
<td>26 08 51</td>
<td>Heating Terminals</td>
</tr>
</tbody>
</table>

DIVISION 27 – COMMUNICATIONS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>27 05 00</td>
<td>Telecommunications Pathways and Spaces</td>
</tr>
<tr>
<td>27 10 00</td>
<td>Structured Cabling</td>
</tr>
<tr>
<td>27 41 00</td>
<td>Audio Visual and Sound Systems</td>
</tr>
<tr>
<td>27 50 00</td>
<td>Intercom and Clocks</td>
</tr>
</tbody>
</table>

DIVISION 28 – ELECTRONIC SAFETY AND SECURITY

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 07 21</td>
<td>Fire Alarm and Detection Systems</td>
</tr>
<tr>
<td>28 07 24</td>
<td>Area Rescue System</td>
</tr>
</tbody>
</table>

DIVISION 31 – EARTHWORK

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 00 00</td>
<td>Earthwork</td>
</tr>
<tr>
<td>31 10 00</td>
<td>Site Clearing</td>
</tr>
<tr>
<td>31 11 00</td>
<td>Clearing and Grubbing</td>
</tr>
<tr>
<td>31 23 00</td>
<td>Excavation and Backfill for Pipelines and Structures</td>
</tr>
<tr>
<td>31 25 00</td>
<td>Erosion & Sediment Control</td>
</tr>
<tr>
<td>31 31 16</td>
<td>Termite Control</td>
</tr>
<tr>
<td>31 32 00</td>
<td>Soil Stabilization</td>
</tr>
<tr>
<td>31 50 00</td>
<td>Excavation Support and Protection</td>
</tr>
</tbody>
</table>

DIVISION 32 – EXTERIOR IMPROVEMENTS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 11 26</td>
<td>Bituminous Stabilized Base Courses</td>
</tr>
<tr>
<td>32 11 36</td>
<td>Concrete Base Courses</td>
</tr>
<tr>
<td>32 12 16</td>
<td>Asphalt Paving</td>
</tr>
<tr>
<td>32 13 13</td>
<td>Concrete Paving (Sidewalks)</td>
</tr>
<tr>
<td>32 16 00</td>
<td>Curbs and Gutters</td>
</tr>
<tr>
<td>32 30 00</td>
<td>Site Improvements and Amenities</td>
</tr>
<tr>
<td>32 31 00</td>
<td>Fences and Gates</td>
</tr>
<tr>
<td>32 90 00</td>
<td>Planting</td>
</tr>
<tr>
<td>32 91 00</td>
<td>Soil Preparation and Soil Mixes</td>
</tr>
</tbody>
</table>
Turf and Grasses

DIVISION 33 – UTILITIES

33 10 00 Water Utilities
33 30 00 Sanitary Sewerage System
33 40 00 Storm Drainage Utilities

END OF SECTION
SECTION 21 05 13

COMMON MOTOR REQUIREMENTS FOR FIRE SUPPRESSION EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.3 COORDINATION

A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:

 1. Motor controllers.
 2. Torque, speed, and horsepower requirements of the load.
 3. Ratings and characteristics of supply circuit and required control sequence.
 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS

A. Comply with NEMA MG 1 unless otherwise indicated.

2.2 MOTOR CHARACTERISTICS

A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet above sea level.

 B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

2.3 POLYPHASE MOTORS

A. Description: NEMA MG 1, Design B, medium induction motor.
B. Efficiency: Energy efficient, as defined in NEMA MG 1.

C. Service Factor: 1.15.

D. Rotor: Random-wound, squirrel cage.

E. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.

F. Temperature Rise: Match insulation rating.

G. Insulation: Class F.

H. Code Letter Designation:
 1. Motors Smaller than 15 HP: Manufacturer's standard starting characteristic.

I. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.4 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.

2.5 SINGLE-PHASE MOTORS

A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:
 1. Permanent-split capacitor.
 2. Split phase.
 3. Capacitor start, inductor run.
 4. Capacitor start, capacitor run.

B. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.

C. Motors 1/20 HP and Smaller: Shaded-pole type.

D. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION
SECTION 21 05 17
SLEEVES AND SLEEVE SEALS FOR FIRE-SUPPRESSION PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Sleeves.
 2. Sleeve-seal systems.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES
A. Galvanized-Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.
B. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

2.2 SLEEVE-SEAL SYSTEMS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Advance Products & Systems, Inc.
 2. CALPICO, Inc.
 3. Metraflex Company (The).
 4. Pipeline Seal and Insulator, Inc.
 5. Proco Products, Inc.
B. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
 1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 2. Pressure Plates: Carbon steel.
 3. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, of length required to secure pressure plates to sealing elements.

2.3 GROUT
 B. Characteristics: Nonshrink; recommended for interior and exterior applications.
 C. Design Mix: 5000-psi, 28-day compressive strength.
 D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION
 A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.
 B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.
 1. Sleeves are not required for core-drilled holes.
 C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.
 1. Cut sleeves to length for mounting flush with both surfaces.
 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.
 2. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.
 D. Install sleeves for pipes passing through interior partitions.
 1. Cut sleeves to length for mounting flush with both surfaces.
 2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Section 079200 "Joint Sealants."

E. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section 078413 "Penetration Firestopping."

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.

B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.3 SLEEVE AND SLEEVE-SEAL SCHEDULE

A. Use sleeves and sleeve seals for the following piping-penetration applications:

1. Exterior Concrete Walls above Grade:

2. Exterior Concrete Walls below Grade:
 a. Piping NPS 6 and Larger: Galvanized-steel wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.

3. Concrete Slabs above Grade:

 Interior Partitions:

END OF SECTION
SECTION 21 05 18

ESCUTCHEONS FOR FIRE-SUPPRESSION PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Escutcheons.
 2. Floor plates.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS

A. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.

B. Split-Casting Brass Type: With polished, chrome-plated finish and with concealed hinge and setscrew.

C. Split-Plate, Stamped-Steel Type: With chrome-plated finish, concealed hinge, and spring-clip fasteners.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.

B. Install escutcheons with ID to closely fit around pipe, tube, piping and with OD that completely covers opening.
1. Escutcheons for New Piping:

 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
 c. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
 d. Bare Piping in Unfinished Service Spaces: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
 e. Bare Piping in Equipment Rooms: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.

3.2 FIELD QUALITY CONTROL

 A. Replace broken and damaged escutcheons and floor plates using new materials.

END OF SECTION
SECTION 21 05 23

GENERAL-DUTY VALVES FOR WATER-BASED FIRE-SUPPRESSION PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Two-piece ball valves with indicators.
 2. Bronze butterfly valves with indicators.
 3. Iron butterfly valves with indicators.
 4. Check valves.
 5. Iron OS&Y gate valves.
 6. NRS gate valves.
 7. Trim and drain valves.

1.3 DEFINITIONS
 A. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.
 B. NRS: Nonrising stem.
 C. OS&Y: Outside screw and yoke.
 D. SBR: Styrene-butadiene rubber.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of valve.

1.5 DELIVERY, STORAGE, AND HANDLING
 A. Prepare valves for shipping as follows:
 1. Protect internal parts against rust and corrosion.
 2. Protect threads, flange faces, and weld ends.

Tetra Tech
B. Use the following precautions during storage:

 1. Maintain valve end protection.
 2. Store valves indoors and maintain at higher than ambient dew point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.

C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use operating handles or stems as lifting or rigging points.

D. Protect flanges and specialties from moisture and dirt.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. UL Listed: Valves shall be listed in UL's "Online Certifications Directory" under the headings listed below and shall bear UL mark:

 1. Main Level: HAMV - Fire Main Equipment.
 a. Level 1: HLOT - Valves.
 1) Level 3: HLUG - Ball Valves, System Control.
 2) Level 3: HLXS - Butterfly Valves.
 3) Level 3: HMER - Check Valves.
 4) Level 3: HMRZ - Gate Valves.

 a. Level 1: VOGU - Valves, Trim and Drain.

B. FM Global Approved: Valves shall be listed in its "Approval Guide," under the headings listed below:

 1. Automated Sprinkler Systems:
 a. Valves.
 1) Gate valves.
 2) Check valves.
 a) Single check valves.
 3) Miscellaneous valves.

C. Source Limitations for Valves: Obtain valves for each valve type from single manufacturer.

D. ASME Compliance:

 1. ASME B16.1 for flanges on iron valves.
2. ASME B1.20.1 for threads for threaded-end valves.
3. ASME B31.9 for building services piping valves.

E. AWWA Compliance: Comply with AWWA C606 for grooved-end connections.

F. NFPA Compliance: Comply with NFPA 24 for valves.

G. Valve Pressure Ratings: Not less than the minimum pressure rating indicated or higher as required by system pressures.

H. Valve Sizes: Same as upstream piping unless otherwise indicated.

I. Valve Actuator Types:
 1. Handwheel: For other than quarter-turn trim and drain valves.
 2. Handlever: For quarter-turn trim and drain valves NPS 2 and smaller.

2.2 TWO-PIECE BALL VALVES WITH INDICATORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. NIBCO INC.
 2. Victaulic Company.

B. Description:
 1. UL 1091, except with ball instead of disc and FM Global standard for indicating valves (butterfly or ball type), Class Number 1112.
 4. Body Material: Forged brass or bronze.
 5. Port Size: Full or standard.
 6. Seats: PTFE.
 7. Stem: Bronze or stainless steel.
 8. Ball: Chrome-plated brass.
 9. Actuator: Worm gear or traveling nut.
 10. Supervisory Switch: Internal or external.
 11. End Connections for Valves NPS 1 through NPS 2: Threaded ends.

2.3 BRONZE BUTTERFLY VALVES WITH INDICATORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Fivalco Inc.
B. Description:

1. Standard: UL 1091 and FM Global standard for indicating valves, (butterfly or ball type), Class Number 1112.
4. Seat Material: EPDM.
5. Stem Material: Bronze or stainless steel.
7. Actuator: Worm gear or traveling nut.
8. Supervisory Switch: Internal or external.

2.4 IRON BUTTERFLY VALVES WITH INDICATORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Fivalco Inc.
4. Tyco Fire & Building Products LP.
5. Victaulic Company.

B. Description:

1. Standard: UL 1091 and FM Global standard for indicating valves, (butterfly or ball type), Class Number 112.
3. Body Material: Cast or ductile iron with nylon, EPDM, epoxy, or polyamide coating.
4. Seat Material: EPDM.
5. Stem: Stainless steel.
7. Actuator: Worm gear or traveling nut.
8. Supervisory Switch: Internal or external.

2.5 CHECK VALVES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Fivalco Inc.
2. Kennedy Valve Company; a division of McWane, Inc.
4. Tyco Fire & Building Products LP.
5. Victaulic Company.
2.6 IRON OS&Y GATE VALVES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Clow Valve Company; a subsidiary of McWane, Inc.
3. Kennedy Valve Company; a division of McWane, Inc.
4. Mueller Co.
5. Victaulic Company.

B. Description:

3. Body and Bonnet Material: Cast or ductile iron.
4. Wedge: Cast or ductile iron, or bronze with elastomeric coating.
5. Wedge Seat: Cast or ductile iron, or bronze with elastomeric coating.
6. Stem: Brass or bronze.
7. Packing: Non-asbestos PTFE.
8. Supervisory Switch: External.

2.7 NRS GATE VALVES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Clow Valve Company; a subsidiary of McWane, Inc.
3. Kennedy Valve Company; a division of McWane, Inc.
4. Mueller Co.
5. Victaulic Company.

B. Description:
3. Body and Bonnet Material: Cast or ductile iron.
4. Wedge: Cast or ductile iron with elastomeric coating.
5. Wedge Seat: Cast or ductile iron, or bronze with elastomeric coating.
6. Stem: Brass or bronze.
7. Packing: Non-asbestos PTFE.
8. Supervisory Switch: External.
9. End Connections: Grooved or Threaded.

2.8 TRIM AND DRAIN VALVES

A. Ball Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Conbraco Industries, Inc.
 b. NIBCO INC.
 c. Potter Roemer LLC.
 d. Tyco Fire & Building Products LP.
 e. Victaulic Company.

2. Description:
 b. Body Design: Two piece.
 c. Body Material: Forged brass or bronze.
 d. Port size: Full or standard.
 e. Seats: PTFE.
 f. Stem: Bronze or stainless steel.
 g. Ball: Chrome-plated brass.
 h. Actuator: Handlever.
 i. End Connections for Valves NPS 1 through NPS 2-1/2: Threaded ends.
 j. End Connections for Valves NPS 1-1/4 and NPS 2-1/2: Grooved ends.

B. Angle Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Fire Protection Products, Inc.
 b. NIBCO INC.
 c. United Brass Works, Inc.

2. Description:
 b. Body Material: Brass or bronze.

Tetra Tech	GENERAL-DUTY VALVES FOR WATER-BASED FIRE-SUPPRESSION PIPING
21 05 23 - 6
C. Globe Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. NIBCO INC.
 b. United Brass Works, Inc.

2. Description:
 c. Ends: Threaded.
 d. Stem: Bronze.
 e. Disc Holder and Nut: Bronze.
 f. Disc Seat: Nitrile.
 g. Packing: Asbestos free.
 h. Handwheel: Malleable iron, bronze, or aluminum.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.

C. Examine threads on valve and mating pipe for form and cleanliness.

D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

E. Do not attempt to repair defective valves; replace with new valves.

3.2 GENERAL REQUIREMENTS FOR VALVE INSTALLATION

A. Comply with requirements in the following Sections for specific valve installation requirements and applications:
1. Section 211100 "Facility Fire-Suppression Water-Service Piping" for application of valves in fire-suppression water-service piping outside the building.

2. Section 211200 "Fire-Suppression Standpipes" for application of valves in fire-suppression standpipes.

3. Section 211313 "Wet-Pipe Sprinkler Systems" for application of valves in wet-pipe, fire-suppression sprinkler systems.

4. Section 211316 "Dry-Pipe Sprinkler Systems" for application of valves in dry-pipe, fire-suppression sprinkler systems.

B. Install listed fire-protection shutoff valves supervised-open, located to control sources of water supply except from fire-department connections. Install permanent identification signs indicating portion of system controlled by each valve.

C. Install check valve in each water-supply connection. Install backflow preventers instead of check valves in potable-water-supply sources.

D. Install valves having threaded connections with unions at each piece of equipment arranged to allow easy access, service, maintenance, and equipment removal without system shutdown. Provide separate support where necessary.

E. Install valves in horizontal piping with stem at or above the pipe center.

F. Install valves in position to allow full stem movement.

G. Install valve tags. Comply with requirements in Section 210553 "Identification for Fire-Suppression Piping and Equipment" for valve tags and schedules and signs on surfaces concealing valves; and the NFPA standard applying to the piping system in which valves are installed. Install permanent identification signs indicating the portion of system controlled by each valve.

H. Install listed fire-protection shutoff valves supervised-open, located to control sources of water supply except from fire-department connections.

END OF SECTION
SECTION 21 05 53
IDENTIFICATION FOR FIRE-SUPPRESSION PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
1. Equipment labels.
2. Warning signs and labels.
3. Pipe labels.
4. Stencils.
5. Valve tags.
6. Warning tags.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
B. Samples: For color, letter style, and graphic representation required for each identification material and device.
C. Equipment-Label Schedule: Include a listing of all equipment to be labeled and the proposed content for each label.
D. Valve Schedules: Valve numbering scheme.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Metal Labels for Equipment:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Brady Corporation.
 b. Brimar Industries, Inc.
c. Craftmark Pipe Markers.
d. Marking Services, Inc.
e. Seton Identification Products.

2. Material and Thickness: Brass, 0.032 inch thick, with predrilled holes for attachment hardware.
5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
7. Fasteners: Stainless-steel rivets or self-tapping screws.
8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), and the Specification Section number and title where equipment is specified.

C. Equipment-Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules) and the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Brady Corporation.
2. Brimar Industries, Inc.
3. Craftmark Pipe Markers.
4. Marking Services Inc.
5. Seton Identification Products.

B. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, with predrilled holes for attachment hardware.

D. Background Color: Red.

E. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

F. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
G. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

H. Fasteners: Stainless-steel rivets or self-tapping screws.

I. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

J. Label Content: Include caution and warning information, plus emergency notification instructions.

2.3 PIPE LABELS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Brady Corporation.
 2. Brimar Industries, Inc.
 3. Craftmark Pipe Markers.
 4. Marking Services Inc.
 5. Seton Identification Products.

B. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service and showing flow direction according to ASME A13.1.

C. Pretensioned Pipe Labels: Precoiled, semiflexible plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.

D. Self-adhesive Pipe Labels: Preprinted plastic with contact-type, permanent-adhesive backing.

E. Pipe-Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.
 1. Flow-Direction Arrows: Integral with piping-system service lettering to accommodate both directions or as separate unit on each pipe label to indicate flow direction.
 2. Lettering Size: Size letters according to ASME A13.1 for piping.

F. Pipe-Label Colors:
 1. Background Color: Safety Red.

G. Exposed pipe 2 1/2 inches and larger, shall be primer, painted two (2) coats of Red and labeled.

2.4 STENCILS

A. Stencils for Piping:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Brimar Industries, Inc.
 b. Carlton Industries, LP.
 c. Craftmark Pipe Markers.
 d. Marking Services Inc.

2. Lettering Size: Size letters according to ASME A13.1 for piping.
4. Stencil Paint: Safety Red, exterior, gloss, alkyd enamel. Paint may be in pressurized spray-can form.
5. Identification Paint: White, exterior, alkyd enamel. Paint may be in pressurized spray-can form.

2.5 VALVE TAGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Brady Corporation.
2. Brimar Industries, Inc.
3. Craftmark Pipe Markers.
4. Marking Services Inc.
5. Seton Identification Products.

B. Description: Stamped or engraved with 1/4-inch letters for piping-system abbreviation and 1/2-inch numbers.

1. Tag Material: Brass, 0.022 inch thick, with predrilled holes for attachment hardware.
2. Fasteners: Brass wire-link, chain beaded chain or S-hook.

C. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.

1. Valve-tag schedule shall be included in operation and maintenance data.

2.6 WARNING TAGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Brady Corporation.
2. Brimar Industries, Inc.
3. Craftmark Pipe Markers.
4. Marking Services Inc.
5. Seton Identification Products.

B. Description: Preprinted or partially preprinted, accident-prevention tags, of plasticized card stock with matte finish suitable for writing.

1. Size: 3 by 5-1/4 inches minimum.
2. Fasteners: Brass grommet and wire.
3. Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of incompatible primers, paints, and encapsulants, as well as dirt, oil, grease, release agents, and other substances that could impair bond of identification devices.

3.2 GENERAL INSTALLATION REQUIREMENTS

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be installed.
B. Coordinate installation of identifying devices with locations of access panels and doors.
C. Install identifying devices before installing acoustical ceilings and similar concealment.

3.3 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.
B. Locate equipment labels where accessible and visible.

3.4 PIPE LABEL INSTALLATION

A. Piping: Painting of piping: Paint exposed sprinkler pipe 2 1/2 inches and larger with primer, two (2) coats red and labeled.

B. Stenciled Pipe-Label Option: Stenciled labels may be provided instead of manufactured pipe labels, at Installer's option. Install stenciled pipe labels, complying with ASME A13.1, with painted, color-coded bands or rectangles on each piping system.

1. Identification Paint: Use for contrasting background.
C. Pipe-Label Locations: Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:

1. Near each valve and control device.
2. Near each branch connection excluding short takeoffs. Where flow pattern is not obvious, mark each pipe at branch.
3. Near penetrations and on both sides of through walls, floors, ceilings, and inaccessible enclosures.
4. At access doors, manholes, and similar access points that permit a view of concealed piping.
5. Near major equipment items and other points of origination and termination.
6. Spaced at maximum intervals of 12 feet along each run. Reduce intervals to 6 feet in areas of congested piping and equipment.

D. Directional Flow Arrows: Arrows shall be used to indicate direction of flow in pipes including pipes where flow is allowed in both directions.

3.5 VALVE-TAG INSTALLATION
A. Install tags on valves and control devices in fire-suppression piping systems. List tagged valves in a valve-tag schedule.

B. Valve-Tag Application Schedule: Tag valves according to size, shape, and with captions similar to those indicated in "Valve-Tag Size and Shape" Subparagraph below:

1. Valve-Tag Size and Shape:
 b. Wet-Pipe Sprinkler System: 1-1/2 inches.
 c. Dry-Pipe Sprinkler System: 1-1/2 inches.

3.6 WARNING-TAG INSTALLATION
A. Write required message on, and attach warning tags to, equipment and other items where required.

END OF SECTION
SECTION 21 11 00
FACILITY FIRE-SUPPRESSION WATER-SERVICE PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes fire-suppression water-service piping and related components outside the building and service entrance piping through floor into the building and the following:
 1. Pipes, fittings, and specialties.
 2. Fire-suppression specialty valves.
 3. Alarm devices.
B. Related Requirements:
 1. Section 211119 "Fire-Department Connections" for exposed-, flush-, fire-department connections.
 2. Section 211200 "Fire-Suppression Standpipes" for fire-suppression standpipes inside the building.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
B. Shop Drawings:
 1. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS
A. Coordination Drawings: For piping and specialties including relation to other services in same area, drawn to scale. Show piping and specialty sizes and valves, and specialty locations, and elevations.
B. Field quality-control reports.

1.5 QUALITY ASSURANCE
A. Regulatory Requirements:
1. Comply with requirements of utility company supplying the water. Include tapping of water mains and backflow prevention.
2. Comply with standards of authorities having jurisdiction for fire-suppression water-service piping, including materials, hose threads, installation, and testing.

B. Piping materials shall bear label, stamp, or other markings of specified testing agency.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

E. NFPA Compliance: Comply with NFPA 24 for materials, installations, tests, flushing, and valve and hydrant supervision for fire-suppression water-service piping.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Preparation for Transport: Prepare valves, according to the following:
 1. Ensure that valves are dry and internally protected against rust and corrosion.
 2. Protect valves against damage to threaded ends and flange faces.
 3. Set valves in best position for handling. Set valves closed to prevent rattling.

B. During Storage: Use precautions for valves, according to the following:
 1. Do not remove end protectors unless necessary for inspection; then reinstall for storage.
 2. Protect from weather. Store indoors and maintain temperature higher than ambient dew point temperature. Support on the ground or pavement in watertight enclosures when outdoor storage is necessary.

C. Handling: Use sling to handle valves and fire hydrants if size requires handling by crane or lift. Rig valves to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

D. Deliver piping with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe-end damage and to prevent entrance of dirt, debris, and moisture.

E. Protect stored piping from moisture and dirt. Elevate above grade. Do not exceed structural capacity of floor when storing inside.

F. Protect flanges, fittings, and specialties from moisture and dirt.

PART 2 - PRODUCTS

2.1 DUCTILE-IRON PIPE AND FITTINGS

A. Mechanical-Joint, Ductile-Iron Pipe: AWWA C151, with mechanical-joint bell and plain spigot end.
B. Push-on-Joint, Ductile-Iron Pipe: AWWA C151, with push-on-joint bell and plain spigot end.

C. Mechanical-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or gray-iron standard pattern or AWWA C153, ductile-iron compact pattern.
 1. Glands, Gaskets, and Bolts: AWWA C111, ductile- or gray-iron glands, rubber gaskets, and steel bolts.

2.2 BACKFLOW PREVENTERS

A. Double-Check, Detector-Assembly Backflow Preventers:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ames Fire & Waterworks.
 b. FEBCO.
 c. Mueller Co.
 d. Watts; a Watts Water Technologies company.
 e. Zurn Industries, LLC.
 3. Operation: Continuous-pressure applications.
 4. Pressure Loss: 5 psig maximum, through middle one-third of flow range.
 5. Size: 4 NPS.
 7. Selected Unit Flow Range Limits: gpm.
 8. Pressure Loss at Design Flow Rate: psig.
 11. Configuration: Designed for horizontal, straight through flow.
 12. Accessories:
 b. Bypass: With displacement-type water meter, shutoff valves, and reduced-pressure backflow preventer.

2.3 ALARM DEVICES

A. General: UL 753 and FM Global's "Approval Guide" listing, of types and sizes to mate and match piping and equipment.
B. Water-Flow Indicators: Vane-type water-flow detector, rated for 250-psig working pressure; designed for horizontal or vertical installation; with two single-pole, double-throw circuit switches to provide isolated alarm and auxiliary contacts, 7 A, 125-V ac and 0.25 A, 24-V dc; complete with factory-set, field-adjustable retard element to prevent false signals and tamperproof cover that sends signal when cover is removed.

C. Supervisory Switches: Single pole, double throw; designed to signal valve in other than fully open position.

D. Pressure Switches: Single pole, double throw; designed to signal increase in pressure.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Comply with excavating, trenching, and backfilling requirements in Section 312000 "Earth Moving."

3.2 PIPING INSTALLATION

A. Water-Main Connection: Arrange with water utility company for tap of size and in location indicated in water main.

B. Water-Main Connection: Tap water main according to requirements of water utility company and of size and in location indicated.

C. Make connections larger than NPS 2 with tapping machine according to the following:
 1. Install tapping sleeve and tapping valve according to MSS SP-60.
 2. Install tapping sleeve on pipe to be tapped. Position flanged outlet for gate valve.
 3. Use tapping machine compatible with valve and tapping sleeve; cut hole in main. Remove tapping machine and connect water-service piping.
 4. Install gate valve onto tapping sleeve. Comply with MSS SP-60. Install valve with stem pointing up and with valve box.

D. Comply with NFPA 24 for fire-service-main piping materials and installation.

E. Install ductile-iron, water-service piping according to AWWA C600 and AWWA M41.

F. Bury piping with depth of cover over top at least 36 inches, with top at least 12 inches below level of maximum frost penetration, and according to the following:
 1. Under Driveways: With at least 36 inches of cover over top.
 2. In Loose Gravelly Soil and Rock: With at least 12 inches of additional cover.

G. Install piping by tunneling or jacking, or combination of both, under streets and other obstructions that cannot be disturbed.
H. Extend fire-suppression water-service piping and connect to water-supply source and building fire-suppression water-service piping systems at locations and pipe sizes indicated.

1. Terminate fire-suppression water-service piping within the building at the floor slab until building-water-piping systems are installed. Terminate piping with caps, plugs, or flanges as required for piping material. Make connections to building's fire-suppression water-service piping systems when those systems are installed.

I. Install underground piping with restrained joints at horizontal and vertical changes in direction. Use restrained-joint piping, thrust blocks, anchors, tie-rods and clamps, and other supports.

J. Comply with requirements in Section 211200 "Fire-Suppression Standpipes," Section 211313 "Wet-Pipe Sprinkler Systems," and Section 211316 "Dry-Pipe Sprinkler Systems" for fire-suppression-water piping inside the building.

K. Comply with requirements in Section 221116 "Domestic Water Piping" for potable-water piping inside the building.

L. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 210517 "Sleeves and Sleeve Seals for Fire-Suppression Piping."

M. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 210517 "Sleeves and Sleeve Seals for Fire-Suppression Piping."

3.3 JOINT CONSTRUCTION

A. Install couplings, flanges, flanged fittings, unions, nipples, and transition and special fittings that have finish and pressure rating same as or higher than systems pressure rating for aboveground applications unless otherwise indicated.

B. Install flanges, flange adaptors, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.

C. Remove scale, slag, dirt, and debris from outside and inside of pipes, tubes, and fittings before assembly.

E. Flanged Joints: Select appropriate gasket material in size, type, and thickness suitable for water service. Join flanges with bolts according to ASME B31.9.

F. Do not use flanges or unions for underground piping.

3.4 ANCHORAGE INSTALLATION

A. Anchorage, General: Install water-distribution piping with restrained joints. Anchorages and restrained-joint types that may be used include the following:
1. Concrete thrust blocks.
2. Locking mechanical joints.
4. Pipe clamps and tie rods.

B. Install anchorages for tees, plugs and caps, bends, crosses, valves, and hydrant branches in fire-suppression water-service piping according to NFPA 24 and the following:

C. Apply full coat of asphalt or other acceptable corrosion-resistant material to surfaces of installed ferrous anchorage devices.

3.5 VALVE INSTALLATION

A. AWWA Gate Valves: Comply with AWWA C600 and AWWA M-4. Install each underground valve with stem pointing up and with valve box.

B. UL-Listed or FM Global-Approved Gate Valves: Comply with NFPA 24. Install each underground valve with stem pointing up.

C. UL-Listed or FM Global-Approved Valves Other Than Gate Valves: Comply with NFPA 24.

D. MSS Valves: Install as component of connected piping system.

E. Corporation Valves and Curb Valves: Install each underground curb valve with head pointed up and with service box.

F. Support valves and piping, not direct buried, on concrete piers. Comply with requirements for concrete piers in Section 033000 "Cast-in-Place Concrete." Section 033053 "Miscellaneous Cast-in-Place Concrete."

3.6 BACKFLOW PREVENTER INSTALLATION

A. Install backflow preventers of type, size, and capacity indicated. Include valves and test cocks. Install according to requirements of plumbing and health department and authorities having jurisdiction.

B. Do not install backflow preventers that have relief drain in vault or in other spaces subject to flooding.

C. Do not install bypass piping around backflow preventers.

D. Support NPS 2-1/2 and larger backflow preventers and piping on concrete piers. Comply with requirements for concrete piers in Section 033000 "Cast-in-Place Concrete."

3.7 FIRE-DEPARTMENT CONNECTION INSTALLATION

A. Install ball drip valves at each check valve for fire-department connection to mains.
B. Install protective pipe bollards on two sides of each freestanding fire-department connection. Pipe bollards are specified in Section 055000 "Metal Fabrications."

3.8 ALARM DEVICE INSTALLATION

A. General: Comply with NFPA 24 for devices and methods of valve supervision. Underground valves with valve box do not require supervision.

B. Supervisory Switches: Supervise valves in open position.
 1. Valves: Grind away portion of exposed valve stem. Bolt switch, with plunger in stem depression, to OS&Y gate-valve yoke.

C. Locking and Sealing: Secure unsupervised valves as follows:

D. Connect alarm devices to building's fire-alarm system. Wiring and fire-alarm devices are specified in Section 283111 "Digital, Addressable Fire-Alarm System."

3.9 CONNECTIONS

A. Connect fire-suppression water-service piping to utility water main. Use tapping sleeve and tapping valve.

B. Connect fire-suppression water-service piping to interior fire-suppression piping.

3.10 FIELD QUALITY CONTROL

A. Use test procedure prescribed by authorities having jurisdiction or, if method is not prescribed by authorities having jurisdiction, use procedure described below.

B. Piping Tests: Conduct piping tests before joints are covered and after concrete thrust blocks have hardened sufficiently. Fill pipeline 24 hours before testing and apply test pressure to stabilize system. Use only potable water.

C. Hydrostatic Tests: Test at not less than one-and-one-half times the working pressure for two hours.
 1. Increase pressure in 50-psig increments and inspect each joint between increments. Hold at test pressure for one hour; decrease to zero psig. Slowly increase again to test pressure and hold for one more hour. Maximum allowable leakage is 2 quarts per hour per 100 joints. Remake leaking joints with new materials and repeat test until leakage is within allowed limits.

D. Prepare test and inspection reports.
3.11 IDENTIFICATION

A. Install continuous underground detectable warning tape during backfilling of trench for underground fire-suppression water-service piping. Locate below finished grade, directly over piping. Underground warning tapes are specified in Section 312000 "Earth Moving."

B. Permanently attach equipment nameplate or marker indicating plastic fire-suppression water-service piping or fire-suppression water-service piping with electrically insulated fittings, on main electrical meter panel. Comply with requirements for identifying devices in Section 220553 "Identification for Plumbing Piping and Equipment."

3.12 CLEANING

A. Clean and disinfect fire-suppression water-service piping as follows:

1. Purge new piping systems and parts of existing systems that have been altered, extended, or repaired before use.
2. Use purging and disinfecting procedure prescribed by authorities having jurisdiction or, if method is not prescribed by authorities having jurisdiction, use procedure described in NFPA 24 for flushing of piping. Flush piping system with clean, potable water until dirty water does not appear at points of outlet.
3. Use purging and disinfecting procedure prescribed by authorities having jurisdiction or, if method is not prescribed by authorities having jurisdiction, use procedure described in AWWA C651 or do as follows:
 a. Fill system or part of system with water/chlorine solution containing at least 50 ppm of chlorine; isolate and allow it to stand for 24 hours.
 b. Drain system or part of system of previous solution and refill with water/chlorine solution containing at least 200 ppm of chlorine; isolate and allow it to stand for three hours.
 c. After standing time, flush system with clean, potable water until no chlorine remains in water coming from system.
 d. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedure if biological examination shows evidence of contamination.

B. Prepare reports of purging and disinfecting activities.

3.13 PIPING SCHEDULE

A. Underground fire-suppression water-service piping NPS 6 to NPS 12 shall be one of the following:

1. Mechanical-joint, ductile-iron pipe; mechanical-joint, ductile- or gray-iron, standard-pattern fittings; glands, gaskets, and bolts; and gasketed joints.
2. Push-on-joint, ductile-iron pipe; push-on-joint, ductile-iron compact-pattern fittings; and gasketed joints.

B. Underslab fire-suppression water-service piping NPS 6 to NPS 12 shall be one of the following:
1. Mechanical-joint, ductile-iron pipe; mechanical-joint, ductile- or gray-iron, standard-pattern fittings; glands, gaskets, and bolts; and restrained, gasketed joints.

2. Push-on-joint, ductile-iron pipe; push-on-joint, ductile-iron compact-pattern fittings; and restrained, gasketed joints.

3.14 VALVE SCHEDULE

A. Underground fire-suppression water-service shutoff valves NPS 6 and larger shall be the following:

1. 175-psig, UL-listed or FM Global-approved, iron, nonrising-stem gate valves.

B. Standard-pressure, aboveground and vault fire-suppression water-service shutoff valves NPS 3 and larger shall be the following:

1. 175-psig, UL-listed or FM Global-approved, iron, OS&Y gate valves.

END OF SECTION
SECTION 21 11 19
FIRE-DEPARTMENT CONNECTIONS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Flush-type fire-department connections.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each fire-department connection.

PART 2 - PRODUCTS

2.1 FLUSH-TYPE FIRE-DEPARTMENT CONNECTION
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Croker
 2. Elkhart Brass Mfg. Co., Inc.
 3. Fire Protection Products, Inc.
 5. Potter Roemer LLC.
B. Standard: UL 405.
C. Type: Flush, for wall mounting.
D. Pressure Rating: 175 psig minimum.
E. Body Material: Corrosion-resistant metal.
F. Inlets: Brass with threads according to NFPA 1963 and matching local fire-department sizes and threads. Include extension pipe nipples, brass lugged swivel connections, and check devices or clappers.

G. Caps: Brass, lugged type, with gasket and chain.

H. Escutcheon Plate: Rectangular, brass, wall type.

I. Outlet: With pipe threads.

J. Body Style: Horizontal.

K. Number of Inlets: Two.

L. Outlet Location: Back.

M. Escutcheon Plate Marking: Similar to "AUTO SPKR & STANDPIPE.

N. Finish: Polished chrome plated.

O. Outlet Size: NPS 4.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of fire-department connections.

B. Examine roughing-in for fire-suppression system to verify actual locations of piping connections before fire-department connection installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install wall-type fire-department connections.

B. Install two protective pipe bollards on sides of each fire-department connection. Comply with requirements for bollards in Section 055000 "Metal Fabrications."

C. Install automatic (ball-drip) drain valve at each check valve for fire-department connection.

END OF SECTION
SECTION 21 12 00
FIRE-SUPPRESSION STANDPIPES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Pipes, fittings, and specialties.
 2. Fire-protection specialty valves.
 3. Hose connections.
 5. Pressure gages.
B. Related Requirements:
 1. Section 210523 "General-Duty Valves for Water-Based Fire-Suppression Piping."
 2. Section 211119 "Fire-Department Connections" for exposed wall-mounted fire connections.
 3. Section 211313 "Wet-Pipe Sprinkler Systems" for wet-pipe sprinkler piping.

1.3 DEFINITIONS
A. Standard-Pressure Standpipe Piping: Fire-suppression standpipe piping designed to operate at working pressure 175 psig maximum.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
B. Shop Drawings: For fire-suppression standpipes.
 1. Include plans, elevations, sections, and attachment details.
 2. Include diagrams for power, signal, and control wiring.
C. Delegated-Design Submittal: For standpipe systems indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Fire-suppression standpipes, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Domestic water piping.
 2. HVAC ductwork and piping.

B. Qualification Data: For Installer.

C. Approved Standpipe Drawings: Working plans, prepared according to NFPA 14, that have been approved by Authorities Having Jurisdiction, including hydraulic calculations if applicable.

D. Fire-hydrant flow test report.

E. Field Test Reports and Certificates: Indicate and interpret test results for compliance with performance requirements and as described in NFPA 14. Include "Contractor's Material and Test Certificate for Aboveground Piping".

F. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For fire-suppression standpipes specialties to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE

A. Installer Qualifications:
 1. Installer’s responsibilities include designing, fabricating, and installing fire-suppression standpipes and providing professional engineering services needed to assume engineering responsibility. Base calculations on results of fire-hydrant flow test.
 a. Installer’s Responsibility: Preparation of working plans, calculations, and field test reports by a qualified professional, certified installer.

B. Welding Qualifications: Qualify procedures and operators according to 2010 ASME Boiler and Pressure Vessel Code.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
D. NFPA Standards: Fire-suppression standpipe equipment, specialties, accessories, installation, and testing shall comply with NFPA 14.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTIONS

A. Automatic Wet-Type, Class I Standpipe System: Includes NPS 2-1/2 hose connections. Has open water-supply valve with pressure maintained and is capable of supplying water demand.

2.2 PERFORMANCE REQUIREMENTS

A. Standard-Pressure, Fire-Suppression Standpipe System Component: Listed for 175-psig minimum working pressure.

B. Delegated Design: Design fire-suppression standpipes, including comprehensive engineering analysis by a qualified professional installer, using performance requirements and design criteria indicated.

1. Available fire-hydrant flow test records indicate the following conditions:
 a. Date: TBD.
 b. Time: TBD
 c. Performed by: TBD.
 d. Location of Residual Fire Hydrant R: TBD.
 e. Location of Flow Fire Hydrant F: TBD.
 f. Static Pressure at Residual Fire Hydrant R: TBD.
 g. Measured Flow at Flow Fire Hydrant F: TBD.
 h. Residual Pressure at Residual Fire Hydrant R: TBD.

C. Fire-suppression standpipe design shall be approved by Authorities Having Jurisdiction.

2.3 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, and fitting materials and for joining methods for specific services, service locations, and pipe sizes.

2.4 BLACK STEEL PIPE AND ASSOCIATED FITTINGS

A. Schedule 30: ASTM A 135/A 135M, Grade A; with factory- or field-formed ends to accommodate joining method.

B. Grooved-Joint, Steel-Pipe Appurtenances:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
a. Anvil International.
b. Corcoran Piping System Co.
c. National Fittings, Inc.
d. Shurjoint Piping Products.
e. Tyco Fire & Building Products LP.
f. Victaulic Company.

2. Pressure Rating: 175 psig minimum.

4. Grooved-End-Pipe Couplings for Steel Piping: AWWA C606 and UL 213, rigid pattern, unless otherwise indicated, for steel-pipe dimensions. Include ferrous housing sections, EPDM-rubber gasket, and bolts and nuts.

2.5 GALVANIZED-STEEL PIPE AND ASSOCIATED FITTINGS

A. Schedule 30: ASTM A 135/A 135M, Grade A; with factory- or field-formed ends to accommodate joining method.

C. Galvanized, Gray-Iron Threaded Fittings: ASME B16.4, Class 125, standard pattern.

D. Malleable-Iron Unions:
 1. ASME B16.39, Class 150.
 2. Hexagonal-stock body.
 4. Threaded ends.

E. Flanges: ASME B16.5, Class 125, cast iron.

F. Appurtenances for Grooved-End, Galvanized-Steel Pipe:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Anvil International.
 b. Grinnell Mechanical Products.
 c. Shurjoint Piping Products.
 d. Victaulic Company.
 2. Fittings for Grooved-End, Galvanized-Steel Pipe: Galvanized, ASTM A 47/A 47M, malleable-iron casting; ASTM A 106/A 106M, steel pipe; or ASTM A 536, ductile-iron casting; with dimensions matching steel pipe.
 3. Fittings for Grooved-End, Galvanized-Steel Pipe:
2.6 PIPING JOINING MATERIALS

A. Pipe-Flange Gasket Materials: AWWA C110, rubber, flat face, 1/8 inch thick.
 1. Class 125, Cast-Iron Flanges and Class 150, Bronze Flat-Face Flanges: Full-face gaskets.
 2. Class 250, Cast-Iron Flanges and Class 300, Steel Raised-Face Flanges: Ring-type gaskets.

B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.

2.7 SPECIALTY VALVES

A. General Requirements:
 2. Pressure Rating:
 a. Standard-Pressure Piping Specialty Valves: 175 psig minimum.
 3. Body Material: Cast or ductile iron.
 4. Size: Same as connected piping.
 5. End Connections: Flanged or grooved.

B. Alarm Valves:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 b. Kidde Fire Fighting; A UTC Business Unit.
 c. Reliable Automatic Sprinkler Co., Inc. (The).
 d. Tyco Fire & Building Products LP.
 e. Victaulic Company.
 f. Viking Corporation.
 3. Design: For horizontal or vertical installation.
4. Include trim sets for bypass, drain, electrical sprinkler alarm switch, pressure gages, retarding chamber, and fill-line attachment with strainer.
5. Drip Cup Assembly: Pipe drain without valves and separate from main drain piping.
6. Drip Cup Assembly: Pipe drain with check valve to main drain piping.

C. Automatic (Ball Drip) Drain Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Kidde Fire Fighting; A UTC Business Unit.
 b. Reliable Automatic Sprinkler Co., Inc. (The).
 c. Tyco Fire & Building Products LP.
 4. Type: Automatic draining, ball check.

2.8 HOSE CONNECTIONS

A. Nonadjustable-Valve Hose Connections:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Fire-End & Croker Corporation.
 c. Guardian Fire Equipment, Inc.
 d. Potter Roemer LLC.
 e. Tyco Fire & Building Products LP.
 f. Viking Corporation.
 2. Standard: UL 668 hose valve for connecting fire hose.
 3. Pressure Rating: 300 psig minimum.
 4. Material: Brass or bronze.
 5. Size: NPS 1-1/2 or NPS 2-1/2, as indicated.
 6. Inlet: Female pipe threads.
 7. Outlet: Male hose threads with lugged cap, gasket, and chain. Include hose valve threads according to NFPA 1963 and matching local fire-department threads.
 8. Pattern: Angle or gate.

2.9 ALARM DEVICES

A. Alarm-device types shall match piping and equipment connections.
B. Electrically Operated Alarm Bell:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Fire-Lite Alarms, Inc.; a Honeywell International company.
 b. Notifier.
 c. Potter Electric Signal Company, LLC.

3. Type: Vibrating, metal alarm bell.

4. Size: 8-inch minimum diameter.

5. Finish: Red-enamel factory finish, suitable for outdoor use.

C. Water-Flow Indicators:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ADT Security Services, Inc.
 b. McDonnell & Miller.
 c. Potter Electric Signal Company, LLC.
 d. System Sensor.
 e. Viking Corporation.
 f. Watts; a Watts Water Technologies company.

4. Components: Two single-pole, double-throw circuit switches for isolated alarm and auxiliary contacts: 7 A, 125-V ac and 0.25 A, 24-V dc; complete with factory-set, field-adjustable retard element to prevent false signals and tamperproof cover that sends signal if removed.

5. Type: Paddle operated.

7. Design Installation: Horizontal or vertical.

D. Pressure Switches:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Barksdale, Inc.
 b. Kidde Fire Fighting; A UTC Business Unit.
 c. Potter Electric Signal Company, LLC.
 d. System Sensor.
 e. Tyco Fire & Building Products LP.
 f. Viking Corporation.

3. Type: Electrically supervised water-flow switch with retard feature.
5. Design Operation: Rising pressure signals water flow.

E. Valve Supervisory Switches:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Fire-Lite Alarms, Inc.; a Honeywell International company.
 b. Kennedy Valve Company; a division of McWane, Inc.
 c. Potter Electric Signal Company, LLC.
 d. System Sensor.

3. Type: Electrically supervised.
5. Design: Signals that controlled valve is in other than fully open position.

2.10 PRESSURE GAGES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. AMETEK, Inc.
2. Ashcroft Inc.
4. WIKA Instrument Corporation.

B. Standard: UL 393.
C. Dial Size: 3-1/2- to 4-1/2-inch diameter.
D. Pressure Gage Range: Zero to 250 psig minimum.
E. Water System Piping Gage: Include "WATER" or "AIR/WATER" label on dial face.

PART 3 - EXECUTION

3.1 PREPARATION

A. Perform fire-hydrant flow test according to NFPA 14 and NFPA 291. Use results for system design calculations required in "Quality Assurance" Article.

B. Report test results promptly and in writing.
3.2 EXAMINATION

A. Examine roughing-in for hose connections and stations to verify actual locations of piping connections before installation.

B. Examine walls and partitions for suitable thickness, fire- and smoke-rated construction, framing for hose-station cabinets, and other conditions where hose connections and stations are to be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.3 SERVICE-ENTRANCE PIPING

A. Connect fire-suppression standpipe piping to water-service piping at service entrance into building. Comply with requirements for exterior piping in Section 211100 "Facility Fire-Suppression Water-Service Piping."

B. Install shutoff valve, backflow preventer, pressure gage, drain, and other accessories at connection to fire-suppression water-service piping. Comply with requirements for backflow preventers in Section 211100 "Facility Fire-Suppression Water-Service Piping."

C. Install shutoff valve, at connection to water service.

3.4 PIPING INSTALLATION

A. Locations and Arrangements: Drawing plans, schematics, and diagrams indicate general location and arrangement of piping. Install piping as indicated, as far as practical.

1. Deviations from approved working plans for piping require written approval from authorities having jurisdiction. File written approval with Architect before deviating from approved working plans.

B. Piping Standard: Comply with requirements in NFPA 14 for installation of fire-suppression standpipe piping.

C. Install listed fittings to make changes in direction, branch takeoffs from mains, and reductions in pipe sizes.

D. Install drain valves on standpipes. Extend drain piping to outside of building.

E. Install automatic (ball drip) drain valves to drain piping between fire-department connections and check valves. Drain to floor drain or outside building.

F. Install alarm devices in piping systems.

G. Install hangers and supports for standpipe system piping according to NFPA 14. Comply with requirements in NFPA 13 for hanger materials.

H. Install pressure gages on riser or feed main and at top of each standpipe. Include pressure gages with connection not less than NPS 1/4 and with soft-metal seated globe valve, arranged for
draining pipe between gage and valve. Install gages to permit removal, and install where they are not subject to freezing.

I. Fill wet-type standpipe system piping with water.

J. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 210517 "Sleeves and Sleeve Seals for Fire-Suppression Piping."

K. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 210517 "Sleeves and Sleeve Seals for Fire-Suppression Piping."

L. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 210518 "Escutcheons for Fire-Suppression Piping."

3.5 JOINT CONSTRUCTION

A. Install couplings, flanges, flanged fittings, unions, nipples, and transition and special fittings that have finish and pressure ratings same as or higher than system's pressure rating for aboveground applications unless otherwise indicated.

B. Install unions adjacent to each valve in pipes NPS 2 and smaller.

C. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.

D. Ream ends of pipes and tubes, and remove burrs. Bevel plain ends of steel pipe.

E. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

F. Flanged Joints: Select appropriate gasket material in size, type, and thickness suitable for water service. Join flanges with gasket and bolts according to ASME B31.9.

G. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.

H. Steel-Piping, Cut-Grooved Joints: Cut square-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe joints.

I. Steel-Piping, Roll-Grooved Joints: Roll rounded-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe grooved joints.
J. Dissimilar-Material Piping Joints: Make joints using adapters compatible with materials of both piping systems.

3.6 VALVE AND SPECIALTIES INSTALLATION

A. Install listed fire-protection valves, trim and drain valves, specialty valves and trim, controls, and specialties according to NFPA 14 and authorities having jurisdiction.

B. Install listed fire-protection shutoff valves supervised-open, located to control sources of water supply except from fire-department connections. Install permanent identification signs indicating portion of system controlled by each valve.

C. Install check valve in each water-supply connection. Install backflow preventers instead of check valves in potable-water-supply sources.

D. Specialty Valves:
 1. General Requirements: Install in vertical position for proper direction of flow, in main supply to system.

3.7 HOSE-CONNECTION INSTALLATION

A. Install hose connections adjacent to standpipes.

B. Install NPS 2-1/2 hose connections with quick-disconnect NPS 2-1/2 by NPS 1-1/2 reducer adapter and flow-restricting device.

C. Install wall-mounted-type hose connections in cabinets. Include pipe escutcheons, with finish matching valves, inside cabinet where water-supply piping penetrates cabinet. Install valves at angle required for connection of fire hose. Comply with requirements for cabinets in Section 104413 "Fire Protection Cabinets."

3.8 HOSE-STATION INSTALLATION

A. Install freestanding hose stations for access and minimum passage restriction.

B. Install NPS 2-1/2 hose connections unless otherwise indicated.

C. Install wall-mounted, rack hose stations in cabinets. Include pipe escutcheons, with finish matching valves, inside cabinet where water-supply piping penetrates cabinet. Install valves at angle required for connection of fire hose. Comply with requirements for cabinets in Section 104413 "Fire Protection Cabinets."

3.9 FIRE-DEPARTMENT CONNECTION INSTALLATION

A. Install wall-type fire-department connections.

B. Install automatic (ball drip) drain valve at each check valve for fire-department connection.
3.10 IDENTIFICATION

A. Install labeling and pipe markers on equipment and piping according to requirements in NFPA 14.

B. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.11 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:
 1. Leak Test: After installation, charge systems and test for leaks. Repair leaks and retest until no leaks exist.
 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 3. Flush, test, and inspect standpipe systems according to NFPA 14, "System Acceptance" Chapter.
 4. Energize circuits to electrical equipment and devices.
 5. Coordinate with fire-alarm tests. Operate as required.
 6. Coordinate with fire-pump tests. Operate as required.
 7. Verify that equipment hose threads are same as local fire-department equipment.

C. Fire-suppression standpipe system will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

3.12 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain specialty valves.

3.13 PIPING SCHEDULE

A. Standard-pressure, wet-type fire-suppression standpipe piping, NPS 4 and smaller, shall be one of the following:
 1. Schedule 30, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.
 2. Schedule 30, galvanized-steel pipe with threaded ends; galvanized, gray-iron threaded fittings; and threaded joints.
 3. Schedule 30, black-steel pipe with cut- or roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
 4. Schedule 30, galvanized-steel pipe with cut-grooved ends; galvanized, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.

END OF SECTION
SECTION 21 13 13

WET-PIPE SPRINKLER SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Pipes, fittings, and specialties.
2. Specialty valves
5. Pressure gages.

B. Related Requirements:

1. Section 211119 "Fire Department Connections" for exposed-, flush-, and yard-type fire department connections.
2. Section 210523 "General-Duty Valves for Water-Based Fire-Suppression Piping" for ball, butterfly, check, gate, post-indicator, and trim and drain valves.

1.3 DEFINITIONS

A. Standard-Pressure Sprinkler Piping: Wet-pipe sprinkler system piping designed to operate at working pressure of 175-psig maximum.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Shop Drawings: For wet-pipe sprinkler systems.

1. Include plans, elevations, sections, and attachment details.
2. Include diagrams for power, signal, and control wiring.
C. Delegated-Design Submittal: For wet-pipe sprinkler systems indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional installer responsible for their preparation.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination of Installation: Sprinkler systems shall be coordinated with the Architect, before coordinating with other trades, throughout the building and especially in open ceiling areas before starting work.

B. Coordination Drawings: Sprinkler systems, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Domestic water piping.
 2. HVAC ductwork and piping.
 3. Items penetrating finished ceiling include the following:
 a. Lighting fixtures.
 b. Air outlets and inlets.

C. Qualification Data: For qualified Installer.

D. Approved Sprinkler Piping Drawings: Working plans, prepared according to NFPA 13, that have been approved by Authorities Having Jurisdiction, including hydraulic calculations if applicable.

E. Fire-hydrant flow test report.

F. Field Test Reports and Certificates: Indicate and interpret test results for compliance with performance requirements and as described in NFPA 13. Include "Contractor's Material and Test Certificate for Aboveground Piping."

G. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For wet-pipe sprinkler systems and specialties to include in emergency, operation, and maintenance manuals.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Sprinkler Cabinets: Finished, wall-mounted, steel cabinet with hinged cover, and with space for minimum of six spare sprinklers plus sprinkler wrench. Include number of sprinklers required by NFPA 13 and sprinkler wrench. Include separate cabinet with sprinklers and wrench for each type of sprinkler used on Project.
1.8 QUALITY ASSURANCE

A. Installer Qualifications:

1. Installer’s responsibilities include designing, fabricating, and installing sprinkler systems and providing professional engineering services needed to assume engineering responsibility. Base calculations on results of fire-hydrant flow test.
 a. Installer’s Responsibility: Preparation of working plans, calculations, and field test reports by a qualified, certified installer.

B. Welding Qualifications: Qualify procedures and operators according to 2010 ASME Boiler and Pressure Vessel Code.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

D. NFPA Standards: Fire-suppression standpipe equipment, specialties, accessories, installation, and testing shall comply with NFPA 14.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Sprinkler system equipment, specialties, accessories, installation, and testing shall comply with the following:

B. Standard-Pressure Piping System Component: Listed for 175-psig minimum working pressure.

C. Delegated Design: Engage a qualified, certified installer, as defined in Section 014000 “Quality Requirements,” to design wet-pipe sprinkler systems.

1. Available fire-hydrant flow test records indicate the following conditions:
 a. Date: TBD.
 b. Time: TBD
 c. Performed by: TBD.
 d. Location of Residual Fire Hydrant R: TBD.
 e. Location of Flow Fire Hydrant F: TBD.
 f. Static Pressure at Residual Fire Hydrant R: TBD.
 g. Measured Flow at Flow Fire Hydrant F: TBD.
 h. Residual Pressure at Residual Fire Hydrant R: TBD.

2. Sprinkler system design shall be approved by Authorities Having Jurisdiction.
 a. Margin of Safety for Available Water Flow and Pressure: 10 psig minimum, including losses through water-service piping, valves, and backflow preventer.
b. Sprinkler Occupancy Hazard Classifications:

 1) Mechanical Equipment Rooms: Ordinary Hazard, Group 1.
 2) Office and Classroom Areas: Light Hazard.
 3) Kitchen Service Areas: Ordinary Hazard, Group 1.

3. Minimum Density for Automatic-Sprinkler Piping Design:

 a. Light-Hazard Occupancy: 0.10 gpm over 1500-sq. ft. area.
 b. Ordinary-Hazard, Group 1 Occupancy: 0.15 gpm over 1500-sq. ft. area.
 c. Ordinary-Hazard, Group 2 Occupancy: 0.20 gpm over 1500-sq. ft. area.

4. Maximum Protection Area per Sprinkler: According to UL listing.

5. Maximum Protection Area per Sprinkler:

 a. Office and Classroom Spaces: 225 sq. ft.
 b. Storage Areas: 130 sq. ft.
 c. Mechanical Equipment Rooms: 130 sq. ft.
 d. Electrical Equipment Rooms: 130 sq. ft.
 e. Other Areas: According to NFPA 13 recommendations unless otherwise indicated.

2.2 STEEL PIPE AND FITTINGS

A. Schedule 40, Galvanized- and Black-Steel Pipe: ASTM A 135/A 135M; ASTM A 795/A 795M, Type E; or ASME B36.10M wrought steel, with wall thickness Schedule 40. Pipe ends may be factory or field formed to match joining method.

B. Schedule 40, Black-Steel Pipe: ASTM A 135/A 135M or ASTM A 795/A 795M, Schedule 40 in NPS 5 and smaller; and NFPA-specified wall thickness in NPS 6 to NPS 10, plain end.

E. Galvanized and Uncoated, Gray-Iron Threaded Fittings: ASME B16.4, Class 125, standard pattern.

F. Malleable- or Ductile-Iron Unions: UL 860.

H. Steel Flanges and Flanged Fittings: ASME B16.5, Class 150.

 1. Pipe-Flange Gasket Materials: AWWA C110, rubber, flat face, 1/8 inch thick or EPDM rubber gasket.

 b. Class 150 and Class 300, Ductile-Iron or Steel, Raised-Face Flanges: Ring-type gaskets.
2. Metal, Pipe-Flange Bolts and Nuts: Carbon steel unless otherwise indicated.

I. Grooved-Joint, Steel-Pipe Appurtenances:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Anvil International.
 b. National Fittings, Inc.
 c. Tyco Fire & Building Products LP.
 d. Victaulic Company.

4. Grooved-End-Pipe Couplings for Steel Piping: AWWA C606 and UL 213 rigid pattern, unless otherwise indicated, for steel-pipe dimensions. Include ferrous housing sections, EPDM-rubber gasket, and bolts and nuts.

2.3 COPPER TUBE AND FITTINGS

A. Hard Copper Tube: ASTM B 88, Type L, water tube, drawn temper.

B. Cast-Copper, Solder-Joint Fittings: ASME B16.18 pressure fittings.

C. Wrought-Copper, Solder-Joint Fittings: ASME B16.22 pressure fittings.

D. Bronze Flanges: ASME B16.24, Class 150, with solder-joint ends.

E. Copper Unions: MSS SP-123, cast-copper-alloy, hexagonal-stock body, with ball-and-socket, metal-to-metal seating surfaces and solder-joint or threaded ends.

2.4 SPECIALTY VALVES

A. Listed in UL's "Fire Protection Equipment Directory" or FM Global's "Approval Guide."

B. Pressure Rating:

C. Body Material: Cast or ductile iron.

D. Size: Same as connected piping.

E. End Connections: Flanged or grooved.

F. Alarm Valves:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Reliable Automatic Sprinkler Co., Inc. (The).
 c. Tyco Fire & Building Products LP.
 d. Victaulic Company.
 e. Viking Corporation.

3. Design: For horizontal or vertical installation.

4. Include trim sets for bypass, drain, electrical sprinkler alarm switch, pressure gages, retarding chamber, and fill-line attachment with strainer.

5. Drip Cup Assembly: Pipe drain without valves and separate from main drain piping.

6. Drip Cup Assembly: Pipe drain with check valve to main drain piping.

7. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

G. Automatic (Ball Drip) Drain Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Elkhart Brass Mtg. Co., Inc.
 c. Reliable Automatic Sprinkler Co., Inc. (The).
 d. Tyco Fire & Building Products LP.

4. Type: Automatic draining, ball check.

2.5 SPRINKLER PIPING SPECIALTIES

A. Branch Outlet Fittings:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Anvil International.
 b. National Fittings, Inc.
 c. Tyco Fire & Building Products LP.
 d. Victaulic Company.

5. Type: Mechanical-tee and -cross fittings.
6. Configurations: Snap-on and strapless, ductile-iron housing with branch outlets.
7. Size: Of dimension to fit onto sprinkler main and with outlet connections as required to match connected branch piping.
8. Branch Outlets: Grooved, plain-end pipe, or threaded.

B. Sprinkler Inspector's Test Fittings:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AGF Manufacturing Inc.
 b. Tyco Fire & Building Products LP.
 c. Victaulic Company.
 d. Viking Corporation.
4. Body Material: Cast- or ductile-iron housing with sight glass.
5. Size: Same as connected piping.
6. Inlet and Outlet: Threaded.

C. Adjustable Drop Nipples:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Aegis Technologies, Inc.
 b. CECA, LLC.
 c. Corcoran Piping System Co.
 d. Merit Manufacturing.
5. Size: Same as connected piping.
7. Inlet and Outlet: Threaded.

D. Flexible Sprinkler Hose Fittings:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Fivalco Inc.
 b. FlexHead Industries, Inc.
 c. Gateway Tubing, Inc.
d. Victaulic Company.

3. Type: Flexible hose for connection to sprinkler, and with bracket for connection to ceiling grid.

5. Size: Same as connected piping, for sprinkler.

2.6 SPRINKLERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Reliable Automatic Sprinkler Co., Inc. (The).
3. Tyco Fire & Building Products LP.
4. Victaulic Company.
5. Viking Corporation.

B. Listed in UL's "Fire Protection Equipment Directory" or FM Global's "Approval Guide."

C. Pressure Rating for Automatic Sprinklers: 175-psig minimum.

D. Automatic Sprinklers with Heat-Responsive Element:

2. Characteristics: Nominal 1/2-inch orifice with Discharge Coefficient K of 5.6, and for "Ordinary" temperature classification rating unless otherwise indicated or required by application.

E. Sprinkler Finishes: Chrome-plated.

F. Sprinkler Escutcheons: Materials, types, and finishes for the following sprinkler mounting applications. Escutcheons for concealed, flush, and recessed-type sprinklers are specified with sprinklers.

1. Ceiling Mounting: Chrome-plated steel, two piece, with 1-inch vertical adjustment.
2. Sidewall Mounting: Chrome-plated steel, one piece, flat.

G. Sprinkler Guards:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Reliable Automatic Sprinkler Co., Inc. (The).
 b. Tyco Fire & Building Products LP.
 c. Victaulic Company.
 d. Viking Corporation.
2. Standard: UL 199.

3. Type: Wire cage with fastening device for attaching to sprinkler.

2.7 ALARM DEVICES

A. Alarm-device types shall match piping and equipment connections.

B. Electrically Operated Alarm Bell:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Fire-Lite Alarms, Inc.; a Honeywell International company.
 b. Notifier.
 c. Potter Electric Signal Company, LLC.
 d. Reliable Automatic Sprinkler, Corp.

3. Type: Vibrating, metal alarm bell.

4. Size: 8-inch minimum diameter.

5. Finish: Red-enamel factory finish, suitable for outdoor use.

6. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Water-Flow Indicators:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ADT Security Services, Inc.
 b. McDonnell & Miller.
 c. Potter Electric Signal Company, LLC.
 d. Viking Corporation.
 e. Watts; a Watts Water Technologies company.

4. Components: Two single-pole, double-throw circuit switches for isolated alarm and auxiliary contacts, 7 A, 125-V ac and 0.25 A, 24-V dc; complete with factory-set, field-adjustable retard element to prevent false signals and tamperproof cover that sends signal if removed.

5. Type: Paddle operated.

7. Design Installation: Horizontal or vertical.

D. Pressure Switches:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Barksdale, Inc.
 b. Potter Electric Signal Company, LLC.
 c. System Sensor.
 d. Tyco Fire & Building Products LP.
 e. Viking Corporation.

3. Type: Electrically supervised water-flow switch with retard feature.

5. Design Operation: Rising pressure signals water flow.

E. Valve Supervisory Switches:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Fire-Lite Alarms, Inc.; a Honeywell International company.
 b. Kennedy Valve Company; a division of McWane, Inc.
 c. Potter Electric Signal Company, LLC.
 d. System Sensor.

3. Type: Electrically supervised.

5. Design: Signals that controlled valve is in other than fully open position.

6. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.8 PRESSURE GAGES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. AGF Manufacturing Inc.
 2. AMETEK, Inc.
 3. Ashcroft Inc.
 4. Trerice Corporation.
 5. Wika Instrument Corporation.

B. Standard: UL 393.

C. Dial Size: 3-1/2- to 4-1/2-inch diameter.

D. Pressure Gage Range: 0- to 250-psig minimum.
PART 3 - EXECUTION

3.1 PREPARATION

A. Perform fire-hydrant flow test according to NFPA 13 and NFPA 291. Use results for system design calculations required in "Quality Assurance" Article.

B. Report test results promptly and in writing.

3.2 SERVICE-ENTRANCE PIPING

A. Connect sprinkler piping to water-service piping for service entrance to building. Comply with requirements for exterior piping in Section 211100 "Facility Fire-Suppression Water-Service Piping" for exterior piping.

B. Install shutoff valve, backflow preventer, pressure gage, drain, and other accessories indicated at connection to water-service piping. Comply with requirements for backflow preventers in Section 211100 "Facility Fire-Suppression Water Service Piping."

C. Install shutoff valve, check valve, pressure gage, and drain at connection to water service.

3.3 PIPING INSTALLATION

A. Locations and Arrangements: Drawing plans, schematics, and diagrams indicate general location and arrangement of piping. Install piping as indicated on approved working plans.

1. Deviations from approved working plans for piping require written approval from authorities having jurisdiction. File written approval with Architect before deviating from approved working plans.

2. Coordinate layout and installation of sprinklers with other construction that penetrates ceilings, including light fixtures, HVAC equipment, and partition assemblies.

B. Piping Standard: Comply with NFPA 13 requirements for installation of sprinkler piping.

C. Use listed fittings to make changes in direction, branch takeoffs from mains, and reductions in pipe sizes.

D. Install unions adjacent to each valve in pipes NPS 2 and smaller.

E. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.

F. Install "Inspector's Test Connections" in sprinkler system piping, complete with shutoff valve, and sized and located according to NFPA 13.

G. Install sprinkler piping with drains for complete system drainage.
H. Install sprinkler control valves, test assemblies, and drain risers adjacent to standpipes when sprinkler piping is connected to standpipes.

I. Install automatic (ball drip) drain valve at each check valve for fire-department connection, to drain piping between fire-department connection and check valve. Install drain piping to and spill over floor drain or to outside building.

J. Install alarm devices in piping systems.

K. Install hangers and supports for sprinkler system piping according to NFPA 13. Comply with requirements for hanger materials in NFPA 13.

L. Install pressure gages on riser or feed main, at each sprinkler test connection, and at top of each standpipe. Include pressure gages with connection not less than NPS 1/4 and with soft-metal seated globe valve, arranged for draining pipe between gage and valve. Install gages to permit removal, and install where they are not subject to freezing.

M. Fill sprinkler system piping with water.

N. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 210517 "Sleeves and Sleeve Seals for Fire-Suppression Piping."

O. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 210517 "Sleeves and Sleeve Seals for Fire-Suppression Piping."

P. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 210518 "Escutcheons for Fire-Suppression Piping."

3.4 JOINT CONSTRUCTION

A. Install couplings, flanges, flanged fittings, unions, nipples, and transition and special fittings that have finish and pressure ratings same as or higher than system's pressure rating for aboveground applications unless otherwise indicated.

B. Install unions adjacent to each valve in pipes NPS 2 and smaller.

C. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.

D. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

E. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

F. Flanged Joints: Select appropriate gasket material in size, type, and thickness suitable for water service. Join flanges with gasket and bolts according to ASME B31.9.
G. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:

1. Apply appropriate tape or thread compound to external pipe threads.
2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.

H. Steel-Piping, Cut-Grooved Joints: Cut square-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe joints.

I. Steel-Piping, Roll-Grooved Joints: Roll rounded-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe grooved joints.

J. Dissimilar-Material Piping Joints: Make joints using adapters compatible with materials of both piping systems.

3.5 VALVE AND SPECIALTIES INSTALLATION

A. Install listed fire-protection valves, trim and drain valves, specialty valves and trim, controls, and specialties according to NFPA 13 and authorities having jurisdiction.

B. Install listed fire-protection shutoff valves supervised open, located to control sources of water supply except from fire-department connections. Install permanent identification signs indicating portion of system controlled by each valve.

C. Install check valve in each water-supply connection. Install backflow preventers instead of check valves in potable-water-supply sources.

D. Specialty Valves:

1. Install valves in vertical position for proper direction of flow, in main supply to system.
2. Install alarm valves with bypass check valve and retarding chamber drain-line connection.

3.6 SPRINKLER INSTALLATION

A. Install sprinklers in suspended ceilings in center of acoustical ceiling panels.

B. Do not install pendent or sidewall, wet-type sprinklers in areas subject to freezing.

C. Install sprinklers into flexible, sprinkler hose fittings, and install hose into bracket on ceiling grid.
3.7 IDENTIFICATION

A. Install labeling and pipe markers on equipment and piping according to requirements in NFPA 13.

B. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.8 FIELD QUALITY CONTROL

A. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

1. Leak Test: After installation, charge systems and test for leaks. Repair leaks and retest until no leaks exist.
2. Test and adjust controls and safety. Replace damaged and malfunctioning controls and equipment.
3. Flush, test, and inspect sprinkler systems according to NFPA 13, "Systems Acceptance" Chapter.
4. Energize circuits to electrical equipment and devices.
5. Coordinate with fire-alarm tests. Operate as required.
6. Coordinate with fire-pump tests. Operate as required.
7. Verify that equipment hose threads are same as local fire department equipment.

B. Sprinkler piping system will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports.

3.9 CLEANING

A. Clean dirt and debris from sprinklers.

B. Only sprinklers with their original factory finish are acceptable. Remove and replace any sprinklers that are painted or have any other finish than their original factory finish.

3.10 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain specialty valves and pressure-maintenance pumps.

3.11 PIPING SCHEDULE

A. Standard-pressure, wet-pipe sprinkler system, NPS 2 and smaller, shall be one of the following:

1. Schedule 30, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.
2. Schedule 30, galvanized-steel pipe with threaded ends; galvanized, gray-iron threaded fittings; and threaded joints.
3. Type L, hard copper tube with plain ends; cast- or wrought-copper, solder-joint fittings; and brazed joints.

B. Standard-pressure, wet-pipe sprinkler system, NPS 2-1/2 to NPS 4, shall be one of the following:

1. Schedule 10 black-steel pipe with welded or roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.

C. Standard-pressure, wet-pipe sprinkler system, NPS 5 and larger, shall be one of the following:

1. Schedule 10 black-steel pipe with welded or roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.

3.12 SPRINKLER SCHEDULE

A. Use sprinkler types in subparagraphs below for the following applications:

1. Rooms without Ceilings: Upright sprinklers.
2. Rooms with Suspended Ceilings: Recessed sprinklers.

B. Provide sprinkler types in subparagraphs below with finishes indicated.

1. Recessed Sprinklers: Bright chrome, with bright chrome escutcheon.
2. Pendent and Sidewall Sprinklers: Chrome plated in finished spaces exposed to view; rough bronze in unfinished spaces not exposed to view; wax coated where exposed to acids, chemicals, or other corrosive fumes.

END OF SECTION
SECTION 21 31 13

ELECTRIC-DRIVE, CENTRIFUGAL FIRE PUMPS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. In-line fire pumps.
 2. Fire-pump accessories and specialties.

B. Related Requirements:

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product. Include rated capacities, operating characteristics, performance curves, electrical characteristics, and furnished specialties and accessories.

B. Shop Drawings: For fire pumps, motor drivers, and fire-pump accessories and specialties.
 1. Include plans, elevations, sections, and mounting and attachment details.
 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Include diagrams for power, signal, and control wiring.

C. Product Certificates: For each type of fire pump, from manufacturer.

D. Source quality-control reports.

E. Field quality-control reports.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For fire pumps to include in operation and maintenance manuals.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

B. Pump Equipment, Accessory, and Specialty Pressure Rating: 175 psig minimum unless higher pressure rating is indicated.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.2 GENERAL REQUIREMENTS FOR CENTRIFUGAL FIRE PUMPS

A. Description: Factory-assembled and -tested fire-pump and driver unit.

B. Base: Fabricated and attached to fire-pump and driver unit, with reinforcement to resist movement of pump during seismic events when base is anchored to building substrate.

C. Finish: Red paint applied to factory-assembled and -tested unit before shipping.

2.3 IN-LINE FIRE PUMPS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Patterson Pump Company, a Gorman-Rupp company.
2. Peerless Pump Company.

B. Pump:

1. Standard: UL 448, for in-line pumps for fire service.
3. Impeller: Cast bronze, statically and dynamically balanced, and keyed to shaft.
5. Shaft and Sleeve: Steel shaft with bronze sleeve.
 a. Shaft Bearings: Grease-lubricated ball bearings in cast-iron housing.
 b. Seals: Stuffing box with minimum of four rings of graphite-impregnated braided yarn and bronze packing gland. Provide teflon lantern ring when the suction pressure is 30 psig for less.

6. Mounting: Pump and driver shaft is vertical, with motor above pump and pump on base. Motor and pump rotating assembly shall be removable from top without removing the pump casing from the piping.

C. Coupling: None or rigid.
D. Driver:
 1. Standard: UL 1004A.
 2. Type: Electric motor; NEMA MG 1, polyphase Design B.

E. Capacities and Characteristics:
 1. Rated Capacity: 300 gpm.
 2. Total Rated Head: 41 psig.
 3. Inlet Flange: Class 125.
 4. Outlet Flange: Class 125.
 5. Suction Head Available at Pump: 38 psig.
 8. Electrical Characteristics:
 a. Volts: 460 V.
 b. Phase: Three.
 c. Hertz: 60.

2.4 FIRE-PUMP ACCESSORIES AND SPECIALTIES

A. Automatic Air-Release Valves: Comply with NFPA 20 for installation in fire-pump casing.

B. Circulation Relief Valves: UL 1478, brass, spring loaded; for installation in pump discharge piping.

C. Relief Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. CLA-VAL Automatic Control Valves.
 b. Kunkle Valve.
 c. CVP Control Valves.
 d. Watts; a Watts Water Technologies company.
 e. Zurn Industries, LLC.
 2. Description: UL 1478, bronze or cast iron, spring loaded; for installation in fire-suppression water-supply piping.

D. Inlet Fitting: Eccentric tapered reducer at pump suction inlet.

E. Outlet Fitting: Concentric tapered reducer at pump discharge outlet.

F. Discharge Cone: Closed or open type.

G. Hose Valve Manifold Assembly:
5. Manifold:
 a. Test Connections: Comply with UL 405; however, provide outlets without clappers instead of inlets.
 b. Body: Flush type, brass or ductile iron, with number of outlets required by NFPA 20.
 d. Adapters and Caps with Chain: Brass or bronze, with outlet threaded according to NFPA 1963 and matching local fire-department threads.
 e. Escutcheon Plate: Brass or bronze; rectangular.
 f. Hose Valves: UL 668, bronze, with outlet threaded according to NFPA 1963 and matching local fire-department threads.
 g. Exposed Parts Finish: Polished, chrome plated.
 h. Escutcheon Plate Marking: Equivalent to "FIRE PUMP TEST."

2.5 GROUT

A. Standard: ASTM C 1107, Grade B, post-hardening and volume-adjusting, dry, hydraulic cement grout.

B. Characteristics: Nonshrink and recommended for interior and exterior applications.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

2.6 SOURCE QUALITY CONTROL

A. Testing: Test and inspect fire pumps according to UL 448 requirements for "Operation Test" and "Manufacturing and Production Tests."
 1. Verification of Performance: Rate fire pumps according to UL 448.

B. Fire pumps will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.
3.1 EXAMINATION

A. Examine equipment bases and anchorage provisions, with Installer present, for compliance with requirements for installation tolerances, and other conditions affecting performance of fire pumps.

B. Examine roughing-in for fire-suppression piping systems to verify actual locations of piping connections before fire-pump installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Fire-Pump Installation Standard: Comply with NFPA 20 for installation of fire pumps, relief valves, and related components.

B. Equipment Mounting:
 1. Install fire pumps on cast-in-place concrete equipment bases. Comply with requirements for equipment bases and foundations specified in "Cast-in-Place Concrete."

C. Install fire-pump suction and discharge piping equal to or larger than sizes required by NFPA 20.

D. Support piping and pumps separately, so weight of piping does not rest on pumps.

E. Install valves that are same size as connecting piping. Comply with requirements for fire-protection valves specified in Section 211313 "Wet-Pipe Sprinkler Systems."

F. Install pressure gages on fire-pump suction and discharge flange pressure-gage tappings. Comply with requirements for pressure gages specified in Section 211313 "Wet-Pipe Sprinkler Systems."

G. Install piping hangers and supports, anchors, valves, gages, and equipment supports according to NFPA 20.

H. Electrical Wiring: Install electrical devices furnished by equipment manufacturers but not factory mounted. Furnish copies of manufacturers’ wiring diagram submittals to electrical Installer.

I. Wiring Method: Conceal conductors and cables in accessible ceilings, walls, and floors where possible.
3.3 ALIGNMENT

A. After alignment is correct, tighten anchor bolts evenly. Fill baseplate completely with grout, with metal blocks and shims or wedges in place. Tighten anchor bolts after grout has hardened. Check alignment and make required corrections.

B. Align piping connections.

3.4 CONNECTIONS

A. Comply with requirements for piping and valves specified in Section 211313 "Wet-Pipe Sprinkler Systems." Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to pumps and equipment to allow service and maintenance.

C. Connect relief-valve discharge to drainage piping or point of discharge.

D. Connect fire pumps to their controllers.

3.5 IDENTIFICATION

A. Identify system components. Comply with requirements for fire-pump marking according to NFPA 20.

3.6 FIELD QUALITY CONTROL

A. Test each fire pump with its controller as a unit. Comply with requirements for electric-motor-driver fire-pump controller, specified in Section 262933 "Controllers for Fire-Pump Drivers."

B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

C. Perform the following tests and inspections with the assistance of a factory-authorized service representative.

1. After installing components, assemblies, and equipment, including controller, test for compliance with requirements. Test according to NFPA 20 for acceptance and performance testing.

3. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.

4. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.

5. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

D. Components, assemblies, and equipment will be considered defective if they do not pass tests and inspections.

E. Prepare test and inspection reports.
F. Furnish fire hoses in number, size, and length required to reach storm drain or other acceptable location to dispose of fire-pump test water. Hoses are for tests only and do not convey to Owner.

3.7 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.

1. Complete installation and startup checks according to manufacturer's written instructions.

3.8 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain fire pumps.

END OF SECTION
SECTION 21 34 00
PRESSURE-MAINTENANCE PUMPS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
1. Regenerative-turbine, pressure-maintenance pumps.
B. Related Requirements:
1. Section 262933 "Controllers for Fire-Pump Drivers" for pressure-maintenance-pump controllers.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product. Include rated capacities, operating characteristics, performance curves, electrical characteristics, and furnished specialties and accessories.
B. Shop Drawings: For pumps, accessories, and specialties.
1. Include plans, elevations, sections, and attachment details.
2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
3. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS
A. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For pumps to include in operation and maintenance manuals.
2.1 REGENERATIVE-TURBINE, PRESSURE-MAINTENANCE PUMPS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Aurora Pump; Pentair Ltd.
2. Crane Pumps & Systems.
3. MTH Pumps/MTH Tool Company, Inc.
4. PACO Pumps; Grundfos Pumps Corporation, USA.

B. Description: Factory-assembled and -tested, close-coupled, single-stage, regenerative-turbine centrifugal pump as defined in HI 1.1-1.2 and HI 1.3; with pump and motor mounted horizontally.

C. Pump Construction:

1. Casing: Radially split, cast iron, with threaded inlet and outlet.
2. Impeller: Bronze, balanced, and keyed to shaft.
5. Seal: Mechanical type with spring-loaded, rotating head.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

1. Power Cord: Factory-connected to motor for field connection to controller.

F. Nameplate: Permanently attached to pump and indicating capacity and characteristics.

G. Capacities and Characteristics:

1. Rated Capacity: 5 gpm.
2. Total Dynamic Head: 51 psig.
4. Inlet Size: Threaded; ¾ NPS.
5. Outlet Size: Threaded; ¾ NPS.
6. Suction Head Available at Pump: 33 psig.
9. Electrical Characteristics:
 a. Volts: 460.
 b. Phases: Three.
 c. Hertz: 60.
2.2 MOTORS

A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 210513 "Common Motor Requirements for Fire Suppression Equipment."

1. Motor Sizes: Minimum size as indicated; if not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION

A. NFPA Standard: Comply with NFPA 20 for installation of pressure-maintenance pumps.

B. Equipment Mounting:

1. Install regenerative-turbine, pressure-maintenance pumps according to HI 1.4.
2. Install base-mounted pumps on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in "Cast-in-Place Concrete."
 a. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
 b. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 c. Install anchor bolts to elevations required for proper attachment to supported equipment.
 d. Attach pumps to equipment base using anchor bolts.
 e. Shim pumps as needed to make them level.

3. Install isolation valves in both inlet and outlet pipes near the pump. Comply with requirements for valves specified in Section 211313 "Wet-Pipe Sprinkler Systems."

3.2 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

B. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

1. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
3. Pressure-maintenance pumps will be considered defective if they do not pass tests and inspections.
C. Prepare test and inspection reports.

3.3 ADJUSTING

A. Lubricate pumps as recommended by manufacturer.

B. Set field-adjustable pressure-switch ranges as indicated.

END OF SECTION
SECTION 21 35 00
FIRE PROTECTION CABINETS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Fire-protection cabinets for the following:
 a. Fire hose valves.

B. Related Requirements:
 1. Section 211200 "Fire-Suppression Standpipes" for fire-hose connections.
 2. Section 211313 “Wet Pipe Sprinkler Systems” for sprinkler system.

1.3 PREINSTALLATION CONFERENCE
A. Preinstallation Conference: Conduct conference at Project site.
 1. Review methods and procedures related to fire-protection cabinets including, but not limited to, the following:
 a. Schedules and coordination requirements.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product. Show door hardware, cabinet type, trim style, and panel style. Include roughing-in dimensions and details showing recessed-, semirecessed-, or surface-mounting method and relationships of box and trim to surrounding construction.
 1. Show location of knockouts for hose valves.

B. Shop Drawings: For fire-protection cabinets. Include plans, elevations, sections, details, and attachments to other work.

C. Samples: For each type of exposed finish required.
D. Samples for Initial Selection: For each type of exposed finish required.

E. Samples for Verification: For each type of exposed finish required, prepared on Samples 6 by 6 inches square.

F. Product Schedule: For fire-protection cabinets. Indicate whether recessed, semirecessed, or surface mounted.

1.5 CLOSEOUT SUBMITTALS
A. Maintenance Data: For fire-protection cabinets to include in maintenance manuals.

1.6 COORDINATION
A. Coordinate size of fire-protection cabinets to ensure that type and capacity of hose valves indicated are accommodated.

B. Coordinate sizes and locations of fire-protection cabinets with wall depths.

1.7 SEQUENCING
A. Apply decals on field-painted fire-protection cabinets after painting is complete.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
A. Fire-Rated Fire-Protection Cabinets: Listed and labeled to comply with requirements in ASTM E 814 for fire resistance rating of walls where they are installed.

2.2 FIRE-PROTECTION CABINET HVC
A. Cabinet Type: Suitable for fire hose valve.

 Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 b. Guardian Fire Equipment, Inc.
 c. Larsens Manufacturing Company.
 d. Potter Roemer LLC.

B. Cabinet Construction: 1-hour fire rated.
1. Fire-Rated Cabinets: Construct fire-rated cabinets with double walls fabricated from 0.043-inch-thick cold-rolled steel sheet lined with minimum 5/8-inch-thick fire-barrier material. Provide factory-drilled mounting holes.

C. Cabinet Material: Cold-rolled steel sheet.
 1. Shelf: Same metal and finish as cabinet.

D. Recessed Cabinet:
 1. Trimless with Concealed Flange: Surface of surrounding wall finishes flush with exterior finished surface of cabinet frame and door, without overlapping trim attached to cabinet. Provide recessed flange, of same material as box, attached to box to act as drywall bead.
 2. Trimless with Hidden Flange: Flange of same metal and finish as box overlaps surrounding wall finish and is concealed from view by an overlapping door.
 3. Exposed Flat Trim: One-piece combination trim and perimeter door frame overlapping surrounding wall surface with exposed trim face and wall return at outer edge (backbend).

E. Cabinet Trim Material: Steel sheet.

F. Door Material: Steel sheet.

G. Door Style: Fully steel panel with frame.

H. Door Hardware: Manufacturer's standard door-operating hardware of proper type for cabinet type, trim style, and door material and style indicated.
 1. Provide manufacturer's standard.
 2. Provide manufacturer's standard hinge permitting door to open 180 degrees.

I. Accessories:
 1. Mounting Bracket: Manufacturer's standard steel, designed to secure fire extinguisher to fire-protection cabinet, of sizes required for types and capacities of fire extinguishers indicated, with plated or baked-enamel finish.
 2. Lettered Door Handle: One-piece, cast-iron door handle with the word "FIRE" embossed into face.
 3. Identification: Lettering complying with authorities having jurisdiction for letter style, size, spacing, and location. Locate as directed by Architect.

J. Materials:
 1. Cold-Rolled Steel: ASTM A 1008/A 1008M, Commercial Steel (CS), Type B.
 a. Finish: Baked enamel or powder coat.
2.3 FABRICATION

A. Fire-Protection Cabinets: Provide manufacturer's standard box (tub) with trim, frame, door, and hardware to suit cabinet type, trim style, and door style indicated.
 1. Weld joints and grind smooth.
 2. Provide factory-drilled mounting holes.
 3. Prepare doors and frames to receive locks.
 4. Install door locks at factory.

B. Cabinet Doors: Fabricate doors according to manufacturer's standards, from materials indicated and coordinated with cabinet types and trim styles.
 1. Fabricate door frames with tubular stiles and rails and hollow-metal design, minimum 1/2 inch thick.
 2. Fabricate door frames of one-piece construction with edges flanged.
 3. Miter and weld perimeter door frames.

C. Cabinet Trim: Fabricate cabinet trim in one piece with corners mitered, welded, and ground smooth.

2.4 GENERAL FINISH REQUIREMENTS

B. Protect mechanical finishes on exposed surfaces of fire-protection cabinets from damage by applying a strippable, temporary protective covering before shipping.

C. Finish fire-protection cabinet after assembly.

D. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in for hose valves and cabinets to verify actual locations of piping connections before cabinet installation.

B. Examine walls and partitions for suitable framing depth and blocking where recessed cabinets will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 PREPARATION

A. Prepare recesses for recessed fire-protection cabinets as required by type and size of cabinet and trim style.

3.3 INSTALLATION

A. General: Install fire-protection cabinets in locations and at mounting heights indicated or, if not indicated, at heights acceptable to authorities having jurisdiction.

B. Fire-Protection Cabinets: Fasten cabinets to structure, square and plumb.

1. Unless otherwise indicated, provide recessed fire-protection cabinets. If wall thickness is inadequate for recessed cabinets, provide semirecessed fire-protection cabinets.
2. Fasten mounting brackets to inside surface of fire-protection cabinets, square and plumb.
3. Fire-Rated Hose-Valve Cabinets:
 a. Install cabinet with not more than 1/16-inch tolerance between pipe OD and knockout OD. Center pipe within knockout.
 b. Seal through penetrations with firestopping sealant as specified in Section 078413 "Penetration Firestopping."

C. Identification: Apply decals at locations indicated.

3.4 ADJUSTING AND CLEANING

A. Remove temporary protective coverings and strippable films, if any, as fire-protection cabinets are installed unless otherwise indicated in manufacturer's written installation instructions.

B. Adjust fire-protection cabinet doors to operate easily without binding. Verify that integral locking devices operate properly.

C. On completion of fire-protection cabinet installation, clean interior and exterior surfaces as recommended by manufacturer.

D. Touch up marred finishes, or replace fire-protection cabinets that cannot be restored to factory-finished appearance. Use only materials and procedures recommended or furnished by fire-protection cabinet and mounting bracket manufacturers.

E. Replace fire-protection cabinets that have been damaged or have deteriorated beyond successful repair by finish touchup or similar minor repair procedures.

END OF SECTION
SECTION 22 05 13
COMMON MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.3 COORDINATION
 A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 1. Motor controllers.
 2. Torque, speed, and horsepower requirements of the load.
 3. Ratings and characteristics of supply circuit and required control sequence.
 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS
 A. Comply with NEMA MG 1 unless otherwise indicated.

2.2 MOTOR CHARACTERISTICS
 A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet above sea level.
 B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

2.3 POLYPHASE MOTORS
 A. Description: NEMA MG 1, Design B, medium induction motor.
B. Efficiency: Energy efficient, as defined in NEMA MG 1.

C. Service Factor: 1.15.

D. Rotor: Random-wound, squirrel cage.

E. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.

F. Temperature Rise: Match insulation rating.

G. Insulation: Class F.

H. Code Letter Designation:
 1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
 2. Motors Smaller than 15 HP: Manufacturer's standard starting characteristic.

I. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.4 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.

2.5 SINGLE-PHASE MOTORS

A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:
 1. Permanent-split capacitor.
 2. Split phase.
 3. Capacitor start, inductor run.
 4. Capacitor start, capacitor run.

B. Bearings: Pre-lubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.

C. Motors 1/20 HP and Smaller: Shaded-pole type.

D. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)
SECTION 22 05 16
EXPANSION FITTINGS AND LOOPS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Rubber packless expansion joints.
 2. Alignment guides and anchors.
 3. Pipe loops and swing connections.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
B. Delegated-Design Submittal: For each anchor and alignment guide, including analysis data, signed and sealed by the qualified, certified installer responsible for their preparation.
 1. Design Calculations: Calculate requirements for thermal expansion of piping systems and for selecting and designing expansion joints, loops, and swing connections.
 2. Anchor Details: Detail fabrication of each anchor indicated. Show dimensions and methods of assembly and attachment to building structure.
 3. Alignment Guide Details: Detail field assembly and attachment to building structure.
 4. Schedule: Indicate type, manufacturer's number, size, material, pressure rating, end connections, and location for each expansion joint.

1.4 INFORMATIONAL SUBMITTALS
A. Welding certificates.

1.5 CLOSEOUT SUBMITTALS
A. Maintenance Data: For expansion joints to include in maintenance manuals.
1.6 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Pipe and Pressure-Vessel Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Compatibility: Products shall be suitable for piping service fluids, materials, working pressures, and temperatures.

B. Capability: Products to absorb 200 percent of maximum axial movement between anchors.

2.2 PACKLESS EXPANSION JOINTS

A. Rubber Packless Expansion Joints:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Flexicraft Industries.
 c. Garlock Sealing Technologies.
 d. Metraflex Company (The).
 e. Proco Products, Inc.
 f. Red Valve Company, Inc.

4. Arch Type: multiple arches.
5. Spherical Type: multiple spheres.
6. Minimum Pressure Rating for NPS 1 to NPS 4: 150 psig at 220 deg F.
7. Material for Water: Butyl rubber Buna-N.

2.3 ALIGNMENT GUIDES AND ANCHORS

A. Alignment Guides:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
2. Description: Steel, factory-fabricated alignment guide, with bolted two-section outer cylinder and base for attaching to structure; with two-section guiding slider for bolting to pipe.

B. Anchor Materials:

1. Steel Shapes and Plates: ASTM A 36/A 36M.
2. Bolts and Nuts: ASME B18.10 or ASTM A 183, steel hex head.
4. Mechanical Fasteners: Insert-wedge-type stud with expansion plug anchor for use in hardened portland cement concrete, with tension and shear capacities appropriate for application.
5. Chemical Fasteners: Insert-type stud, bonding-system anchor for use with hardened portland cement concrete, with tension and shear capacities appropriate for application.
 a. Bonding Material: ASTM C 881/C 881M, Type IV, Grade 3, two-component epoxy resin suitable for surface temperature of hardened concrete where fastener is to be installed.

PART 3 - EXECUTION

3.1 EXPANSION JOINT INSTALLATION

A. Install expansion joints of sizes matching sizes of piping in which they are installed.

B. Install metal-bellows expansion joints according to EJMA's "Standards of the Expansion Joint Manufacturers Association, Inc."

C. Install rubber packless expansion joints according to FSA-PSJ-703.
3.2 PIPE LOOP AND SWING CONNECTION INSTALLATION

A. Install pipe loops cold-sprung in tension or compression as required to partly absorb tension or compression produced during anticipated change in temperature.

B. Connect risers and branch connections to mains with at least five pipe fittings, including tee in main.

C. Connect risers and branch connections to terminal units with at least four pipe fittings, including tee in riser.

D. Connect mains and branch connections to terminal units with at least four pipe fittings, including tee in main.

3.3 ALIGNMENT-GUIDE AND ANCHOR INSTALLATION

A. Install alignment guides to guide expansion and to avoid end-loading and torsional stress.

B. Install one guide(s) on each side of pipe expansion fittings and loops. Install guides nearest to expansion joint not more than four pipe diameters from expansion joint.

C. Attach guides to pipe, and secure guides to building structure.

D. Install anchors at locations to prevent stresses from exceeding those permitted by ASME B31.9 and to prevent transfer of loading and stresses to connected equipment.

E. Anchor Attachments:
 2. Anchor Attachment to Copper Tubing: Attach with pipe hangers. Use MSS SP-69, Type 24; U bolts bolted to anchor.

F. Fabricate and install steel anchors by welding steel shapes, plates, and bars. Comply with ASME B31.9 and AWS D1.1/D1.1M.
 1. Anchor Attachment to Steel Structural Members: Attach by welding.
 2. Anchor Attachment to Concrete Structural Members: Attach by fasteners. Follow fastener manufacturer's written instructions.

G. Use grout to form flat bearing surfaces for guides and anchors attached to concrete.

END OF SECTION
SECTION 22 05 17
SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Sleeves.
 2. Stack-sleeve fittings.
 3. Sleeve-seal systems.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES
A. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.
B. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

2.2 STACK-SLEEVE FITTINGS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2. Zurn Industries, LLC.
B. Description: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring, bolts, and nuts for membrane flashing.
1. Underdeck Clamp: Clamping ring with setscrews.

2.3 SLEEVE-SEAL SYSTEMS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include the following:

2. Zurn Industries, LLC.

B. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.

1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
2. Pressure Plates: Carbon steel.
3. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, of length required to secure pressure plates to sealing elements.

2.4 GROUT

B. Characteristics: Nonshrink; recommended for interior and exterior applications.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.

B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.

1. Sleeves are not required for core-drilled holes.

C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.

1. Permanent sleeves are not required for holes in slabs formed by molded-PE or -PP sleeves.
2. Cut sleeves to length for mounting flush with both surfaces.
a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.

3. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.

D. Install sleeves for pipes passing through interior partitions.

1. Cut sleeves to length for mounting flush with both surfaces.
2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Section 07 92 00 "Joint Sealants."

E. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section 07 84 13 "Penetration Firestopping."

3.2 STACK-SLEEVE-FITTING INSTALLATION

A. Install stack-sleeve fittings in new slabs as slabs are constructed.

1. Install fittings that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
2. Secure flashing between clamping flanges for pipes penetrating floors with membrane waterproofing. Comply with requirements for flashing specified in Section 07 62 00 "Sheet Metal Flashing and Trim."
3. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level.
4. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
5. Using grout, seal the space around outside of stack-sleeve fittings.

B. Fire-Barrier Penetrations: Maintain indicated fire rating of floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section 07 84 13 "Penetration Firestopping."

3.3 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.

B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.
3.4 SLEEVE AND SLEEVE-SEAL SCHEDULE

A. Use sleeves and sleeve seals for the following piping-penetration applications:

1. Exterior Concrete Walls above Grade:
 a. Piping Smaller Than NPS 6: Cast-iron wall sleeves, Galvanized-steel wall sleeves, Galvanized-steel-pipe sleeves or Sleeve-seal fittings.

2. Exterior Concrete Walls below Grade:
 a. Piping Smaller Than NPS 6: Galvanized-steel wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.

3. Concrete Slabs-on-Grade:
 a. Piping Smaller Than NPS 6: Galvanized-steel wall sleeves with sleeve-seal system Galvanized-steel-pipe sleeves with sleeve-seal system Sleeve-seal fittings Insert material.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.

4. Concrete Slabs above Grade:

5. Interior Partitions:

END OF SECTION
SECTION 22 05 18
ESCUTCHEONS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Escutcheons.
 2. Floor plates.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS
 A. One-Piece, Deep-Profile Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.
 B. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.
 C. Split-Casting Brass Type: With polished, chrome-plated finish and with concealed hinge and setscrew.
 D. Split-Plate, Stamped-Steel Type: With chrome-plated finish, concealed hinge, and spring-clip fasteners.

2.2 FLOOR PLATES
 A. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.
 B. Split-Casting Floor Plates: Cast brass with concealed hinge.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.

B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of insulated piping and with OD that completely covers opening.

 1. Escutcheons for New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Chrome-Plated Piping: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
 c. Insulated Piping: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
 d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
 e. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
 f. Bare Piping in Unfinished Service Spaces: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
 g. Bare Piping in Equipment Rooms: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.

C. Install floor plates for piping penetrations of equipment-room floors.

D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

 1. New Piping: One-piece, floor-plate type.
 2. Existing Piping: Split-casting, floor-plate type.

3.2 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons and floor plates using new materials.

END OF SECTION
SECTION 22 05 19

METERS AND GAGES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Bimetallic-actuated thermometers.
 2. Thermowells.
 3. Dial-type pressure gages.
 4. Gage attachments.

B. Related Sections:
 1. Section 21 12 00 "Fire-Suppression Standpipes" for fire protection pressure gages.
 2. Section 21 13 13 "Wet-Pipe Sprinkler Systems"
 3. Section 22 11 16 "Domestic Water Piping" for water meters and equipment inside the building.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Sustainable Design Submittals:

1.4 INFORMATIONAL SUBMITTALS

A. Product Certificates: For each type of meter and gage, from manufacturer.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For meters and gages to include in operation and maintenance manuals.
PART 2 - PRODUCTS

2.1 BIMETALLIC-ACTUATED THERMOMETERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Ashcroft Inc.
2. Marsh Bellofram.
3. Trerice, H. O. Co.
4. Weksler Glass Thermometer Corp.
5. WIKA Instrument Corporation.

C. Case: sealed type(s); stainless steel with 3-inch nominal diameter.

D. Dial: Nonreflective aluminum with permanently etched scale markings and scales in deg F.

E. Connector Type(s): Union joint, rigid, back and rigid, bottom, with unified-inch screw threads.

F. Connector Size: 1/2 inch, with ASME B1.1 screw threads.

G. Stem: 0.25 or 0.375 inch in diameter; stainless steel.

H. Window: Plain glass.

I. Ring: Stainless steel.

J. Element: Bimetal coil.

K. Pointer: Dark-colored metal.

L. Accuracy: Plus or minus 1 percent of scale range.

2.2 THERMOWELLS

A. Thermowells:

2. Description: Pressure-tight, socket-type fitting made for insertion into piping tee fitting.

3. Material for Use with Copper Tubing: CNR or CUNI.

4. Material for Use with Steel Piping: CRES CSA.

5. Type: Stepped shank unless straight or tapered shank is indicated.

6. External Threads: NPS 1/2, NPS 3/4, or NPS 1, ASME B1.20.1 pipe threads.

7. Internal Threads: 1/2, 3/4, and 1 inch, with ASME B1.1 screw threads.

8. Bore: Diameter required to match thermometer bulb or stem.

9. Insertion Length: Length required to match thermometer bulb or stem.

10. Lagging Extension: Include on thermowells for insulated piping and tubing.
11. **Bushings:** For converting size of thermowell's internal screw thread to size of thermometer connection.

B. **Heat-Transfer Medium:** Mixture of graphite and glycerin.

2.3 PRESSURE GAGES

A. **Direct-Mounted, Metal-Case, Dial-Type Pressure Gages:**

1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:

 b. Ashcroft Inc.
 c. Ernst Flow Industries.
 d. Trerice, H. O. Co.
 e. Weksler Glass Thermometer Corp.

2. **Standard:** ASME B40.100.

3. **Case:** Solid-front, pressure relief type(s); cast aluminum or drawn steel; 4-1/2-inch nominal diameter.

4. **Pressure-Element Assembly:** Bourdon tube unless otherwise indicated.

5. **Pressure Connection:** Brass, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated.

6. **Movement:** Mechanical, with link to pressure element and connection to pointer.

7. **Dial:** Nonreflective aluminum with permanently etched scale markings graduated in psi.

8. **Pointer:** Dark-colored metal.

9. **Window:** Glass.

10. **Ring:** Metal.

11. **Accuracy:** Grade A, plus or minus 1 percent of middle half of scale range.

2.4 GAGE ATTACHMENTS

A. **Snubbers:** ASME B40.100, brass; with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and piston-type surge-dampening device. Include extension for use on insulated piping.

B. **Valves:** Brass ball, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install thermowells with socket extending to center of pipe and in vertical position in piping tees.
B. Install thermowells of sizes required to match thermometer connectors. Include bushings if required to match sizes.

C. Install thermowells with extension on insulated piping.

D. Fill thermowells with heat-transfer medium.

E. Install direct-mounted thermometers in thermowells and adjust vertical and tilted positions.

F. Install direct-mounted pressure gages in piping tees with pressure gage located on pipe at the most readable position.

G. Install valve and snubber in piping for each pressure gage for fluids.

H. Install thermometers in the following locations:
 1. Inlet and outlet of each water heater.
 2. Inlet and outlet of each domestic hot-water storage tank.

I. Install pressure gages in the following locations:
 1. Building water service entrance into building.
 2. Suction and discharge of each domestic water pump.

3.2 CONNECTIONS

A. Install meters and gages adjacent to machines and equipment to allow service and maintenance of meters, gages, machines, and equipment.

3.3 ADJUSTING

A. Adjust faces of meters and gages to proper angle for best visibility.

3.4 THERMOMETER SCHEDULE

A. Thermometers at inlet and outlet of each domestic water heater shall be one of the following:
 1. Sealed, bimetallic-actuated type.

B. Thermometers at inlet and outlet of each domestic hot-water storage tank shall be one of the following:
 1. Sealed, bimetallic-actuated type.

C. Thermometer stems shall be of length to match thermowell insertion length.
3.5 THERMOMETER SCALE-RANGE SCHEDULE
 A. Scale Range for Domestic Cold-Water Piping: 0 to 150 deg F.
 B. Scale Range for Domestic Hot-Water Piping: 20 to 240 deg F.

3.6 PRESSURE-GAGE SCHEDULE
 A. Pressure gages at discharge of each water service into building shall be one of the following:
 1. Solid-front, pressure-relief, direct-mounted, metal case.
 B. Pressure gages at suction and discharge of each domestic water pump shall be as following:
 1. Solid-front, pressure-relief, direct-mounted, metal case.

3.7 PRESSURE-GAGE SCALE-RANGE SCHEDULE
 A. Scale Range for Water Service Piping: 0 to 160 psi.
SECTION 22 05 23.12
BALL VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Brass ball valves.
 2. Bronze ball valves.

1.3 DEFINITIONS
A. CWP: Cold working pressure.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of valve.

1.5 DELIVERY, STORAGE, AND HANDLING
A. Prepare valves for shipping as follows:
 1. Protect internal parts against rust and corrosion.
 2. Protect threads, flange faces, and soldered ends.

B. Use the following precautions during storage:
 1. Maintain valve end protection.
 2. Store valves indoors and maintain at higher-than-ambient-dew-point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.

C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use operating handles or stems as lifting or rigging points.
PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

B. ASME Compliance:
 1. ASME B1.20.1 for threads for threaded end valves.
 2. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 4. ASME B31.9 for building services piping valves.

D. Bronze valves shall be made with dezincification-resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc are not permitted.

E. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

F. Valve Sizes: Same as upstream piping unless otherwise indicated.

G. Valve Actuator Types:
 1. Gear Actuator: for quarter-turn valves NPS 4 and larger.
 2. Handlever: For quarter-turn valves smaller than NPS 4.

H. Valves in Insulated Piping:
 1. Include 2-inch stem extensions.
 2. Extended operating handles of nonthermal-conductive material and protective sleeves that allow operation of valves without breaking vapor seals or disturbing insulation.
 3. Memory stops that are fully adjustable after insulation is applied.

2.2 BRASS BALL VALVES

A. Two-Piece, Brass Ball Valves with Full Port and Stainless-Steel Trim:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Jomar Valve.
 b. KITZ Corporation.
 c. Milwaukee Valve Company.
 2. Description:
B. Three-Piece, Brass Ball Valves with Full Port and Stainless-Steel Trim:

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Conbraco, Inc.
 b. Jomer Valve.
 c. KITZ Cooperation.
 d. Milwaukee Valve Company.

2. Description:
 b. CWP Rating: 600 psig.
 d. Body Material: Forged brass.
 e. Ends: Threaded and soldered.
 f. Seats: PTFE.
 g. Stem: Stainless steel.
 h. Ball: Stainless steel, vented.
 i. Port: Full.

2.3 BRONZE BALL VALVES

A. Two-Piece, Bronze Ball Valves with Full Port and Stainless-Steel Trim:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Conbraco Industries, Inc.
 b. Milwaukee Valve Company.
 c. NIBCO INC.
 d. Watts; a Watts Water Technologies company.

2. Description:
 b. CWP Rating: 600 psig.
 c. Body Design: Two piece.
 d. Body Material: Bronze.
 e. Ends: Threaded or soldered.
f. Seats: PTFE.
g. Stem: Stainless steel.
h. Ball: Stainless steel, vented.
i. Port: Full.

B. Three-Piece, Bronze Ball Valves with Full Port and Stainless-Steel Trim:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Conbraco Industries, Inc.
 b. Milwaukee Valve Company.
 c. NIBCO INC.
 d. Watts; a Watts Water Technologies company.

2. Description:
 b. CWP Rating: 600 psig.
 d. Body Material: Bronze.
 e. Ends: Threaded.
 f. Seats: PTFE.
 g. Stem: Stainless steel.
 h. Ball: Stainless steel, vented.
 i. Port: Full.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.

C. Examine threads on valve and mating pipe for form and cleanliness.

D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

E. Do not attempt to repair defective valves; replace with new valves.
3.2 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

B. Locate valves for easy access and provide separate support where necessary.

C. Install valves in horizontal piping with stem at or above center of pipe.

D. Install valves in position to allow full stem movement.

E. Install valve tags. Comply with requirements in Section 22 05 53 "Identification for Plumbing Piping and Equipment" for valve tags and schedules.

3.3 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

A. If valves with specified CWP ratings are unavailable, the same types of valves with higher CWP ratings may be substituted.

B. Select valves with the following end connections:

1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solder-joint valve-end option is indicated in valve schedules below.

3.4 DOMESTIC HOT- AND COLD-WATER VALVE SCHEDULE

A. Pipe NPS 2 and Smaller:

1. Bronze and Brass Valves: May be provided with solder-joint ends instead of threaded ends.
2. One piece, brass ball valve.
3. One piece, bronze ball valve with stainless-steel trim.
4. Two-piece, brass ball valves with full port and stainless-steel trim.
5. Two-piece, bronze ball valves with full port and stainless-steel trim.
6. Three-piece, brass ball valves with full port and stainless-steel trim.
7. Three-piece, bronze ball valves with full port and stainless-steel trim.

B. Pipe NPS 2-1/2 and Larger:

1. Steel and Iron Valves, NPS 2-1/2 to NPS 4: May be provided with threaded ends instead of flanged ends.
2. Class 150, steel ball valves with full port.
3. Class 150, iron ball valves.

END OF SECTION
SECTION 22 05 23.13
BUTTERFLY VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
1. Iron, single-flange butterfly valves.
2. Chainwheels.

1.3 DEFINITIONS
A. CWP: Cold working pressure.
B. EPDM: Ethylene propylene-diene terpolymer rubber.
C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of valve.

1.5 DELIVERY, STORAGE, AND HANDLING
A. Prepare valves for shipping as follows:
1. Protect internal parts against rust and corrosion.
2. Protect threads, flange faces, ends.
3. Set butterfly valves closed or slightly open.

B. Use the following precautions during storage:
1. Maintain valve end protection.
2. Store valves indoors and maintain at higher-than-ambient-dew-point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.
C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

B. ASME Compliance:
 1. ASME B16.1 for flanges on iron valves.
 2. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 3. ASME B31.9 for building service piping valves.

C. AWWA Compliance: Comply with AWWA C606 for grooved-end connections.

E. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

F. Valve Sizes: Same as upstream piping unless otherwise indicated.

G. Valve Actuator Types:
 1. Handlever: For valves NPS 6 and smaller.
 2. Chainwheel: Device for attachment to gear, handlever, or stem; of size and with chain for mounting height, according to "Valve Installation" Article.

H. Valves in Insulated Piping: With 2-inch stem extensions.

2.2 IRON, SINGLE FLANGE BUTTERFLY VALVES

A. Iron Single-Flange Butterfly Valves with Ductile-Iron Disc:

 Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Conbraco Industries, Inc.
 b. Jenkins Valves; Crane Energy Flow Solutions.
 c. KITZ Corporation.
 d. Milwaukee Valve Company.
 e. NIBCO INC.
 f. Watts; a Watts Water Technologies company.

2. Description:
a. Standard: MSS SP-67, Type I.
b. CWP Rating: 200 psig.
c. Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.
d. Body Material: ASTM A 126, cast iron or ASTM A 536, ductile iron.
e. Seat: EPDM.
f. Stem: One- or two-piece stainless steel.
g. Disc: Nickel-plated ductile iron.

2.3 CHAINWHEELS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Babbitt Steam Specialty Co.
2. Roto Hammer Industries.
3. Trumbull Industries.

B. Description: Valve actuation assembly with sprocket rim, chain guides, chain, and attachment brackets for mounting chainwheels directly to handwheels.

1. Sprocket Rim with Chain Guides: Ductile or cast iron, of type and size required for valve. Include zinc or epoxy coating.
2. Chain: Hot-dip, galvanized steel, of size required to fit sprocket rim.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.

C. Examine mating flange faces for damage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

D. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
B. Locate valves for easy access and provide separate support where necessary.

C. Install valves in horizontal piping with stem at or above center of pipe.

D. Install valves in position to allow full stem movement.

E. Install chainwheels on operators for butterfly valves NPS 4 and larger and more than 96 inches above floor. Extend chains to 60 inches above finished floor.

F. Install valve tags. Comply with requirements in Section 22 05 53 "Identification for Plumbing Piping and Equipment" for valve tags and schedules.

3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 DOMESTIC HOT- AND COLD-WATER VALVE SCHEDULE

END OF SECTION
SECTION 22 05 23.14
CHECK VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Bronze swing check valves.
 2. Iron swing check valves.

1.3 DEFINITIONS
 A. CWP: Cold working pressure.
 B. EPDM: Ethylene propylene-diene terpolymer rubber.
 C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of valve.

1.5 DELIVERY, STORAGE, AND HANDLING
 A. Prepare valves for shipping as follows:
 1. Protect internal parts against rust and corrosion.
 2. Protect threads, flange faces, ends.
 3. Set check valves in either closed or open position.
 B. Use the following precautions during storage:
 1. Maintain valve end protection.
 2. Store valves indoors and maintain at higher-than-ambient-dew-point temperature. If
 outdoor storage is necessary, store valves off the ground in watertight enclosures.
C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

B. ASME Compliance:

1. ASME B1.20.1 for threads for threaded end valves.
2. ASME B16.1 for flanges on iron valves.
3. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
4. ASME B16.18 for solder joint.
5. ASME B31.9 for building services piping valves.

C. AWWA Compliance: Comply with AWWA C606 for grooved-end connections.

E. Bronze valves shall be made with dezincification-resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc are not permitted.

F. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

G. Valve Sizes: Same as upstream piping unless otherwise indicated.

2.2 BRONZE SWING CHECK VALVES

A. Class 125, Bronze, Swing Check Valves with Bronze Disc:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane; Crane Energy Flow Solutions.
 b. Jenkins Valves; Crane Energy Flow Solutions.
 c. Milwaukee Valve Company.
 d. NIBCO INC.
 e. Watts; a Watts Water Technologies company.

2. Description:

 a. Standard: MSS SP-80, Type 3.
 b. CWP Rating: 200 psig.
 c. Body Design: Horizontal flow.
2.3 IRON SWING CHECK VALVES

A. Class 125, Iron Swing Check Valves with Metal Seats:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Crane; Crane Energy Flow Solutions.
 b. Jenkins Valves; Crane Energy Flow Solutions.
 c. Milwaukee Valve Company.
 d. NIBCO INC.
 e. Watts; a Watts Water Technologies company.

2. Description:

 a. Standard: MSS SP-71, Type I.
 b. CWP Rating: 200 psig.
 c. Body Design: Clear or full waterway.
 d. Body Material: ASTM A 126, gray iron with bolted bonnet.
 e. Ends: Flanged or threaded. See valve schedule articles.
 f. Trim: Bronze.
 g. Gasket: Asbestos free.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.

C. Examine threads on valve and mating pipe for form and cleanliness.

D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

E. Do not attempt to repair defective valves; replace with new valves.
3.2 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

B. Locate valves for easy access and provide separate support where necessary.

C. Install valves in horizontal piping with stem at or above center of pipe.

D. Install valves in position to allow full stem movement.

E. Install check valves for proper direction of flow and as follows:
 1. Swing Check Valves: In horizontal position with hinge pin level.

F. Install valve tags. Comply with requirements in Section 22 05 53 "Identification for Plumbing Piping and Equipment" for valve tags and schedules.

3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

A. If valve applications are not indicated, use the following:
 1. Pump-Discharge Check Valves:
 a. NPS 2 and Smaller: Bronze swing check valves with bronze disc.

B. If valves with specified CWP ratings are unavailable, the same types of valves with higher CWP ratings may be substituted.

C. End Connections:
 1. For Copper Tubing, NPS 2 and Smaller: Threaded or soldered.
 2. For Steel Piping, NPS 2-1/2 to NPS 4: Flanged or threaded.

3.5 DOMESTIC HOT- AND COLD-WATER VALVE SCHEDULE

A. Pipe NPS 2 and Smaller: Bronze swing check valves, Class 125, bronze disc with soldered or threaded end connections.

B. Pipe NPS 2-1/2 and Larger:
 1. Iron swing check valves, Class 125, metal seats with threaded or flanged end connections.

END OF SECTION
SECTION 22 05 23.15
GATE VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Bronze gate valves.
 2. Iron gate valves.
 3. Chainwheels.

1.3 DEFINITIONS
A. CWP: Cold working pressure.
B. NRS: Nonrising stem.
C. OS&Y: Outside screw and yoke.
D. RS: Rising stem.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of valve.

1.5 DELIVERY, STORAGE, AND HANDLING
A. Prepare valves for shipping as follows:
 1. Protect internal parts against rust and corrosion.
 2. Protect threads, flange faces, grooves, and weld ends.
 3. Set gate valves closed to prevent rattling.
B. Use the following precautions during storage:
1. Maintain valve end protection.
2. Store valves indoors and maintain at higher-than-ambient-dew-point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.

C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

B. ASME Compliance:
 1. ASME B1.20.1 for threads for threaded end valves.
 2. ASME B16.1 for flanges on iron valves.
 3. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 4. ASME B16.18 for solder joint.
 5. ASME B31.9 for building services piping valves.

D. Bronze valves shall be made with dezincification-resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc are not permitted.

E. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

F. Valve Sizes: Same as upstream piping unless otherwise indicated.

G. RS Valves in Insulated Piping: With 2-inch stem extensions.

H. Valve Bypass and Drain Connections: MSS SP-45.

2.2 BRONZE GATE VALVES

A. Class 125, NRS, Bronze Gate Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane; Crane Energy Flow Solutions.
 b. Jenkins Valves; Crane Energy Flow Solutions.
 c. Milwaukee Valve Company.
 d. NIBCO INC.
 e. Watts; a Watts Water Technologies company.
2. Description:
 a. Standard: MSS SP-80, Type 1.
 b. CWP Rating: 200 psig.
 d. Ends: Threaded or solder joint.
 e. Stem: Bronze.
 f. Disc: Solid wedge; bronze.
 g. Packing: Asbestos free.
 h. Handwheel: Malleable iron, bronze, or aluminum.

2.3 IRON GATE VALVES

A. Class 125, NRS, Iron Gate Valves:

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane; Crane Energy Flow Solutions.
 b. Jenkins Valves; Crane Energy Flow Solutions.
 c. Milwaukee Valve Company.
 d. NIBCO INC.
 e. Watts; a Watts Water Technologies company.

 2. Description:
 a. Standard: MSS SP-70, Type I.
 b. CWP Rating: 200 psig.
 c. Body Material: Gray iron with bolted bonnet.
 d. Ends: Flanged.
 e. Trim: Bronze.
 f. Disc: Solid wedge.
 g. Packing and Gasket: Asbestos free.

B. Class 125, OS&Y, Iron Gate Valves:

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane; Crane Energy Flow Solutions.
 b. Jenkins Valves; Crane Energy Flow Solutions.
 c. Milwaukee Valve Company.
 d. NIBCO INC.
 e. Watts; a Watts Water Technologies company.

 2. Description:
 a. Standard: MSS SP-70, Type I.
 b. CWP Rating: 200 psig.
 c. Body Material: Gray iron with bolted bonnet.
d. Ends: Flanged.
e. Trim: Bronze.
f. Disc: Solid wedge.
g. Packing and Gasket: Asbestos free.

2.4 CHAINWHEELS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Babbitt Steam Specialty Co.
2. Roto Hammer Industries.
3. Trumbull Industries.

B. Description: Valve actuation assembly with sprocket rim, chain guides, chain, and attachment brackets for mounting chainwheels directly to hand wheels.

1. Sprocket Rim with Chain Guides: Ductile or cast iron, of type and size required for valve. Include zinc or epoxy coating.
2. Chain: Hot-dip galvanized steel, of size required to fit sprocket rim.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.

C. Examine threads on valve and mating pipe for form and cleanliness.

D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

B. Locate valves for easy access and provide separate support where necessary.

C. Install valves in horizontal piping with stem at or above center of pipe.
D. Install valves in position to allow full stem movement.

E. Install chainwheels on operators for gate valves NPS 4 and larger and more than 96 inches above floor. Extend chains to 60 inches above finished floor.

F. Install valve tags. Comply with requirements in Section 22 05 53 "Identification for Plumbing Piping and Equipment" for valve tags and schedules.

3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

A. Use gate valves for shutoff service only.

B. If valves with specified CWP ratings are unavailable, the same types of valves with higher CWP ratings may be substituted.

3.5 DOMESTIC HOT- AND COLD-WATER VALVE SCHEDULE

A. Pipe NPS 2 and Smaller: Bronze gate valves, Class 125, NRS with soldered or threaded ends.

B. Pipe NPS 2-1/2 and Larger: Iron gate valves, Class 125, NRS or OS&Y with flanged ends.
SECTION 22 05 29

HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Metal pipe hangers and supports.
 2. Trapeze pipe hangers.
 3. Metal framing systems.
 4. Thermal-hanger shield inserts.
 5. Fastener systems.
 6. Pipe positioning systems.

B. Related Sections:
 1. "Metal Fabrications" for structural-steel shapes and plates for trapeze hangers for pipe and equipment supports.
 2. "Expansion Fittings and Loops for Plumbing Piping" for pipe guides and anchors.

1.3 DEFINITIONS

A. MSS: Manufacturers Standardization Society of The Valve and Fittings Industry Inc.

1.4 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design trapeze pipe hangers and equipment supports, including comprehensive engineering analysis by a qualified designer, using performance requirements and design criteria indicated.

B. Structural Performance: Hangers and supports for plumbing piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.

1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
1.5 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Show fabrication and installation details and include calculations for the following; include Product Data for components:
 1. Trapeze pipe hangers.
 2. Metal framing systems.

1.6 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.7 QUALITY ASSURANCE

A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

A. Carbon-Steel Pipe Hangers and Supports:
 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
 3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.

B. Copper Pipe Hangers:
 1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.

2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.
2.3 METAL FRAMING SYSTEMS

A. MFMA Manufacturer Metal Framing Systems:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Allied Tube & Conduit; a part of Atkore International.
 b. B-line, an Eaton business.
 c. Flex-Strut Inc.
 d. Thomas & Betts Corporation, A Member of the ABB Group.
 e. Unistrut; Part of Atkore International.

2. Description: Shop- or field-fabricated pipe-support assembly for supporting multiple parallel pipes.

4. Channels: Continuous slotted steel channel with inturned lips.

5. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.

2.4 THERMAL-HANGER SHIELD INSERTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. ERICO International Corporation.

3. Pipe Shields Inc.

4. Rilco Manufacturing Co., Inc.

5. Value Engineered Products, Inc.

B. Insulation-Insert Material for Cold Piping: ASTM C 552, Type II cellular glass with 100-psig minimum compressive strength and vapor barrier.

C. Insulation-Insert Material for Hot Piping: ASTM C 552, Type II cellular glass with 100-psig minimum compressive strength.

D. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.

E. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.

F. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.
2.5 FASTENER SYSTEMS

A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

B. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.6 PIPE POSITIONING SYSTEMS

A. Description: IAPMO PS 42, positioning system of metal brackets, clips, and straps for positioning piping in pipe spaces; for plumbing fixtures in commercial applications.

2.7 MISCELLANEOUS MATERIALS

A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.

B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.

2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.

B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.

1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.

C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal framing systems.

D. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.
E. Fastener System Installation:
 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

F. Pipe Positioning-System Installation: Install support devices to make rigid supply and waste piping connections to each plumbing fixture.

G. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.

H. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

I. Install lateral bracing with pipe hangers and supports to prevent swaying.

J. Install building attachments to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping.

K. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

L. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

M. Insulated Piping:
 1. Attach clamps and spacers to piping.
 a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 a. Option: Thermal-hanger shield inserts may be used.
 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 a. Option: Thermal-hanger shield inserts may be used.
4. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.

5. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 METAL FABRICATIONS
 A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers.
 B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.

3.3 ADJUSTING
 A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
 B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.4 PAINTING
 A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.
 B. Touchup: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in "Interior Painting".
 C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.5 HANGER AND SUPPORT SCHEDULE
 A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.
 B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.
 C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.
 D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
E. Use carbon-steel pipe hangers and supports, metal trapeze pipe hangers, metal framing systems and attachments for general service applications.

F. Use copper-plated pipe hangers and copper attachments for copper piping and tubing.

G. Use thermal-hanger shield inserts for insulated piping and tubing.

H. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 4.
2. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 4, requiring clamp flexibility and up to 4 inches of insulation.
3. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes, NPS 1/2 to NPS 4 if little or no insulation is required.
4. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated, stationary pipes NPS 3/4 to NPS 4.
5. Extension Hinged or Two-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS.
6. U-Bolts (MSS Type 24): For support of heavy pipes, NPS 1/2 to NPS 4.
7. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.

I. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 4.

J. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.

K. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
2. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
3. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
4. C-Clamps (MSS Type 23): For structural shapes.
5. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
6. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
7. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
8. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.
10. Side-Beam Brackets (MSS Type 34): For sides of steel beams.

L. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
 2. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

M. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.

N. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.

O. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

P. Use pipe positioning systems in pipe spaces behind plumbing fixtures to support supply and waste piping for plumbing fixtures.

END OF SECTION
SECTION 22 05 53
IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Pipe labels.
 2. Stencils.
 3. Valve tags.
 4. Warning tags.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product indicated.
B. Samples: For color, letter style, and graphic representation required for each identification material and device.
C. Valve numbering scheme.
D. Valve Schedules: For each piping system to include in maintenance manuals.

PART 2 - PRODUCTS

2.1 PIPE LABELS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Brady Corporation.
 2. Brimar Industries, Inc.
 3. Craftmark Pipe Markers.
 4. Marking Services Inc.
 5. Seton Identification Products.
B. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.

C. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.

D. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

E. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings; also include pipe size and an arrow indicating flow direction.
 1. Flow-Direction Arrows: Integral with piping-system service lettering to accommodate both directions or as separate unit on each pipe label to indicate flow direction.
 2. Lettering Size: Size letters according to ASME A13.1 for piping.

2.2 STENCILS

A. Stencils for Piping:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Brimar Industries, Inc.
 b. Carlton Industries, LP.
 c. Champion America.
 d. Craftmark Pipe Markers.
 e. Marking Services Inc.
 2. Lettering Size: Size letters according to ASME A13.1 for piping.
 4. Stencil Paint: Exterior, gloss, alkyd enamel in colors complying with recommendations in ASME A13.1 unless otherwise indicated. Paint may be in pressurized spray-can form.
 5. Identification Paint: Exterior, alkyd enamel in colors according to ASME A13.1 unless otherwise indicated. Paint may be in pressurized spray-can form.

2.3 VALVE TAGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Brady Corporation.
 2. Brimar Industries, Inc.
 3. Craftmark Pipe Markers.
 4. Marking Services Inc.
 5. Seton Identification Products.

B. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.
1. Tag Material: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
2. Fasteners: Brass wire-link chain or S-hook.

C. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.

1. Valve-tag schedule shall be included in operation and maintenance data.

2.4 WARNING TAGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Brady Corporation.
2. Brimar Industries, Inc.
3. Craftmark Pipe Markers.
4. Marking Services Inc.
5. Seton Identification Products.

B. Description: Preprinted or partially preprinted accident-prevention tags of plasticized card stock with matte finish suitable for writing.

1. Size: 3 by 5-1/4 inches minimum.
2. Fasteners: Brass grommet and wire.
3. Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 GENERAL INSTALLATION REQUIREMENTS

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

B. Coordinate installation of identifying devices with locations of access panels and doors.

C. Install identifying devices before installing acoustical ceilings and similar concealment.
3.3 PIPE LABEL INSTALLATION

A. Piping Color Coding: Painting of piping is specified in "Interior Painting."

B. Stenciled Pipe Label Option: Stenciled labels may be provided instead of manufactured pipe labels, at Installer's option. Install stenciled pipe labels, complying with ASME A13.1, with painted, color-coded bands or rectangles on each piping system.

 1. Identification Paint: Use for contrasting background.

C. Pipe Label Locations: Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:

 1. Near each valve and control device.
 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 5. Near major equipment items and other points of origination and termination.
 6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.

D. Directional Flow Arrows: Arrows shall be used to indicate direction of flow in pipes, including pipes where flow is allowed in both directions.

E. Pipe Label Color Schedule:

 1. Domestic Water Piping:
 a. Background: Safety green.

 2. Sanitary Waste Piping:
 a. Background Color: Safety black.

3.4 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in piping systems, except check valves, valves within factory-fabricated equipment units, shutoff valves, faucets, convenience and lawn-watering hose connections, and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.

B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:
1. Valve-Tag Size and Shape:

2. Valve-Tag Colors:
 b. Hot Water: Natural.

3. Letter Colors:

3.5 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

END OF SECTION
SECTION 22 07 19
PLUMBING PIPING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes insulating the following plumbing piping services:
 1. Domestic cold-water piping.
 2. Domestic hot-water piping.
 3. Domestic recirculating hot-water piping.
 4. Supplies and drains for handicap-accessible lavatories and sinks.
 5. Horizontal interior rainwater conductor piping.
 6. Condensate discharge piping.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied, if any).
 B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 2. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
 3. Detail application of field-applied jackets.
 C. Samples: For each type of insulation and jacket indicated. Identify each Sample, describing product and intended use. Sample sizes are as follows:
 1. Preformed Pipe Insulation Materials: 12 inches long by NPS 2.
 3. Manufacturer's Color Charts: For products where color is specified, show the full range of colors available for each type of finish material.

1.4 INFORMATIONAL SUBMITTALS
 A. Qualification Data: For qualified Installer.
B. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.

C. Field quality-control reports.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.

B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84 by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.

1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

C. Mockups: Before installing insulation, build mockups for each type of insulation and finish listed below to demonstrate quality of insulation application and finishes. Build mockups in the location indicated or, if not indicated, as directed by Architect. Use materials indicated for the completed Work.

1. Piping Mockups:
 a. One 10-foot section of NPS 2 straight pipe.
 b. One each of a 90-degree threaded, welded, and flanged elbow.
 c. One each of a threaded, welded, and flanged tee fitting.
 d. One NPS 2 or smaller valve, and one NPS 2-1/2 or larger valve.
 e. Four support hangers including hanger shield and insert.
 f. One mechanical coupling.

2. For each mockup, fabricate cutaway sections to allow observation of application details for insulation materials, adhesives, mastics, attachments, and jackets.
3. Notify Architect seven days in advance of dates and times when mockups will be constructed.
4. Obtain Architect's approval of mockups before starting insulation application.
5. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
6. Maintain mockups during construction in an undisturbed condition as a standard for judging the completed Work.
7. Demolish and remove mockups when directed.
D. Comply with the following applicable standards and other requirements specified for miscellaneous components:

1.6 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.7 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 22 05 29 "Hangers and Supports for Plumbing Piping and Equipment."

B. Coordinate clearance requirements with piping installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

C. Coordinate installation and testing of heat tracing.

1.8 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

A. Comply with requirements in "Piping Insulation Schedule, General," and "Indoor Piping Insulation Schedule," articles for where insulating materials shall be applied.

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

E. Mineral-Fiber, Preformed Pipe Insulation:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. CertainTeed Corp.
 b. Johns Manville; a Berkshire Hathaway company.
 c. Knauf Insulation.
 d. Manson Insulation Inc.
 e. Owens Corning.

2. Type I, 850 Deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, without factory-applied jackets.

2.2 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.

B. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand; H. B. Fuller Construction Products.
 b. Eagle Bridges - Marathon Industries.
 c. Foster Brand; H. B. Fuller Construction Products.
 d. Mon-Eco Industries, Inc.

 2. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

C. PVC Jacket Adhesive: Compatible with PVC jacket.

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Dow Corning Corporation.
 b. Johns Manville; a Berkshire Hathaway company.
 c. P.I.C. Plastics, Inc.
 d. Speedline Corporation.

 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
2.3 SEALANTS

A. Joint Sealants:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand; H. B. Fuller Construction Products.
 b. Eagle Bridges - Marathon Industries.
 c. Foster Brand; H. B. Fuller Construction Products.
 d. Mon-Eco Industries, Inc.
 e. Pittsburgh Corning Corporation.

2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Permanently flexible, elastomeric sealant.
4. Service Temperature Range: Minus 100 to plus 300 deg F.
5. Color: White or gray.
6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
7. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

B. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Childers Brand; H. B. Fuller Construction Products.
 b. Eagle Bridges - Marathon Industries.
 c. Foster Brand, H. B. Fuller Co.
 d. Mon-Eco Industries, Inc.
 e. Pittsburgh Corning Corp.

2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Fire- and water-resistant, flexible, elastomeric sealant.
4. Service Temperature Range: Minus 40 to plus 250 deg F.
6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
7. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.4 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Johns Manville; a Berkshire Hathaway company.
 b. P.I.C. Plastics, Inc.
 c. Proto Corporation.
 d. Speedline Corporation.

2. Adhesive: As recommended by jacket material manufacturer.

4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.

2.5 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Avery Dennison Corporation, Specialty Tapes Division.
 b. Compac Corporation.
 c. Ideal Tape Co., Inc., an American Biltrite Company.
 d. Knauf Insulation.
 e. Venture Tape.

2. Width: 3 inches.

3. Thickness: 11.5 mils.

5. Elongation: 2 percent.

6. Tensile Strength: 40 lb/inch in width.

7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

B. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Compac Corporation.
c. Venture Tape.

2. Width: 2 inches.

3. Thickness: 6 mils.
5. Elongation: 500 percent.
6. Tensile Strength: 18 lbf/inch in width.

2.6 SECUREMENTS

A. Bands:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ITW Insulation Systems; Illinois Tool Works, Inc.
 b. RPR Products, Inc.

2. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 316; 0.015 inch thick, 3/4 inch wide with wing seal.

B. Staples: Outward-clinching insulation staples, nominal 3/4-inch wide, stainless steel or Monel.

C. Wire: 0.062-inch soft-annealed, stainless steel.

2.7 PROTECTIVE SHIELDING GUARDS

A. Protective Shielding Piping Enclosures:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Plumberex Corp.
 b. Truebro.
 c. Zurn Industries, LLC.

 Description: Manufactured plastic enclosure for covering plumbing fixture hot- and cold-water supplies and trap and drain piping. Comply with ADA requirements.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
1. Verify that systems to be insulated have been tested and are free of defects.
2. Verify that surfaces to be insulated are clean and dry.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

B. Surface Preparation: Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:

1. Carbon Steel: Coat carbon steel operating at a service temperature between 32 and 300 deg F with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature ranges.

C. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.

D. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during application and finishing.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.

J. Apply adhesives, mastics, and sealants at manufacturer’s recommended coverage rate and wet and dry film thicknesses.
K. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

L. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

M. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

N. For above-ambient services, do not install insulation to the following:
 1. Vibration-control devices.
 2. Testing agency labels and stamps.
 3. Nameplates and data plates.

3.4 PENETRATIONS

A. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

B. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 1. Comply with requirements in "Penetration Firestopping" for firestopping and fire-resistant joint sealers.

C. Insulation Installation at Floor Penetrations:
 1. Seal penetrations through fire-rated assemblies. Comply with requirements in "Penetration Firestopping."

3.5 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Flanges, and Unions:
 1. Install insulation over fittings, valves, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.

4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.

5. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.

6. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.

7. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.

8. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.

3.6 INSTALLATION OF MINERAL-FIBER INSULATION

A. Insulation Installation on Straight Pipes and Tubes:

1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.

2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.

3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward clinched staples at 6 inches o.c.

4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:

1. Install preformed pipe insulation to outer diameter of pipe flange.

2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.

3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.

4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:
1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.
3. Install PVC Jacket over all fittings and Elbows

D. Insulation Installation on Valves and Pipe Specialties:
1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
4. Install insulation to flanges as specified for flange insulation application.

3.7 FIELD-APPLIED JACKET INSTALLATION

A. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints. Seal with manufacturer's recommended adhesive.
1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.

3.8 FINISHES

A. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.

B. Do not field paint aluminum or stainless-steel jackets.

3.9 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Perform tests and inspections.

C. Tests and Inspections:
1. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, two locations of threaded strainers, and three locations of threaded valves locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.
D. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.10 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 1. Drainage piping located in crawl spaces.
 2. Underground piping.
 3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.11 INDOOR PIPING INSULATION SCHEDULE

A. Domestic Cold Water:
 1. NPS 1 and Smaller: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.
 2. NPS 1-1/4 and Larger: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

B. Domestic Hot and Recirculated Hot Water:
 1. NPS 1-1/4 and Smaller: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.
 2. NPS 1-1/2 and Larger: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

C. Exposed Sanitary Drains, Domestic Cold & Hot Water, and Stops for Plumbing Fixtures for People with Disabilities; Horizontal Interior Rainwater Conductors, HVAC Equipment Condensate Drains:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

3.12 INDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. Install Jackets over all fittings and elbows.
C. Piping, Concealed:
 1. PVC: 30 mils thick.

D. Piping, Exposed:
 1. PVC: 30 mils thick.

END OF SECTION
SECTION 22 11 13

FACILITY WATER DISTRIBUTION PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes water-distribution piping and related components outside the building for combined water service and fire-service mains.

B. Utility-furnished products include water meters that will be furnished to the site, ready for installation.

1.3 DEFINITIONS

A. EPDM: Ethylene propylene diene terpolymer rubber.

B. LLDPE: Linear, low-density polyethylene plastic.

C. PA: Polyamide (nylon) plastic.

D. PE: Polyethylene plastic.

E. PP: Polypropylene plastic.

F. PVC: Polyvinyl chloride plastic.

G. RTFR: Reinforced thermosetting resin (fiberglass) fittings.

H. RTFP: Reinforced thermosetting resin (fiberglass) pipe.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.
1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: For piping and specialties including relation to other services in same area, drawn to scale. Show piping and specialty sizes and valves, meter and specialty locations, and elevations.

B. Field quality-control test reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For water valves and specialties to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE

A. Regulatory Requirements:
 1. Comply with requirements of utility company supplying water. Include tapping of water mains and backflow prevention.
 2. Comply with standards of authorities having jurisdiction for potable-water-service piping, including materials, installation, testing, and disinfection.

B. Piping materials shall bear label, stamp, or other markings of specified testing agency.

C. NSF Compliance:

1.8 DELIVERY, STORAGE, AND HANDLING

A. Preparation for Transport: Prepare valves, according to the following:
 1. Ensure that valves are dry and internally protected against rust and corrosion.
 2. Protect valves against damage to threaded ends and flange faces.
 3. Set valves in best position for handling. Set valves closed to prevent rattling.

B. During Storage: Use precautions for valves, according to the following:
 1. Do not remove end protectors unless necessary for inspection; then reinstall for storage.
 2. Protect from weather. Store indoors and maintain temperature higher than ambient dew-point temperature. Support off the ground or pavement in watertight enclosures when outdoor storage is necessary.

C. Handling: Use sling to handle valves and fire hydrants if size requires handling by crane or lift. Rig valves to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.
D. Deliver piping with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe-end damage and to prevent entrance of dirt, debris, and moisture.

E. Protect stored piping from moisture and dirt. Elevate above grade. Do not exceed structural capacity of floor when storing inside.

F. Protect flanges, fittings, and specialties from moisture and dirt.

1.9 PROJECT CONDITIONS

A. Interruption of Existing Water-Distribution Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary water-distribution service according to requirements indicated:

1. Notify Architect no fewer than five days in advance of proposed interruption of service.
2. Do not proceed with interruption of water-distribution service without Architect's written permission.

1.10 COORDINATION

A. Coordinate connection to water main with utility company.

PART 2 - PRODUCTS

2.1 DUCTILE-IRON PIPE AND FITTINGS

A. Mechanical-Joint, Ductile-Iron Pipe: AWWA C151, with mechanical-joint bell and plain spigot end unless grooved or flanged ends are indicated.

1. Mechanical-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or gray-iron standard pattern or AWWA C153, ductile-iron compact pattern.
2. Glands, Gaskets, and Bolts: AWWA C111, ductile- or gray-iron glands, rubber gaskets, and steel bolts.

B. Push-on-Joint, Ductile-Iron Pipe: AWWA C151, with push-on-joint bell and plain spigot end unless grooved or flanged ends are indicated.

1. Push-on-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or gray-iron standard pattern or AWWA C153, ductile-iron compact pattern.
2. Gaskets: AWWA C111, rubber.

C. Flanges: ASME 16.1, Class 125, cast iron.

2.2 JOINING MATERIALS

A. Refer to "Common Work Results for Utilities" for commonly used joining materials.
2.3 GATE VALVES

A. AWWA, Cast-Iron Gate Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Clow Valve Company; a subsidiary of McWane, Inc.
 c. Kennedy Valve Company; a division of McWane, Inc.
 d. Mueller Co.
 e. U.S. Pipe and Foundry Company.

2. Nonrising-Stem, Resilient-Seated Gate Valves:
 a. Description: Gray- or ductile-iron body and bonnet; with bronze or gray- or ductile-iron gate, resilient seats, bronze stem, and stem nut.
 1) Standard: AWWA C509.
 2) Minimum Pressure Rating: 200 psig.
 3) End Connections: Mechanical joint.
 4) Interior Coating: Complying with AWWA C550.

2.4 GATE VALVE ACCESSORIES AND SPECIALTIES

A. Tapping-Sleeve Assemblies:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Clow Valve Company; a subsidiary of McWane, Inc.
 c. Kennedy Valve Company; a division of McWane, Inc.
 d. Mueller Co.
 e. U.S. Pipe and Foundry Company.

2. Description: Sleeve and valve compatible with drilling machine.
 a. Standard: MSS SP-60.
 b. Tapping Sleeve: Cast- or ductile-iron or stainless-steel, two-piece bolted sleeve with flanged outlet for new branch connection. Include sleeve matching size and type of pipe material being tapped and with recessed flange for branch valve.
 c. Valve: AWWA, cast-iron, nonrising-stem, resilient-seated gate valve with one raised face flange mating tapping-sleeve flange.

B. Valve Boxes: Comply with AWWA M44 for cast-iron valve boxes. Include top section, adjustable extension of length required for depth of burial of valve, plug with lettering "WATER," and bottom section with base that fits over valve and with a barrel approximately 5 inches in diameter.
1. Operating Wrenches: Steel, tee-handle with one pointed end, stem of length to operate deepest buried valve, and socket matching valve operating nut.

2.5 WATER METERS

A. Water meters will be furnished by utility company.

B. Compound-Type Water Meters:

1. Description:
 b. Registration: Flow in gallons.

C. Remote Registration System:

1. Description: Utility company standard; direct-reading type. Include meter modified with signal-transmitting assembly, low-voltage connecting wiring, and remote register assembly.
 b. Registration: Flow in gallons.

D. Remote Registration System:

1. Description: Utility company standard; encoder type. Include meter modified with signal-transmitting assembly, low-voltage connecting wiring, and remote register assembly.
 b. Registration: Flow in gallons.
 c. Data-Acquisition Units: Comply with utility company requirements for type and quantity.
 d. Visible Display Units: Comply with utility company requirements for type and quantity.

2.6 RELIEF VALVES

A. Air-Release Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. GA Industries, Inc.
 c. Val-Matic Valve & Manufacturing Corp.

2. Description: Hydromechanical device to automatically release accumulated air.
 b. Pressure Rating: 300 psig.
2.7 VACUUM BREAKERS

A. Pressure Vacuum Breaker Assembly:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ames Fire & Waterworks.
 b. Conbraco Industries, Inc.
 c. FEBCO.
 d. Flowmatic Corporation.
 e. Toro Company (The).
 f. Watts; a Watts Water Technologies company.
 g. Wilkins.
 h. Zurn Industries, LLC.
 3. Operation: Continuous-pressure applications.
 4. Pressure Loss: 5 psig maximum, through middle 1/3 of flow range.
 5. Size: 1/4”-1/2” NPS.
 6. Accessories: Ball valves on inlet and outlet.

2.8 BACKFLOW PREVENTERS

A. Reduced-Pressure-Principle Backflow Preventers:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ames Fire & Waterworks.
 b. Conbraco Industries, Inc.
 c. FEBCO.
 d. Flowmatic Corporation.
 e. Watts; a Watts Water Technologies company.
 f. Wilkins.
 g. Zurn Industries, LLC.
 3. Operation: Continuous-pressure applications.
 4. Pressure Loss: 12 psig maximum, through middle 1/3 of flow range.
 5. Size: 1”
 7. Selected Unit Flow Range Limits: 15 gpm
8. Pressure Loss at Design Flow Rate: 10-15 psig for NPS 2 and smaller.
10. End Connections: Threaded for NPS 2 and smaller.
11. Configuration: Designed for horizontal, straight through flow.
12. Accessories:
 a. Valves: Ball type with threaded ends on inlet and outlet of NPS 2 and smaller; OS&Y gate type with flanged ends on inlet and outlet of NPS 2-1/2 and larger.

B. Double-Check, Backflow-Prevention Assemblies:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ames Fire & Waterworks.
 b. Conbraco Industries, Inc.
 c. FEBCO.
 d. Watts; a Watts Water Technologies company.
 e. Wilkins.
 f. Zurn Industries, LLC.
 2. Standard: ASSE 1015 or AWWA C510.
 3. Operation: Continuous-pressure applications, unless otherwise indicated.
 4. Pressure Loss: 5 psig maximum, through middle 1/3 of flow range.
 5. Size: 4”.
 7. Selected Unit Flow Range Limits: 0-500 gpm.
 8. Pressure Loss at Design Flow Rate: 5 psig for NPS 2-1/2 and larger.
10. End Connections: Threaded for NPS 2 and smaller.
11. Configuration: Designed for horizontal, straight through flow.
12. Accessories: Ball valves with threaded ends on inlet and outlet of NPS 2 and smaller; OS&Y gate valves with flanged ends on inlet and outlet of NPS 2-1/2 and larger.

PART 3 - EXECUTION

3.1 EARTHWORK
 A. Refer to Section 31 20 00 "Earth Moving" for excavating, trenching, and backfilling.

3.2 PIPING APPLICATIONS
 A. General: Use pipe, fittings, and joining methods for piping systems according to the following applications.
B. Transition couplings and special fittings with pressure ratings at least equal to piping pressure rating may be used, unless otherwise indicated.

C. Do not use flanges or unions for underground piping.

D. Flanges, unions, grooved-end-pipe couplings, and special fittings may be used, instead of joints indicated, on aboveground piping and piping in vaults.

E. Underground water-service piping NPS 4 to NPS 8 shall be the following:
 1. Ductile-iron, push-on-joint pipe; ductile-iron, push-on-joint fittings; and gasketed mechanical-joint pipe; ductile-iron, mechanical-joint fittings; and mechanical joints.

3.3 VALVE APPLICATIONS

A. General Application: Use mechanical-joint-end valves for NPS 3 and larger underground installation.

B. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:

3.4 PIPING SYSTEMS - COMMON REQUIREMENTS

A. See Section 33 05 00 "Common Work Results for Utilities" for piping-system common requirements.

3.5 PIPING INSTALLATION

A. Water-Main Connection: Arrange with utility company for tap of size and in location indicated in water main.

B. Make connections larger than NPS 2 with tapping machine according to the following:
 1. Install tapping sleeve and tapping valve according to MSS SP-60.
 Install tapping sleeve on pipe to be tapped. Position flanged outlet for gate valve.
 3. Use tapping machine compatible with valve and tapping sleeve; cut hole in main. Remove tapping machine and connect water-service piping.
 4. Install gate valve onto tapping sleeve. Comply with MSS SP-60. Install valve with stem pointing up and with valve box.

C. Install ductile-iron, water-service piping according to AWWA C600 and AWWA M41.

D. Bury piping with depth of cover over top at least 30 inches, with top at least 12 inches below level of maximum frost penetration, and according to the following:
 1. Under Driveways: With at least 36 inches cover over top.
2. In Loose Gravelly Soil and Rock: With at least 12 inches additional cover.

E. Install piping by tunneling or jacking, or combination of both, under streets and other obstructions that cannot be disturbed.

F. Extend water-service piping and connect to water-supply source and building-water-piping systems at outside face of building wall in locations and pipe sizes indicated.
 1. Terminate water-service piping at building wall until building-water-piping systems are installed. Terminate piping with caps, plugs, or flanges as required for piping material. Make connections to building-water-piping systems when those systems are installed.

G. Sleeves are specified in Section 22 05 17 "Sleeves and Sleeve Seals for Plumbing Piping."

H. Mechanical sleeve seals are specified in Section 22 05 17 "Sleeves and Sleeve Seals for Plumbing Piping."

I. Install underground piping with restrained joints at horizontal and vertical changes in direction. Use restrained-joint piping, thrust blocks, anchors, tie-rods and clamps, and other supports.

J. See Section 22 11 16 "Domestic Water Piping" for potable water piping inside the building.

3.6 JOINT CONSTRUCTION

A. See Section "Common Work Results for Utilities" for basic piping joint construction.

B. Make pipe joints according to the following:
 3. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
 a. Dielectric Fittings for NPS 2 and Smaller: Use dielectric unions.
 b. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flange kits.

3.7 ANCHORAGE INSTALLATION

A. Anchorage, General: Install water-distribution piping with restrained joints. Anchorages and restrained-joint types that may be used include the following:
 1. Concrete thrust blocks.
 2. Locking mechanical joints.
 4. Bolted flanged joints.
 5. Pipe clamps and tie rods.

B. Install anchorages for tees, plugs and caps, bends, crosses, valves, and hydrant branches. Include anchorages for the following piping systems:

C. Apply full coat of asphalt or other acceptable corrosion-resistant material to surfaces of installed ferrous anchorage devices.

3.8 VALVE INSTALLATION

A. AWWA Gate Valves: Comply with AWWA C600 and AWWA M44. Install each underground valve with stem pointing up and with valve box.

B. AWWA Valves Other Than Gate Valves: Comply with AWWA C600 and AWWA M44.

3.9 BACKFLOW PREVENTER INSTALLATION

A. Install backflow preventers of type, size, and capacity indicated. Include valves and test cocks. Install according to requirements of plumbing and health department and authorities having jurisdiction.

B. Do not install bypass piping around backflow preventers.

C. Support NPS 2-1/2 and larger backflow preventers, valves, and piping near floor and on brick or concrete piers.

3.10 CONNECTIONS

A. See Section "Common Work Results for Utilities" for piping connections to valves and equipment.

B. Connect water-distribution piping to utility water main. Use tapping sleeve and tapping valve.

C. Connect water-distribution piping to interior domestic water piping.

D. Ground equipment according to Section 26 05 26 "Grounding and Bonding for Electrical Systems."

3.11 FIELD QUALITY CONTROL

A. Piping Tests: Conduct piping tests before joints are covered and after concrete thrust blocks have hardened sufficiently. Fill pipeline 24 hours before testing and apply test pressure to stabilize system. Use only potable water.

B. Hydrostatic Tests: Test at not less than one-and-one-half times working pressure for two hours.

1. Increase pressure in 50-psig increments and inspect each joint between increments. Hold at test pressure for 1 hour; decrease to 0 psig. Slowly increase again to test pressure and hold for 1 more hour. Maximum allowable leakage is 2 quarts per hour per 100 joints.
Remake leaking joints with new materials and repeat test until leakage is within allowed limits.

C. Prepare reports of testing activities.

3.12 IDENTIFICATION

A. Install continuous underground detectable warning tape during backfilling of trench for underground water-distribution piping. Locate below finished grade, directly over piping. Underground warning tapes are specified in Section "Earth Moving."

B. Permanently attach equipment nameplate or marker indicating plastic water-service piping, on main electrical meter panel. See Section "Common Work Results for Utilities" for identifying devices.

3.13 CLEANING

A. Clean and disinfect water-distribution piping as follows:

1. Purge new water-distribution piping systems and parts of existing systems that have been altered, extended, or repaired before use.
2. Use purging and disinfecting procedure prescribed by authorities having jurisdiction or, if method is not prescribed by authorities having jurisdiction, use procedure described in AWWA C651 or do as follows:
 a. Fill system or part of system with water/chlorine solution containing at least 50 ppm of chlorine; isolate and allow to stand for 24 hours.
 b. Drain system or part of system of previous solution and refill with water/chlorine solution containing at least 200 ppm of chlorine; isolate and allow to stand for 3 hours.
 c. After standing time, flush system with clean, potable water until no chlorine remains in water coming from system.
 d. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedure if biological examination shows evidence of contamination.

B. Prepare reports of purging and disinfecting activities.

END OF SECTION
SECTION 22 11 16
DOMESTIC WATER PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Under-building-slab and aboveground domestic water pipes, tubes, and fittings inside buildings.

B. Related Requirements:
 1. Section 22 11 13 "Facility Water Distribution Piping" for water-service piping outside the building from source to the point where water-service piping enters the building.

1.3 ACTION SUBMITTALS
A. Product Data: For transition fittings and dielectric fittings.

1.4 INFORMATIONAL SUBMITTALS
A. System purging and disinfecting activities report.
B. Field quality-control reports.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS
A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.
B. Potable-water piping and components shall comply with NSF 14 and NSF 61 Annex G.
2.2 COPPER TUBE AND FITTINGS

A. Hard Copper Tube: ASTM B 88, Type K water tube, drawn temper.
B. Soft Copper Tube: ASTM B 88, Type K water tube, annealed temper.
C. Cast-Copper, Solder-Joint Fittings: ASME B16.18, pressure fittings.
E. Bronze Flanges: ASME B16.24, Class 150, with solder-joint ends.
F. Copper Unions:
 1. MSS SP-123.
 4. Solder-joint or threaded ends.

2.3 DUCTILE-IRON PIPE AND FITTINGS

A. Mechanical-Joint, Ductile-Iron Pipe:
 1. AWWA C151/A21.51, with mechanical-joint bell and plain spigot end unless grooved or flanged ends are indicated.
 2. Glands, Gaskets, and Bolts: AWWA C111/A21.11, ductile- or gray-iron glands, rubber gaskets, and steel bolts.
B. Standard-Pattern, Mechanical-Joint Fittings:
 1. AWWA C110/A21.10, ductile or gray iron.
 2. Glands, Gaskets, and Bolts: AWWA C111/A21.11, ductile- or gray-iron glands, rubber gaskets, and steel bolts.
C. Push-on-Joint, Ductile-Iron Pipe:
 1. AWWA C151/A21.51.
 2. Push-on-joint bell and plain spigot end unless grooved or flanged ends are indicated.
D. Standard-Pattern, Push-on-Joint Fittings:
 1. AWWA C110/A21.10, ductile or gray iron.

2.4 PIPING JOINING MATERIALS

A. Pipe-Flange Gasket Materials:
 1. AWWA C110/A21.10, rubber, flat face, 1/8 inch thick or ASME B16.21, nonmetallic and asbestos free unless otherwise indicated.
2. Full-face or ring type unless otherwise indicated.

B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.

C. Solder Filler Metals: ASTM B 32, lead-free alloys.

D. Flux: ASTM B 813, water flushable.

2.5 TRANSITION FITTINGS

A. General Requirements:
 1. Same size as pipes to be joined.
 2. Pressure rating at least equal to pipes to be joined.
 3. End connections compatible with pipes to be joined.

B. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.

C. Sleeve-Type Transition Coupling: AWWA C219.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Dresser, Inc.
 b. Ford Meter Box Company, Inc. (The).
 d. JCM Industries, Inc.
 e. Romac Industries, Inc.
 f. Smith-Blair, Inc.

2.6 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

B. Dielectric Unions:
 Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. A.Y. McDonald Mfg. Co.
 b. Jomar Valve.
 c. Mateo-Norca.
 d. Watts; a Watts Water Technologies company.
 e. Wilkins.
 f. Zurn Industries, LLC.
3. Pressure Rating: 125 psig minimum at 180 deg F.

C. Dielectric Flanges:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Matco-Norca.
 b. Watts; a Watts Water Technologies company.
 c. Wilkins.
 d. Zurn Industries, LLC.
3. Factory-fabricated, bolted, companion-flange assembly.
4. Pressure Rating: 125 psig minimum at 180 deg F.
5. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

D. Dielectric-Flange Insulating Kits:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Pipeline Seal and Insulator, Inc.
2. Nonconductive materials for field assembly of companion flanges.
4. Gasket: Neoprene or phenolic.
5. Bolt Sleeves: Phenolic or polyethylene.

2.7 CPVC PIPING (Above Ground Piping)
A. CPVC Pipe: ASTM F 441/F 441M, Schedule 40.
 2. CPVC Threaded Fittings: ASTM F 437, Schedule 80.

2.8 PIPING JOINING MATERIALS
A. Brazing Filler Metals: AWS A5.8M/A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing unless otherwise indicated.
B. Solvent Cements for Joining PVC Piping: ASTM D 2564. Include primer according to ASTM F 656.

2.9 TRANSITION FITTINGS

A. Plastic-to-Metal Transition Fittings:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Harvel Plastics, Inc.
 c. Spears Manufacturing Company.
 d. Uponor.

 2. Description:
 a. PVC one-piece fitting with manufacturer's Schedule 80 equivalent dimensions.
 b. One end with threaded brass insert and one solvent-cement-socket or threaded end.

B. Plastic-to-Metal Transition Unions:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Colonial Engineering, Inc.
 b. NIBCO INC.
 c. Spears Manufacturing Company.

 2. Description:
 a. PVC four-part union.
 b. Brass threaded end.
 c. Solvent-cement-joint or threaded plastic end.
 d. Rubber O-ring.
 e. Union nut.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Comply with requirements in "Earth Moving" for excavating, trenching, and backfilling.
3.2 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic water piping. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.

B. Install copper tubing under building slab according to CDA's "Copper Tube Handbook."

C. Install ductile-iron piping under building slab with restrained joints according to AWWA C600 and AWWA M41.

D. Install shutoff valve, hose-end drain valve, strainer, pressure gage, and test tee with valve inside the building at each domestic water-service entrance. Comply with requirements for pressure gages in Section 22 05 19 "Meters and Gages for Plumbing Piping" and with requirements for drain valves and strainers in Section 22 11 19 "Domestic Water Piping Specialties."

E. Install shutoff valve immediately upstream of each dielectric fitting.

F. Install domestic water piping level with 0.25 percent slope downward toward drain and plumb.

G. Rough-in domestic water piping for water-meter installation according to utility company's requirements.

H. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.

I. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

J. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space.

K. Install piping to permit valve servicing.

L. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than the system pressure rating used in applications below unless otherwise indicated.

M. Install piping free of sags and bends.

N. Install fittings for changes in direction and branch connections.

O. Install unions in copper tubing at final connection to each piece of equipment, machine, and specialty.

P. Install pressure gages on suction and discharge piping for each plumbing pump and packaged booster pump. Comply with requirements for pressure gages in Section 22 05 19 "Meters and Gages for Plumbing Piping."
Q. Install thermostats in hot-water circulation piping. Comply with requirements for thermostats in Section 22 11 23 "Domestic Water Pumps."

R. Install thermometers on outlet piping from each water heater. Comply with requirements for thermometers in Section 22 05 19 "Meters and Gages for Plumbing Piping."

S. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 22 05 17 "Sleeves and Sleeve Seals for Plumbing Piping."

T. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 22 05 17 "Sleeves and Sleeve Seals for Plumbing Piping."

U. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 22 05 18 "Escutcheons for Plumbing Piping."

3.3 JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs.

B. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.

D. Soldered Joints for Copper Tubing: Apply ASTM B 813, water-flushable flux to end of tube. Join copper tube and fittings according to ASTM B 828 or CDA's "Copper Tube Handbook."

E. Flanged Joints: Select appropriate asbestos-free, nonmetallic gasket material in size, type, and thickness suitable for domestic water service. Join flanges with gasket and bolts according to ASME B31.9.

F. Joints for Dissimilar-Material Piping: Make joints using adapters compatible with materials of both piping systems.

3.4 TRANSITION FITTING INSTALLATION

A. Install transition couplings at joints of dissimilar piping.

B. Transition Fittings in Underground Domestic Water Piping:
 1. Fittings for NPS 1-1/2 and Smaller: Fitting-type coupling.
 2. Fittings for NPS 2 and Larger: Sleeve-type coupling.
3.5 DIELECTRIC FITTING INSTALLATION

A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.

B. Dielectric Fittings for NPS 2 and Smaller: Use dielectric unions.

C. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flange kits.

3.6 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements for pipe hanger, support products, and installation in Section 22 05 29 "Hangers and Supports for Plumbing Piping and Equipment."

1. Vertical Piping: MSS Type 8 or 42, clamps.
2. Individual, Straight, Horizontal Piping Runs:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.

3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
4. Base of Vertical Piping: MSS Type 52, spring hangers.

B. Support vertical piping and tubing at base and at each floor.

C. Rod diameter may be reduced one size for double-rod hangers, to a minimum of 3/8 inch.

D. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:

 1. NPS 3/4 and Smaller: 60 inches with 3/8-inch rod.
 2. NPS 1 and NPS 1-1/4: 72 inches with 3/8-inch rod.
 3. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
 4. NPS 2-1/2: 108 inches with 1/2-inch rod.
 5. NPS 3 to NPS 5: 10 feet with 1/2-inch rod.
 6. NPS 6: 10 feet with 5/8-inch rod.

E. Install supports for vertical copper tubing every 10 feet.

F. Support piping and tubing not listed in this article according to MSS SP-69 and manufacturer's written instructions.

3.7 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. When installing piping adjacent to equipment and machines, allow space for service and maintenance.
C. Connect domestic water piping to exterior water-service piping. Use transition fitting to join dissimilar piping materials.

D. Connect domestic water piping to water-service piping with shutoff valve; extend and connect to the following:

1. Domestic Water Booster Pumps: Cold-water suction and discharge piping.
2. Water Heaters: Cold-water inlet and hot-water outlet piping in sizes indicated, but not smaller than sizes of water heater connections.
3. Plumbing Fixtures: Cold- and hot-water-supply piping in sizes indicated, but not smaller than that required by plumbing code.
4. Equipment: Cold- and hot-water-supply piping as indicated, but not smaller than equipment connections. Provide shutoff valve and union for each connection. Use flanges instead of unions for NPS 2-1/2 and larger.

3.8 IDENTIFICATION

A. Identify system components. Comply with requirements for identification materials and installation in Section 22 05 53 "Identification for Plumbing Piping and Equipment."

B. Label pressure piping with system operating pressure.

3.9 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Piping Inspections:
 a. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.
 b. During installation, notify authorities having jurisdiction at least one day before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:
 1) Roughing-in Inspection: Arrange for inspection of piping before concealing or closing in after roughing in and before setting fixtures.
 2) Final Inspection: Arrange for authorities having jurisdiction to observe tests specified in "Piping Tests" Subparagraph below and to ensure compliance with requirements.
 c. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection.
 d. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

2. Piping Tests:
 a. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
b. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested.

c. Leave new, altered, extended, or replaced domestic water piping uncovered and unconcealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.

d. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow it to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.

e. Repair leaks and defects with new materials, and retest piping or portion thereof until satisfactory results are obtained.

f. Prepare reports for tests and for corrective action required.

B. Domestic water piping will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports.

3.10 ADJUSTING

A. Perform the following adjustments before operation:

1. Close drain valves, hydrants, and hose bibbs.
2. Open shutoff valves to fully open position.
3. Open throttling valves to proper setting.
4. Adjust balancing valves in hot-water-circulation return piping to provide adequate flow.

 a. Manually adjust ball-type balancing valves in hot-water-circulation return piping to provide hot-water flow in each branch.
 b. Adjust calibrated balancing valves to flows indicated.

5. Remove plugs used during testing of piping and for temporary sealing of piping during installation.
7. Remove filter cartridges from housings and verify that cartridges are as specified for application where used and are clean and ready for use.
8. Check plumbing specialties and verify proper settings, adjustments, and operation.

3.11 CLEANING

A. Clean and disinfect potable domestic water piping as follows:

1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow procedures described below:

 a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
b. Fill and isolate system according to either of the following:
 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm of chlorine. Isolate with valves and allow to stand for 24 hours.
 2) Fill system or part thereof with water/chlorine solution with at least 200 ppm of chlorine. Isolate and allow to stand for three hours.

c. Flush system with clean, potable water until no chlorine is in water coming from system after the standing time.
d. Repeat procedures if biological examination shows contamination.
e. Submit water samples in sterile bottles to authorities having jurisdiction.

B. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.

3.12 PIPING SCHEDULE

A. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.

B. Flanges and unions may be used for aboveground piping joints unless otherwise indicated.

C. Under-building-slab, domestic water, building-service piping, NPS 4 to NPS 8 and larger, shall be one of the following:
 1. Mechanical-joint, ductile-iron pipe; standard-pattern, mechanical-joint fittings; and mechanical joints.
 2. Push-on-joint, ductile-iron pipe; standard-pattern, push-on-joint fittings; and gasketed joints.

D. Aboveground domestic water piping, NPS 2 and smaller, shall be the following:
 1. Hard copper tube, ASTM B 88, Type K; cast- or wrought-copper, solder-joint fittings; and soldered joints.

E. Aboveground domestic water piping, NPS 2-1/2 to NPS 4, shall be one of the following:
 1. Hard copper tube, ASTM B 88, Type K; cast- or wrought-copper, solder-joint fittings; and soldered joints.

3.13 VALVE SCHEDULE

A. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:
 1. Shutoff Duty: Use ball or gate valves for piping NPS 2 and smaller. Use butterfly, ball, or gate valves with flanged ends for piping NPS 2-1/2 and larger.
 2. Throttling Duty: Use ball or globe valves for piping NPS 2 and smaller. Use butterfly or ball valves with flanged ends for piping NPS 2-1/2 and larger.
B. Use check valves to maintain correct direction of domestic water flow to and from equipment.

END OF SECTION
SECTION 22 11 19
DOMESTIC WATER PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Vacuum breakers.
 2. Backflow preventers.
 4. Temperature-actuated, water mixing valves.
 5. Strainers.
 6. Outlet boxes.
 7. Hose bibs.
 8. Wall hydrants.
 10. Water-hammer arresters.
 11. Air vents.
 12. Trap-seal primer valves.
 13. Trap-seal primer systems.

B. Related Requirements:
 1. Section 22 05 19 "Meters and Gages for Plumbing Piping" for thermometers, pressure gauges, and flow meters in domestic water piping.
 2. Section 22 45 00 "Emergency Plumbing Fixtures" for water tempering equipment.
 3. Section 22 47 16 "Pressure Water Coolers" for water filters for water coolers.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: For domestic water piping specialties.

1.4 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.
1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For domestic water piping specialties to include in emergency, operation, and maintenance manuals.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR PIPING SPECIALTIES

A. Potable-water piping and components shall comply with NSF 61 Annex G.

2.2 PERFORMANCE REQUIREMENTS

A. Minimum Working Pressure for Domestic Water Piping Specialties: 125 psig unless otherwise indicated.

2.3 VACUUM BREAKERS

A. Pipe-Applied, Atmospheric-Type Vacuum Breakers:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ames Co.
 b. Conbraco Industries, Inc.
 c. FEBCO.
 d. Watts; a Watts Water Technologies company.
 e. Zurn Industries, LLC.

3. Size: NPS 1/4 to NPS 3, as required to match connected piping.
5. Inlet and Outlet Connections: Threaded.

B. Hose-Connection Vacuum Breakers:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Conbraco Industries, Inc.
 b. MIFAB, Inc.
 c. Watts; a Watts Water Technologies company.
 d. Woodford Manufacturing Company.
 e. Zurn Industries, LLC.

5. Finish: Chrome or nickel plated.

2.4 BACKFLOW PREVENTERS

A. Reduced-Pressure-Principle Backflow Preventers RPZ:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ames Co.
 b. Ames Fire & Waterworks.
 c. Conbraco Industries, Inc.
 d. FEBCO.
 e. Watts; a Watts Water Technologies company.
 f. Zurn Industries, LLC.

3. Operation: Continuous-pressure applications.
4. Pressure Loss: 12 psig maximum, through middle third of flow range.
5. Size: 1” and 2”.
7. Selected Unit Flow Range Limits: 7 gpm.
8. Pressure Loss at Design Flow Rate: 12 psig for sizes NPS 2 and smaller.
10. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
11. Configuration: Designed for horizontal, straight-through flow.
12. Accessories:
 a. Valves NPS 2 and Smaller: Ball type with threaded ends on inlet and outlet.
 b. Valves NPS 2-1/2 and Larger: Outside-screw and yoke-gate type with flanged ends on inlet and outlet.

B. Double-Check, Backflow-Prevention Assemblies:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ames Co.
 b. Ames Fire & Waterworks.
 c. Conbraco Industries, Inc.
 d. FEBCO.
 e. Watts; a Watts Water Technologies company.
 f. Zurn Industries, LLC.

3. Operation: Continuous-pressure applications unless otherwise indicated.
4. Pressure Loss: 4 psig maximum, through middle third of flow range.
5. Size: 4”.
6. Design Flow Rate: 800 gpm.
7. Selected Unit Flow Range Limits: 500 gpm.
8. Pressure Loss at Design Flow Rate: 7 psig for sizes NPS 2-1/2 and larger.
9. Body: Bronze for NPS 2 and smaller; ductile iron with interior lining that complies with AWWA C550 or that is FDA approved for NPS 2-1/2 and larger.
10. End Connections: Flanged for NPS 2-1/2 and larger.
11. Configuration: Designed for horizontal, straight-through flow.
12. Accessories:
 a. Valves NPS 2-1/2 and Larger: Outside-screw and yoke-gate type with flanged ends on inlet and outlet.

2.5 BALANCING VALVES
A. Memory-Stop Balancing Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Hammond Valve.
 c. NIBCO INC.
 d. TACO, Inc.
 e. Watts Division.
 3. Pressure Rating: 400-psig minimum CWP.
 4. Size: NPS 2 or smaller.
 5. Body: Copper alloy.
 6. Port: Standard or full port.
 7. Ball: Chrome-plated brass.
 8. Seats and Seals: Replaceable.
 9. End Connections: Solder joint or threaded.

2.6 TEMPERATURE-ACTUATED, WATER MIXING VALVES
A. Primary, Thermostatic, Water Mixing Valves TWV:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Lawler Manufacturing Company, Inc.
 c. Leonard Valve Company.
 d. Powers.
e. Symmons Industries, Inc.
f. Zurn Industries, LLC.

3. Pressure Rating: 125 psig minimum unless otherwise indicated.
4. Type: Exposed-mounted, thermostatically controlled, water mixing valve.
5. Material: Bronze body with corrosion-resistant interior components.
6. Connections: Threaded union inlets and outlet.
7. Accessories: Manual temperature control, check stops on hot- and cold-water supplies, and adjustable, temperature-control handle.
8. Tempered-Water Setting: 100 deg F.
10. Selected Valve Flow Rate at 45-psig Pressure Drop: 57 gpm.
11. Pressure Drop at Design Flow Rate: 5 psig.
13. Piping Finish: Copper.

2.7 STRAINERS FOR DOMESTIC WATER PIPING

A. Y-Pattern Strainers:

1. Pressure Rating: 125 psig minimum unless otherwise indicated.
2. Body: Bronze for NPS 2 and smaller; cast iron with interior lining that complies with AWWA C550 or that is FDA approved, epoxy coated and for NPS 2-1/2 and larger.
3. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
4. Screen: Stainless steel with round perforations unless otherwise indicated.
5. Perforation Size:
 a. Strainers NPS 2 and Smaller: 20 Mesh.
 b. Strainers NPS 2-1/2 to NPS 4: 0.125 inch.

2.8 OUTLET BOXES

A. Clothes Washer Outlet Boxes – P-15:

Manufacturers: Subject to compliance with requirements, provide products by one of the following:

b. Guy Gray Manufacturing Co., Inc.
c. Oatey.
d. Symmons Industries, Inc.
e. Zurn Industries, LLC.

2. Mounting: Recessed, for top mount valves.
4. Faucet: separate hot- and cold-water valved fittings complying with ASME A112.18.1. Include ¼” garden-hose thread complying with ASME B1.20.7 on outlets.
5. Supply Shutoff Fittings: NPS 1/2 gate, globe, or ball valves and NPS 1/2 copper, water tubing.
6. Drain: NPS 2 standpipe and P-trap for direct waste connection to drainage piping.
7. Inlet Hoses: Two 60-inch-long, rubber household clothes washer inlet hoses with female, garden-hose-thread couplings. Include rubber washers.
8. Drain Hose: One 48-inch-long, rubber household clothes washer drain hose with hooked end.

2.9 HOSE BIBBS

A. Hose Bibbs:

4. Supply Connections: NPS 1/2 or NPS 3/4 threaded or solder-joint inlet.
5. Outlet Connection: Garden-hose thread complying with ASME B1.20.7.
8. Finish for Equipment Rooms: Rough bronze, or chrome or nickel plated.
9. Finish for Service Areas: Chrome or nickel plated.
10. Finish for Finished Rooms: Chrome or nickel plated.
12. Operation for Finished Rooms: Operating key.
13. Include operating key with each hose bibb.
14. Include integral wall flange with each chrome- or nickel-plated hose bibb.

2.10 WALL HYDRANTS

A. Nonfreeze Wall Hydrants WH:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Josam Company.
 c. Prier Products, Inc.
 d. Watts; a Watts Water Technologies company.
 e. Woodford Manufacturing Company.
 f. Zurn Industries, LLC.
4. Operation: Loose key.
5. Casing and Operating Rod: Of length required to match wall thickness. Include wall clamp.
6. Inlet: NPS 3/4 or NPS 1.
7. Outlet: Concealed, with integral vacuum breaker and garden-hose thread complying with ASME B1.20.7.
8. Box: Deep, flush mounted with cover.
12. Operating Keys(s): Two with each wall hydrant.

2.11 DRAIN VALVES

A. Ball-Valve-Type, Hose-End Drain Valves:
 2. Pressure Rating: 400-psig minimum CWP.
 4. Body: Copper alloy.
 5. Ball: Chrome-plated brass.
 8. Inlet: Threaded or solder joint.

B. Stop-and-Waste Drain Valves:
 1. Standard: MSS SP-110 for ball valves or MSS SP-80 for gate valves.
 2. Pressure Rating: 200-psig minimum CWP or Class 125.
 5. Drain: NPS 1/8 side outlet with cap.

2.12 WATER-HAMMER ARRESTERS

A. Water-Hammer Arresters AAV:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. MIFAB, Inc.
 b. Precision Plumbing Products.
 c. Sioux Chief Manufacturing Company, Inc.
 e. Tyler Pipe; a subsidiary of McWane Inc.
 3. Type: Copper tube with piston.
 4. Size: ASSE 1010, Sizes AA and A through F, or PDI-WH 201, Sizes A through F.
2.13 AIR VENTS

A. Bolted-Construction Automatic Air Vents:
 1. Body: Bronze.
 2. Pressure Rating and Temperature: 125-psig minimum pressure rating at 140 deg F.
 3. Float: Replaceable, corrosion-resistant metal.

2.14 TRAP-SEAL PRIMER DEVICE

A. Supply-Type, Trap-Seal Primer Device (TP):
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. MIFAB, Inc.
 b. Precision Plumbing Products.
 c. Sioux Chief Manufacturing Company, Inc.
 e. Zurn Industries, LLC.
 5. Inlet and Outlet Connections, NPS 1/2 threaded, union, or solder joint.
 6. Gravity Drain Outlet Connection: NPS 1/2 threaded or solder joint.
 7. Finish: Chrome plated, or rough bronze for units used with pipe or tube that is not chrome finished.

2.15 TRAP-SEAL PRIMER SYSTEMS

A. Trap-Seal Primer Systems TP:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Precision Plumbing Products.
 b. Zurn Industries, LLC.
 2. Standard: ASSE 1044.
 3. Piping: NPS 3/4, ASTM B 88, Type L; copper, water tubing.
 6. Number Outlets: As Required
7. Size Outlets: NPS 1/2.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install backflow preventers in each water supply to mechanical equipment and systems and to other equipment and water systems that may be sources of contamination. Comply with authorities having jurisdiction.
 1. Locate backflow preventers in same room as connected equipment or system.
 2. Install drain for backflow preventers with atmospheric-vent drain connection with air-gap fitting, fixed air-gap fitting, or equivalent positive pipe separation of at least two pipe diameters in drain piping and pipe-to-floor drain. Locate air-gap device attached to or under backflow preventer. Simple air breaks are unacceptable for this application.
 3. Do not install bypass piping around backflow preventers.

B. Install balancing valves in locations where they can easily be adjusted.

C. Install temperature-actuated, water mixing valves with check stops or shutoff valves on inlets and with shutoff valve on outlet.

D. Install Y-pattern strainers for water on supply side of each pump.

E. Install outlet boxes recessed in wall or surface mounted on wall. Install 2-by-4-inch fire-retardant-treated-wood blocking, wall reinforcement between studs. Comply with requirements for fire-retardant-treated-wood blocking in Section 06 10 00 "Rough Carpentry."

F. Install water-hammer arresters in water piping according to PDI-WH 201.

G. Install air vents at high points of water piping. Install drain piping and discharge onto floor drain.

H. Install supply-type, trap-seal primer valves with outlet piping pitched down toward drain trap a minimum of 1 percent, and connect to floor-drain body, trap, or inlet fitting. Adjust valve for proper flow.

I. Install trap-seal primer systems with outlet piping pitched down toward drain trap a minimum of 1 percent, and connect to floor-drain body, trap, or inlet fitting. Adjust system for proper flow.

3.2 CONNECTIONS

A. Comply with requirements for ground equipment in Section 26 05 26 "Grounding and Bonding for Electrical Systems."

B. Fire-retardant-treated-wood blocking is specified in Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables" for electrical connections.
3.3 LABELING AND IDENTIFYING

A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:

1. Pressure vacuum breakers.
2. Reduced-pressure-principle backflow preventers.
3. Double-check, backflow-prevention assemblies.
5. Primary, thermostatic, water mixing valves.
6. Outlet boxes.
7. Supply-type, trap-seal primer valves.
8. Trap-seal primer systems.

B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Section 22 05 53 "Identification for Plumbing Piping and Equipment."

3.4 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Test each pressure vacuum breaker, reduced-pressure-principle backflow preventer, double-check and backflow-prevention assembly according to authorities having jurisdiction and the device's reference standard.

B. Domestic water piping specialties will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

3.5 ADJUSTING

A. Set field-adjustable flow set points of balancing valves.

B. Set field-adjustable temperature set points of temperature-actuated, water mixing valves.

END OF SECTION
SECTION 22 11 23
DOMESTIC WATER PUMPS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. In-line, sealless centrifugal pumps.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product indicated. Include materials of construction, rated
 capacities, certified performance curves with operating points plotted on curves, operating
 characteristics, electrical characteristics, and furnished specialties and accessories.

1.4 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For domestic water pumps to include in operation and
 maintenance manuals.

1.5 QUALITY ASSURANCE
 A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by
 a qualified testing agency, and marked for intended location and application.
 B. UL Compliance: Comply with UL 778 for motor-operated water pumps.

1.6 DELIVERY, STORAGE, AND HANDLING
 A. Retain shipping flange protective covers and protective coatings during storage.
 B. Protect bearings and couplings against damage.
 C. Comply with pump manufacturer's written rigging instructions for handling.
1.7 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

PART 2 - PRODUCTS

2.1 IN-LINE, SEALLESS CENTRIFUGAL PUMPS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Advanced Mechanical Technologies.
2. Armstrong Pumps, Inc.
3. Bell & Gossett; a Xylem brand.
4. Grundfos Pumps Corp.
5. TACO Incorporated.
6. WILO USA LLC - WILO Canada Inc.

B. Description: Factory-assembled and -tested, in-line, close-coupled, canned-motor, sealless, overhung-impeller centrifugal pumps.

C. Pump Construction:

1. Pump and Motor Assembly: Hermetically sealed, replaceable-cartridge type with motor and impeller on common shaft and designed for installation with pump and motor shaft horizontal.
2. Casing: Bronze, with threaded or companion-flange connections.
4. Motor: Single speed, unless otherwise indicated.

D. Capacities and Characteristics:

2. Total Dynamic Head: 13 feet.
4. Maximum Continuous Operating Temperature: 220 deg F.
5. Inlet and Outlet Size: 3/4 NPS.
7. Pump Control: Thermostat.
9. Electrical Characteristics:
 a. Volts: 120.
 c. Hertz: 60.
2.2 MOTORS

A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 22 05 13 "Common Motor Requirements for Plumbing Equipment."

1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

2.3 CONTROLS

A. Thermostats: Electric; adjustable for control of hot-water circulation pump.

1. Type: Water-immersion temperature sensor, for installation in piping.
2. Range: 50 to 125 deg F.
3. Enclosure: NEMA 250, Type 4X.
4. Operation of Pump: On or off.
5. Transformer: Provide if required.
7. Settings: Start pump at 105 deg F and stop pump at 120 deg F.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in of domestic-water-piping system to verify actual locations of connections before pump installation.

3.2 PUMP INSTALLATION

A. Comply with HI 1.4.

B. Install in-line, sealless centrifugal pumps with shaft horizontal unless otherwise indicated.

C. Install continuous-thread hanger rods and spring hangers of size required to support pump weight.

1. Comply with requirements for vibration isolation devices specified in Section 22 05 48.13 "Vibration Controls for Plumbing Piping and Equipment." Fabricate brackets or supports as required.
2. Comply with requirements for hangers and supports specified in Section 22 05 29 "Hangers and Supports for Plumbing Piping and Equipment."

D. Install thermostats in hot-water return piping.
3.3 CONNECTIONS

A. Comply with requirements for piping specified in Section 22 11 16 "Domestic Water Piping." Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to pumps to allow service and maintenance.

C. Connect domestic water piping to pumps. Install suction and discharge piping equal to or greater than size of pump nozzles.
 1. Install flexible connectors adjacent to pumps in suction and discharge piping of the following pumps:
 a. Comply with requirements for flexible connectors specified in Section 22 11 16 "Domestic Water Piping."

D. Install shutoff valve and strainer on suction side of each pump, and check, shutoff, and throttling valves on discharge side of each pump. Install valves same size as connected piping. Comply with requirements for valves specified in Section 22 05 23.12 "Ball Valves for Plumbing Piping," Section 22 05 23.13 "Butterfly Valves for Plumbing Piping," Section 22 05 23.14 "Check Valves for Plumbing Piping," and Section 22 05 23.15 "Gate Valves for Plumbing Piping," and comply with requirements for strainers specified in Section 22 11 19 "Domestic Water Piping Specialties."

E. Connect thermostats, to pumps that they control.

3.4 IDENTIFICATION

A. Comply with requirements for identification specified in Section 22 05 53 "Identification for Plumbing Piping and Equipment" for identification of pumps.

3.5 STARTUP SERVICE

A. Perform startup service.
 1. Complete installation and startup checks according to manufacturer's written instructions.
 2. Check piping connections for tightness.
 3. Clean strainers on suction piping.
 Set thermostats, for automatic starting and stopping operation of pumps.
 5. Perform the following startup checks for each pump before starting:
 a. Verify bearing lubrication.
 b. Verify that pump is free to rotate by hand and that pump for handling hot liquid is free to rotate with pump hot and cold. If pump is bound or drags, do not operate until cause of trouble is determined and corrected.
 c. Verify that pump is rotating in the correct direction.
 6. Prime pump by opening suction valves and closing drains, and prepare pump for operation.
7. Start motor.
8. Open discharge valve slowly.
9. Adjust temperature settings on thermostats.
10. Adjust timer settings.

3.6 ADJUSTING

A. Adjust domestic water pumps to function smoothly, and lubricate as recommended by manufacturer.

B. Adjust initial temperature set points.

C. Set field-adjustable switches and circuit-breaker trip ranges as indicated.

END OF SECTION
SECTION 22 12 23
FACILITY INDOOR POTABLE-WATER STORAGE TANKS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
1. Steel, precharged, potable-water storage tanks.
2. Insulated, steel, potable-water storage tanks.

1.3 DEFINITIONS
A. HDPE: High-density polyethylene plastic.
B. LDPE: Low-density polyethylene plastic.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product indicated.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for water storage tanks.
 2. Include rated capacities, operating characteristics, and furnished specialties and accessories.

1.5 INFORMATIONAL SUBMITTALS
A. Product Certificates: For each type of potable-water storage tank, from manufacturer.
B. Source quality-control reports.
C. Purging and disinfecting reports.
1.6 QUALITY ASSURANCE

A. ASME Compliance for Steel Tanks: Fabricate and label steel, ASME-code, potable-water storage tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, "Pressure Vessels," Division 1.

1.7 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

PART 2 - PRODUCTS

2.1 STEEL, PRECHARGED, POTABLE-WATER STORAGE TANKS

A. Steel, Precharged, Diaphragm, Water Storage Tanks:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AMTROL, Inc.
 b. Armstrong Pumps, Inc.
 c. Myers, F.E.; Pentair Ltd.
 d. State Industries.
 e. Taco, Inc.
 f. Wessels Company.

2. Description: Steel, vertical, pressured-rated tank with cylindrical sidewalls and with air-charging valve and air precharge.

3. Fabricate supports and attachments to tank with reinforcement strong enough to resist tank movement during seismic event when tank supports are anchored to building structure.

B. Construction: ASME code, steel, constructed with nontoxic welded joints, for 150-psig working pressure.

C. Tappings: Factory-fabricated steel, welded to tank before testing and labeling.

 1. NPS 2 and Smaller: ASME B1.20.1, with female thread.
 2. NPS 2-1/2 and Larger: ASME B16.5, flanged.

D. Vertical Tank Supports: Factory-fabricated steel legs or steel skirt, welded to tank before testing and labeling.
E. Tank Interior Finish: Materials and thicknesses complying with NSF 61 Annex G barrier materials for potable-water tank linings. Extend finish into and through tank fittings and outlets.
 1. Lining Material: Manufacturer’s Standard.

F. Exterior Coating: Manufacturer's standard enamel paint.

2.2 INSULATED, STEEL, POTABLE-WATER STORAGE TANKS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Provided by water heater manufacturer.

B. Description: Steel, vertical, pressure-rated tank with cylindrical sidewalls.

C. Fabricate supports and attachments to tank with reinforcement strong enough to resist tank movement during seismic event when tank supports are anchored to building structure.

D. Construction: ASME code, steel, constructed with nontoxic welded joints, for 150-psig working pressure.

E. Manhole: Watertight, manufacturer’s standard; same pressure rating as tank.

F. Tappings: Factory-fabricated stainless steel, welded to tank before testing and labeling.
 1. NPS 2 and Smaller: ASME B1.20.1, with female thread.
 2. NPS 2-1/2 and Larger: ASME B16.5, flanged.

G. Specialties and Accessories: Include tappings in tank and the following:
 1. Vacuum relief valve
 2. Pressure gage
 3. Thermometer
 4. Pressure/Temperature Relief Valve
 5. System Control unit

H. Vertical Tank Supports: Factory-fabricated steel legs or steel skirt, welded to tank before testing and labeling.

I. Tank Interior Finish: Materials and thicknesses complying with NSF 61 Annex G barrier materials for potable-water tank linings. Extend finish into and through tank fittings and outlets.
 1. Lining Material: Glass or Manufacturer’s Standard.

J. Insulation: Factory-installed fiberglass or polyurethane foam; surrounding entire tank except connections and other openings; suitable for tank operating temperature; and complying with ASHRAE/IESNA 90.1.

K. Jacket: Steel, with manufacturer's standard finish unless otherwise indicated.
2.3 SOURCE QUALITY CONTROL

A. Test and inspect potable-water storage tanks according to the following tests and inspections and prepare test reports:

 1. Pressure Testing for ASME-Code, Potable-Water Storage Tanks: Hydrostatically test to ensure structural integrity and freedom from leaks. Fill tanks with water, vent air, pressurize to 1-1/2 times tank pressure rating, disconnect test equipment, hold pressure for 30 minutes with no drop in pressure, and check for leaks.

B. Repair or replace tanks that fail test with new tanks, and repeat until test is satisfactory.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install water storage tanks on concrete bases, level and plumb, firmly anchored. Arrange so devices needing servicing are accessible.

B. Anchor tank supports and tanks to substrate.

C. Install thermometers and pressure gages on water storage tanks and piping if indicated. Thermometers and pressure gages are specified in Section 22 05 19 "Meters and Gages for Plumbing Piping."

D. Install the following devices on tanks where indicated:

 1. Pressure relief valves.
 2. Temperature and pressure relief valves.
 3. Vacuum relief valves.
 4. Tank vents on non-pressure tanks.
 5. Connections to systems control unit.

E. After installing tanks with factory finish, inspect finishes and repair damages to finishes.

3.2 CONNECTIONS

A. Piping installation requirements are specified in Section 22 11 16 "Domestic Water Piping." Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to potable-water storage tanks to allow service and maintenance.

C. Connect water piping to water storage tanks with unions or flanges and with shutoff valves. Connect tank drains with shutoff valves and discharge over closest floor drains.

 1. General-duty valves are specified in Section 22 05 23.12 "Ball Valves for Plumbing Piping," Section 22 05 23.13 "Butterfly Valves for Plumbing Piping," and Section 22 05 23.15 "Gate Valves for Plumbing Piping."
a. Valves NPS 2 and Smaller: Gate or ball.
b. Valves NPS 2-1/2 and Larger: Gate or butterfly.
c. Drain Valves: NPS 3/4 gate or ball valve. Include outlet with, or nipple in outlet with, ASME B1.20.7, 3/4-11.5NH thread for garden-hose service, threaded cap, and chain.

2. Water Piping Connections: Make connections to dissimilar metals with dielectric fittings. Dielectric fittings are specified in Section 22 11 16 "Domestic Water Piping."

3.3 IDENTIFICATION

A. Identify system components. Comply with requirements for identification specified in Section 22 05 53 "Identification for Plumbing Piping and Equipment."

3.4 FIELD QUALITY CONTROL

A. Perform the following final checks before filling:
 1. Verify that air precharge in precharged tanks is correct.
 2. Test operation of tank accessories and devices.
 3. Verify that pressure relief valves have correct setting.
 a. Manually operate pressure relief valves.
 b. Adjust pressure settings.
 4. Verify that vacuum relief valves are correct size.
 a. Manually operate vacuum relief valves.
 b. Adjust vacuum settings.

B. Filling Procedures: Follow manufacturer's written procedures. Fill tanks with water to operating level.

3.5 CLEANING

A. Clean and disinfect potable-water storage tanks.

B. Use purging and disinfecting procedure prescribed by authorities having jurisdiction or, if method is not prescribed, use procedure described in AWWA C652 or as described below:
 1. Purge water storage tanks with potable water.
 2. Disinfect tanks by one of the following methods:
 a. Fill tanks with water-chlorine solution containing at least 50 ppm of chlorine. Isolate tanks and allow to stand for 24 hours.
 b. Fill tanks with water-chlorine solution containing at least 200 ppm of chlorine. Isolate tanks and allow to stand for three hours.
3. Flush tanks, after required standing time, with clean, potable water until chlorine is not present in water coming from tank.
4. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedure if biological examination made by authorities having jurisdiction shows evidence of contamination.

C. Prepare written reports for purging and disinfecting activities.

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Pipe and fittings.
 2. Nonpressure and pressure couplings.
 3. Expansion joints and deflection fittings.

1.3 ACTION SUBMITTALS

A. Product Data: For the following:
 1. Expansion joints and deflection fittings.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Show pipe sizes, locations, and elevations. Show other piping in same trench and clearances from sewer system piping. Indicate interface and spatial relationship between manholes, piping, and proximate structures.

B. Product Certificates: For each type of cast-iron soil pipe and fitting, from manufacturer.

C. Field quality-control reports.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Protect pipe, pipe fittings, and seals from dirt and damage.
1.6 PROJECT CONDITIONS

A. Interruption of Existing Sanitary Sewerage Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary service according to requirements indicated:

1. Notify Architect no fewer than two days in advance of proposed interruption of service.
2. Do not proceed with interruption of service without Architect's written permission.

PART 2 - PRODUCTS

2.1 HUBLESS CAST-IRON SOIL PIPE AND FITTINGS

A. Pipe and Fittings: ASTM A 888 or CISPI 301. Pipe and Fittings shall bear mark of the Cast Iron Soil Pipe Institute (CISPI)

B. CISPI-Trademark, Shielded Couplings:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ANACO-Husky.
 b. Charlotte Pipe and Foundry Company.
 d. Fernco Inc.
 e. Mission Rubber Company, LLC; a division of MCP Industries.
 f. Tyler Pipe; a subsidiary of McWane Inc.

2. Description: ASTM C 1277 and CISPI 310, with stainless-steel corrugated shield; stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.

C. Heavy-Duty, Shielded Couplings:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ANACO-Husky.
 b. Clamp-All Corp.
 d. Mission Rubber Company, LLC; a division of MCP Industries.
 e. Tyler Pipe; a subsidiary of McWane Inc.

2. Description: ASTM C 1277 and ASTM C 1540, with stainless-steel shield; stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.
2.2 NONPRESSURE-TYPE TRANSITION COUPLINGS

A. Comply with ASTM C 1173, elastomeric, sleeve-type, reducing or transition coupling, for joining underground nonpressure piping. Include ends of same sizes as piping to be joined and corrosion-resistant-metal tension band and tightening mechanism on each end.

B. Sleeve Materials:
 1. For Cast-Iron Soil Pipes: ASTM C 564, rubber.
 2. For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.

C. Shielded, Flexible Couplings:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 c. Mission Rubber Company, LLC; a division of MCP Industries.
 2. Description: ASTM C 1460, elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.

2.3 EXPANSION JOINTS AND DEFLECTION FITTINGS

A. Ductile-Iron, Flexible Expansion Joints:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. EBAA Iron, Inc.
 b. Romac Industries, Inc.
 c. Star Pipe Products.
 2. Description: Compound fitting with combination of flanged and mechanical-joint ends complying with AWWA C110 or AWWA C153. Include two gasketed ball-joint sections and one or more gasketed sleeve sections, rated for 250-psig minimum working pressure and for offset and expansion indicated.

B. Ductile-Iron Expansion Joints:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Dresser, Inc.
 b. EBAA Iron, Inc.
 d. JCM Industries, Inc.
2. Description: Three-piece assembly of telescoping sleeve with gaskets and restrained-type, ductile-iron, bell-and-spigot end sections complying with AWWA C110 or AWWA C153. Include rating for 250-psig minimum working pressure and for expansion indicated.

C. Ductile-Iron Deflection Fittings:

1. Manufacturers: Subject to compliance with requirements, provide products by the following:

 a. EBAA Iron, Inc.

2. Description: Compound coupling fitting with ball joint, flexing section, gaskets, and restrained-joint ends complying with AWWA C110 or AWWA C153. Include rating for 250-psig minimum working pressure and for up to 15 degrees of deflection.

2.4 CLEANOUTS

A. Cast-Iron Cleanouts:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 b. Josam Company.
 c. MIFAB, Inc.
 d. Tyler Pipe; a subsidiary of McWane Inc.
 e. Watts; a Watts Water Technologies company.
 f. Zurn Industries, LLC.

2. Description: ASME A12.36.2M, round, gray-iron housing with clamping device and round, secured, scoriated, gray-iron cover. Include gray-iron ferrule with inside calk or spigot connection and countersunk, tapered-thread, brass closure plug.

3. Top-Loading Classification(s): Medium Duty.

4. Sewer Pipe Fitting and Riser to Cleanout: ASTM A 74, Service class, cast-iron soil pipe and fittings.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Excavating, trenching, and backfilling are specified in "Earth Moving."

3.2 PIPING INSTALLATION

A. General Locations and Arrangements: Drawing plans and details indicate general location and arrangement of underground sanitary sewer piping. Location and arrangement of piping layout
take into account design considerations. Install piping as indicated, to extent practical. Where specific installation is not indicated, follow piping manufacturer's written instructions.

B. Install piping beginning at low point, true to grades and alignment indicated with unbroken continuity of invert. Place bell ends of piping facing upstream. Install gaskets, seals, sleeves, and couplings according to manufacturer's written instructions for using lubricants, cements, and other installation requirements.

C. Install proper size increasers, reducers, and couplings where different sizes or materials of pipes and fittings are connected. Reducing size of piping in direction of flow is prohibited.

D. When installing pipe under streets or other obstructions that cannot be disturbed, use pipe-jacking process of microtunneling.

E. Install gravity-flow, nonpressure, drainage piping according to the following:

1. Install piping pitched down in direction of flow, at minimum slope of 1 percent unless otherwise indicated.
2. Install piping NPS 6 and larger with restrained joints at tee fittings and at changes in direction. Use corrosion-resistant rods, pipe or fitting manufacturer's proprietary restraint system, or cast-in-place-concrete supports or anchors.
3. Install piping with 36-inch minimum cover.

3.3 PIPE JOINT CONSTRUCTION

A. Join gravity-flow, nonpressure, drainage piping according to the following:

B. Pipe couplings, expansion joints, and deflection fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.

1. Use nonpressure flexible couplings where required to join gravity-flow, nonpressure sewer piping unless otherwise indicated.
 a. Shielded flexible couplings for pipes of same or slightly different OD.
 b. Ring-type flexible couplings for piping of different sizes where annular space between smaller piping's OD and larger piping's ID permits installation.

3.4 CLEANOUT INSTALLATION

A. Install cleanouts and riser extensions from sewer pipes to cleanouts at grade. Use cast-iron soil pipe fittings in sewer pipes at branches for cleanouts, and use cast-iron soil pipe for riser extensions to cleanouts. Install piping so cleanouts open in direction of flow in sewer pipe.

1. Use Light-Duty, top-loading classification cleanouts in earth or unpaved foot-traffic areas.
2. Use Medium-Duty, top-loading classification cleanouts in paved foot-traffic areas.
3. Use Heavy-Duty, top-loading classification cleanouts in vehicle-traffic service areas.

B. Set cleanout frames and covers in earth in cast-in-place-concrete block, 18 by 18 by 12 inches deep. Set with tops 1 inch above surrounding grade.

C. Set cleanout frames and covers in concrete pavement and roads with tops flush with pavement surface.

3.5 CONNECTIONS

A. Connect nonpressure, gravity-flow drainage piping to building's sanitary building drains specified in Section 22 13 16 "Sanitary Waste and Vent Piping."

B. Make connections to existing piping.
 1. Use commercially manufactured wye fittings for piping branch connections. Remove section of existing pipe, install wye fitting into existing piping, and encase entire wye fitting plus 6-inch overlap with not less than 6 inches of concrete with 28-day compressive strength of 3000 psi.

3.6 IDENTIFICATION

A. Comply with requirements in Section 31200 "Earth Moving" for underground utility identification devices. Arrange for installation of green warning tapes directly over piping and at outside edges of underground manholes.
 1. Use warning tape or detectable warning tape over ferrous piping.

3.7 FIELD QUALITY CONTROL

A. Inspect interior of piping to determine whether line displacement or other damage has occurred. Inspect after approximately 24 inches of backfill is in place, and again at completion of Project.
 1. Submit separate report for each system inspection.
 2. Defects requiring correction include the following:
 a. Alignment: Less than full diameter of inside of pipe is visible between structures.
 b. Deflection: Flexible piping with deflection that prevents passage of ball or cylinder of size not less than 92.5 percent of piping diameter.
 c. Damage: Crushed, broken, cracked, or otherwise damaged piping.
 d. Infiltration: Water leakage into piping.
 e. Exfiltration: Water leakage from or around piping.
 3. Replace defective piping using new materials, and repeat inspections until defects are within allowances specified.
 4. Reinspect and repeat procedure until results are satisfactory.
B. Test new piping systems, and parts of existing systems that have been altered, extended, or repaired, for leaks and defects.

1. Do not enclose, cover, or put into service before inspection and approval.
2. Test completed piping systems according to requirements of authorities having jurisdiction.
3. Schedule tests and inspections by authorities having jurisdiction with at least 24 hours' advance notice.
4. Submit separate report for each test.
5. Hydrostatic Tests: Test sanitary sewerage according to requirements of authorities having jurisdiction and the following:
 a. Fill sewer piping with water. Test with pressure of at least 10-foot head of water, and maintain such pressure without leakage for at least 15 minutes.
 b. Close openings in system and fill with water.
 c. Purge air and refill with water.
 d. Disconnect water supply.
 e. Test and inspect joints for leaks.

C. Leaks and loss in test pressure constitute defects that must be repaired.

D. Replace leaking piping using new materials, and repeat testing until leakage is within allowances specified.

3.8 CLEANING

A. Clean dirt and superfluous material from interior of piping. Flush with potable water.

END OF SECTION
SECTION 22 13 16
SANITARY WASTE AND VENT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Pipe, tube, and fittings.
 2. Specialty pipe fittings.
B. Related Sections:
 1. Section 22 13 13 "Facility Sanitary Sewers" for sanitary sewerage piping and structures outside the building.

1.3 PERFORMANCE REQUIREMENTS
A. Components and installation shall be capable of withstanding the following minimum working pressure unless otherwise indicated:

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product indicated.
B. Shop Drawings: Include plans, elevations, sections, and details.

1.5 INFORMATIONAL SUBMITTALS
A. Field quality-control reports.

1.6 QUALITY ASSURANCE
A. Piping materials shall bear label, stamp, or other markings of specified testing agency.
PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.2 HUBLESS, CAST-IRON SOIL PIPE AND FITTINGS

A. Pipe and Fittings: ASTM A 888 or CISPI 301. Pipe and Fittings shall bear mark of the Cast Iron Soil Pipe Institute (CISPI).

B. Sovent Stack Fittings: ASME B16.45 or ASSE 1043, hubless, cast-iron aerator and deaerator drainage fittings.

C. CISPI, Hubless-Piping Couplings:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ANACO-Husky.
 b. Charlotte Pipe and Foundry Company.
 d. Fernco Inc.
 e. MIFAB, Inc.
 f. Tyler Pipe; a subsidiary of McWane Inc.

3. Description: Stainless-steel corrugated shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.

D. Heavy-Duty, Hubless-Piping Couplings:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ANACO-Husky.
 b. Charlotte Pipe and Foundry Company.
 c. Clamp-All Corp.
 e. MIFAB, Inc.
 f. Tyler Pipe; a subsidiary of McWane Inc.

3. Description: Stainless-steel shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.
2.3 GALVANIZED-STEEL PIPE AND FITTINGS

A. Galvanized-Steel Pipe: ASTM A 53/A 53M, Type E, Standard Weight class. Include square-cut-grooved or threaded ends matching joining method.

C. Steel Pipe Pressure Fittings:

D. Cast-Iron Flanges: ASME B16.1, Class 125.
 1. Flange Gasket Materials: ASME B16.21, full-face, flat, nonmetallic, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
 2. Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.

2.4 COPPER TUBE AND FITTINGS

A. Copper DWV Tube: ASTM B 306, drainage tube, drawn temper.

B. Copper Drainage Fittings: ASME B16.29, cast copper or ASME B16.29, wrought copper, solder-joint fittings.

C. Hard Copper Tube: ASTM B 88, Type L, water tube, drawn temper.

D. Soft Copper Tube: ASTM B 88, Type L, water tube, annealed temper.

E. Copper Flanges: ASME B16.24, Class 150, cast copper with solder-joint end.
 1. Flange Gasket Materials: ASME B16.21, full-face, flat, nonmetallic, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
 2. Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.

F. Solder: ASTM B 32, lead free with ASTM B 813, water-flushable flux.

2.5 SPECIALTY PIPE FITTINGS

A. Transition Couplings:
 1. General Requirements: Fitting or device for joining piping with small differences in OD's or of different materials. Include end connections same size as and compatible with pipes to be joined.
 2. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.
3. Unshielded, Nonpressure Transition Couplings:
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2) Fernco Inc.
 3) Froet Industries LLC.
 4) Mission Rubber Company, LLC; a division of MCP Industries.
 5) Plastic Oddities.
 c. Description: Elastomeric, sleeve-type, reducing or transition pattern. Include shear ring and corrosion-resistant-metal tension band and tightening mechanism on each end.
 d. Sleeve Materials:
 2) For Plastic Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
 3) For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.

4. Shielded, Nonpressure Transition Couplings:
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2) Mission Rubber Company, LLC; a division of MCP Industries.
 c. Description: Elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.

B. Dielectric Fittings:

1. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.
2. Dielectric Unions:
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) A.Y. McDonald Mfg. Co.
 2) Jomar Valve.
 3) Matco-Norca.
 4) Watts; a Watts Water Technologies company.
5) Wilkins.
6) Zurn Industries, LLC.

b. Description:

1) Standard: ASSE 1079.
2) Pressure Rating: 125 psig minimum at 180 deg F.
3) End Connections: Solder-joint copper alloy and threaded ferrous.

3. Dielectric Flanges:

a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1) Matco-Norca.
2) Watts; a Watts Water Technologies company.
3) Wilkins.
4) Zurn Industries, LLC.

b. Description:

1) Standard: ASSE 1079.
2) Factory-fabricated, bolted, companion-flange assembly.
3) Pressure Rating: 125 psig minimum at 180 deg F.
4) End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

2.6 PVC PIPE AND FITTINGS (UNDERGROUND PIPING)

B. Solid-Wall PVC Pipe: ASTM D 2665, drain, waste, and vent.

C. Cellular-Core PVC Pipe: ASTM F 891, Schedule 40.

D. PVC Socket Fittings: ASTM D 2665, made to ASTM D 3311, drain, waste, and vent patterns and to fit Schedule 40 pipe.

E. Adhesive Primer: ASTM F 656.

F. Solvent Cement: ASTM D 2564.

PART 3 - EXECUTION

3.1 EARTH MOVING

A. Comply with requirements for excavating, trenching, and backfilling specified in "Earth Moving."

Tetra Tech
3.2 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.

B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

E. Install piping to permit valve servicing.

F. Install piping at indicated slopes.

G. Install piping free of sags and bends.

H. Install fittings for changes in direction and branch connections.

I. Install piping to allow application of insulation.

J. Make changes in direction for soil and waste drainage and vent piping using appropriate branches, bends, and long-sweep bends. Sanitary tees and short-sweep 1/4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Use long-turn, double Y-branch and 1/8-bend fittings if two fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.

K. Lay buried building drainage piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements. Maintain swab in piping and pull past each joint as completed.

L. Install soil and waste drainage and vent piping at the following minimum slopes unless otherwise indicated:

 1. Building Sanitary Drain: 2 percent downward in direction of flow for piping NPS 3 and smaller; 1 percent downward in direction of flow for piping NPS 4 and larger.
 2. Horizontal Sanitary Drainage Piping: 2 percent downward in direction of flow.
 3. Vent Piping: 1 percent down toward vertical fixture vent or toward vent stack.

N. Install steel piping according to applicable plumbing code.

O. Install aboveground copper tubing according to CDA's "Copper Tube Handbook."

P. Plumbing Specialties:
 1. Install cleanouts at grade and extend to where building sanitary drains connect to building sanitary sewers in sanitary drainage gravity-flow piping. Install cleanout fitting with closure plug inside the building in sanitary drainage force-main piping. Comply with requirements for cleanouts specified in Section 22 13 19 "Sanitary Waste Piping Specialties."

Q. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.

R. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 22 05 17 "Sleeves and Sleeve Seals for Plumbing Piping."

S. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 22 05 17 "Sleeves and Sleeve Seals for Plumbing Piping."

T. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 22 05 18 "Escutcheons for Plumbing Piping."

3.3 JOINT CONSTRUCTION

A. Join hubless, cast-iron soil piping according to CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless-piping coupling joints.

B. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

C. Join copper tube and fittings with soldered joints according to ASTM B 828. Use ASTM B 813, water-flushable, lead-free flux and ASTM B 32, lead-free-alloy solder.

D. Flanged Joints: Align bolt holes. Select appropriate gasket material, size, type, and thickness. Install gasket concentrically positioned. Use suitable lubricants on bolt threads. Torque bolts in cross pattern.
3.4 SPECIALTY PIPE FITTING INSTALLATION

A. Transition Couplings:
 1. Install transition couplings at joints of piping with small differences in OD's.
 2. In Drainage Piping: Shielded, nonpressure transition couplings.

B. Dielectric Fittings:
 1. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
 2. Dielectric Fittings for NPS 2 and Smaller: Use dielectric unions.
 3. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flanges.
 4. Dielectric Fittings for NPS 5 and Larger: Use dielectric flange kits.

3.5 VALVE INSTALLATION

A. General valve installation requirements are specified in Section 22 05 23.12 "Ball Valves for Plumbing Piping," Section 22 05 23.13 "Butterfly Valves for Plumbing Piping," Section 22 05 23.14 "Check Valves for Plumbing Piping," and Section 22 05 23.15 "Gate Valves for Plumbing Piping."

B. Shut-off Valves:
 1. Install gate or full-port ball valve for piping NPS 2 and smaller.
 2. Install gate valve for piping NPS 2-1/2 and larger.

C. Check Valves: Install swing check valve, between pump and shut-off valve, on each sewage pump discharge.

3.6 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements for seismic-restraint devices specified in Section 22 05 48 "Vibration and Seismic Controls for Plumbing Piping and Equipment."

B. Comply with requirements for pipe hanger and support devices and installation specified in Section 22 05 29 "Hangers and Supports for Plumbing Piping and Equipment."

 1. Install carbon-steel pipe hangers for horizontal piping in noncorrosive environments.
 2. Install carbon-steel pipe support clamps for vertical piping in noncorrosive environments.
 3. Vertical Piping: MSS Type 8 or Type 42, clamps.
 4. Install individual, straight, horizontal piping runs:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.

 5. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
 6. Base of Vertical Piping: MSS Type 52, spring hangers.

C. Support horizontal piping and tubing within 12 inches of each fitting, valve, and coupling.
D. Support vertical piping and tubing at base and at each floor.

E. Rod diameter may be reduced one size for double-rod hangers, with 3/8-inch minimum rods.

F. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:

1. NPS 1-1/2 and NPS 2: 60 inches with 3/8-inch rod.
2. NPS 3: 60 inches with 1/2-inch rod.
3. NPS 4 and NPS 5: 60 inches with 5/8-inch rod.
4. NPS 6 and NPS 8: 60 inches with 3/4-inch rod.

G. Install supports for vertical cast-iron soil piping every 15 feet.

H. Install hangers for steel piping with the following maximum horizontal spacing and minimum rod diameters:

1. NPS 1-1/4: 84 inches with 3/8-inch rod.
2. NPS 1-1/2: 108 inches with 3/8-inch rod.
3. NPS 2: 10 feet with 3/8-inch rod.
4. NPS 2-1/2: 11 feet with 1/2-inch rod.
5. NPS 3: 12 feet with 1/2-inch rod.
6. NPS 4 and NPS 5: 12 feet with 5/8-inch rod.
7. NPS 6 and NPS 8: 12 feet with 3/4-inch rod.

I. Install supports for vertical steel piping every 15 feet.

J. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:

1. NPS 1-1/4: 72 inches with 3/8-inch rod.
2. NPS 1-1/2 and NPS 2: 90 inches with 3/8-inch rod.
3. NPS 2-1/2: 108 inches with 1/2-inch rod.

K. Install supports for vertical copper tubing every 10 feet.

L. Support piping and tubing not listed above according to MSS SP-69 and manufacturer's written instructions.

3.7 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect soil and waste piping to exterior sanitary sewerage piping. Use transition fitting to join dissimilar piping materials.

C. Connect drainage and vent piping to the following:

1. Plumbing Fixtures: Connect drainage piping in sizes indicated, but not smaller than required by plumbing code.
2. Plumbing Fixtures and Equipment: Connect atmospheric vent piping in sizes indicated, but not smaller than required by authorities having jurisdiction.
3. Plumbing Specialties: Connect drainage and vent piping in sizes indicated, but not smaller than required by plumbing code.
4. Install test tees (wall cleanouts) in conductors near floor and floor cleanouts with cover flush with floor.
5. Install horizontal backwater valves with cleanout cover flush with floor.
6. Comply with requirements for backwater valves cleanouts and drains specified in Section 22 13 19 "Sanitary Waste Piping Specialties."
7. Equipment: Connect drainage piping as indicated. Provide shutoff valve if indicated and union for each connection. Use flanges instead of unions for connections NPS 2-1/2 and larger.

D. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.

E. Make connections according to the following unless otherwise indicated:
1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.

3.8 IDENTIFICATION

A. Identify exposed sanitary waste and vent piping. Comply with requirements for identification specified in Section 22 05 53 "Identification for Plumbing Piping and Equipment."

3.9 FIELD QUALITY CONTROL

A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.
1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.

B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.

C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

D. Test sanitary drainage and vent piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:
1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
2. Leave uncovered and unconcealed new, altered, extended, or replaced drainage and vent piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.

3. Roughing-in Plumbing Test Procedure: Test drainage and vent piping except outside leaders on completion of roughing-in. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water. From 15 minutes before inspection starts to completion of inspection, water level must not drop. Inspect joints for leaks.

4. Finished Plumbing Test Procedure: After plumbing fixtures have been set and traps filled with water, test connections and prove they are gastight and watertight. Plug vent-stack openings on roof and building drains where they leave building. Introduce air into piping system equal to pressure of 1-inch wg. Use U-tube or manometer inserted in trap of water closet to measure this pressure. Air pressure must remain constant without introducing additional air throughout period of inspection. Inspect plumbing fixture connections for gas and water leaks.

5. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.

6. Prepare reports for tests and required corrective action.

3.10 CLEANING AND PROTECTION

A. Clean interior of piping. Remove dirt and debris as work progresses.

B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.

C. Place plugs in ends of uncompleted piping at end of day and when work stops.

3.11 PIPING SCHEDULE

A. Flanges and unions may be used on aboveground pressure piping unless otherwise indicated.

B. Aboveground, soil and waste piping NPS 4 and smaller shall be any of the following:

1. Hubless, cast-iron soil pipe and fittings; CISPI hubless-piping couplings; and coupled joints.
2. Galvanized-steel pipe, drainage fittings, and threaded joints.
3. Copper DWV tube, copper drainage fittings, and soldered joints.

C. Aboveground, soil and waste piping NPS 5 and larger shall be any of the following:

1. Hubless, cast-iron soil pipe and fittings; CISPI hubless-piping couplings; and coupled joints.
2. Galvanized-steel pipe, drainage fittings, and threaded joints.

D. Aboveground, vent piping NPS 4 and smaller shall be any of the following:
1. Hubless, cast-iron soil pipe and fittings; CISPI hubless-piping couplings; and coupled joints.
2. Galvanized-steel pipe, drainage fittings, and threaded joints.
3. Copper DWV tube, copper drainage fittings, and soldered joints.

E. Underground, soil, waste, and vent piping NPS 4 and smaller shall be the following:

1. Hubless, cast-iron soil pipe and fittings; CISPI hubless-piping couplings; and coupled joints.

F. Underground, soil and waste piping NPS 5 and larger shall be any of the following:

1. Hubless, cast-iron soil pipe and fittings; CISPI hubless-piping couplings; coupled joints.

END OF SECTION
SECTION 22 13 19
SANITARY WASTE PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Cleanouts.
 2. Floor drains.
 3. Floor Sinks.
 4. Trench drains.
 5. Air-admittance valves.
 6. Roof flashing assemblies.
 7. Through-penetration firestop assemblies.
 10. Grease interceptors.
B. Related Requirements:
 1. Section 22 14 43 "Storm Drainage Piping Specialties" for storm drainage piping inside the building, drainage piping specialties, and drains.

1.3 DEFINITIONS
B. FOG: Fats, oils, and greases.
C. FRP: Fiberglass-reinforced plastic.
D. HDPE: High-density polyethylene plastic.
E. PE: Polyethylene plastic.
F. PP: Polypropylene plastic.
G. PVC: Polyvinyl chloride plastic.
1.4 ACTION SUBMITTALS
 A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and accessories for the following:
 1. Grease interceptors.
 B. Shop Drawings: Show fabrication and installation details for specialties.

1.5 INFORMATIONAL SUBMITTALS
 A. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For drainage piping specialties to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE
 A. Drainage piping specialties shall bear label, stamp, or other markings of specified testing agency.

1.8 COORDINATION
 A. Coordinate size and location of roof penetrations.

1.9 MAINTENANCE MATERIAL SUBMITTALS
 A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

PART 2 - PRODUCTS

2.1 CLEANOUTS
 A. Exposed Metal Cleanouts: WCO
 1. ASME A112.36.2M, Cast-Iron Cleanouts:
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Josam Company.
 2) MIFAB, Inc.

4. Size: Same as connected drainage piping

5. Body Material: Hubless, cast-iron soil pipe test tee as required to match connected piping.

7. Closure Plug Size: Same as or not more than one size smaller than cleanout size.

B. Metal Floor Cleanouts: FCO

1. ASME A112.36.2M, Cast-Iron Cleanouts:

 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1) Josam Company.
 2) MIFAB, Inc.
 4) Tyler Pipe; a subsidiary of McWane Inc.
 5) Watts; a Watts Water Technologies company.
 6) Zurn Industries, LLC.

 2. Standard: ASME A112.36.2M for adjustable housing cleanout.

 3. Size: Same as connected branch.

 4. Type: Adjustable housing.

 5. Body or Ferrule: Cast iron.

 9. Adjustable Housing Material: Cast iron with threads.

 11. Frame and Cover Shape: Round.

 12. Top Loading Classification: Medium Duty.

 13. Riser: ASTM A 74, Service class, cast-iron drainage pipe fitting and riser to cleanout.

 15. Size: Same as connected branch.

 17. Closure: Stainless steel with seal.

 18. Riser: Stainless-steel drainage pipe fitting to cleanout.

C. Cast-Iron Wall Cleanouts:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
b. MIFAB, Inc.
d. Tyler Pipe; a subsidiary of McWane Inc.
e. Watts; a Watts Water Technologies company.
f. Zurn Industries, LLC.

2. Standard: ASME A112.36.2M. Include wall access.

3. Size: Same as connected drainage piping.
5. Closure: Countersunk, brass plug.
6. Closure Plug Size: Same as or not more than one size smaller than cleanout size.

2.2 FLOOR DRAINS

A. Cast-Iron Floor Drains:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. MIFAB, Inc.
 d. Zurn Industries, LLC.

2. Standard: ASME A112.6.3.

5. Seepage Flange: Required.
6. Anchor Flange: Required.
7. Clamping Device: Required.
8. Outlet: Bottom.
10. Sediment Bucket: Required.
11. Top or Strainer Material: Nickel bronze.
13. Top Shape: Round.
14. Dimensions of Top or Strainer: 8” Strainer, 9” Body Top
15. Top Loading Classification: Medium Duty.
16. Funnel: Not required.

B. Cast-Iron-Yard Drain (YD):
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. MIFAB, Inc.
 d. Zurn Industries, LLC.

2. Standard: ASME A112.6.3.

5. Seepage Flange: Required.

6. Anchor Flange: Required.

7. Clamping Device: Required.

10. Top Shape: Round.

11. Dimensions of Top or Strainer: 8” Strainer, 9” Body Top.

12. Top Loading Classification: Medium Duty.

13. Funnel: Not required.

2.3 FLOOR SINKS

A. Cast-Iron Floor Sinks:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. MIFAB, Inc.
 d. Zurn Industries, LLC.
 e. Wade Co.

2. Standard: ASME A112.6.3.

3. Pattern: Floor sink, raised grate.

5. Seepage Flange: Required.

6. Anchor Flange: Required.

7. Clamping Device: Required.

8. Outlet: Bottom.

10. Sediment Bucket: Required, solid bottom parted with stainless steel mesh screen.

11. Top or Strainer Material: Nickel Bronze.

13. Top Shape: Square.

14. Dimensions of Top or Strainer: 12-1/2” Square Top, 10” Deep Body, 42 Square in. grate free area.

15. Top Loading Classification: Medium Duty.
17. Grate: Nickel Bronze, ½ grate.

2.4 TRENCH DRAINS

A. Trench Drains: TD

1. As specified by Kitchen Equipment Consultant.
5. Clamping Device: Not required.
6. Outlet: Bottom.
7. Grate Material: Stainless Steel with 3/16” x 1” bars, subway style.
11. Top Loading Classification: Medium Duty.
12. Trap Material: Cast iron.

2.5 AIR-ADMITTANCE VALVES

A. Fixture Air-Admittance Valves AAV:

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Studor, Inc.
2. Standard: ASSE 1051, Type A for single fixture or Type B for branch piping.
3. Housing: Plastic.
4. Operation: Mechanical sealing diaphragm.
5. Size: Same as connected fixture or branch vent piping.

B. Stack Air-Admittance Valves AAV:

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Studor, Inc.
2. Standard: ASSE 1050 for vent stacks.
3. Housing: Plastic.
4. Operation: Mechanical sealing diaphragm.
5. Size: Same as connected stack vent or vent stack.
2.6 ROOF FLASHING ASSEMBLIES

A. Roof Flashing Assemblies:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Thaler Metal Industries Ltd.
 c. Zurn Industries, LLC.

2. Description: Manufactured assembly made of 6.0-lb/sq. ft., 0.0938-inch thick, lead flashing collar and skirt extending at least 6 inches from pipe, with galvanized-steel boot reinforcement and counterflashing fitting.

2.7 THROUGH-PENETRATION FIRESTOP ASSEMBLIES

A. Through-Penetration Firestop Assemblies:

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. ProSet Systems Inc.

2. Standard: UL 1479 assembly of sleeve and stack fitting with firestopping plug.

3. Size: Same as connected soil, waste, or vent stack.

4. Sleeve: Molded PVC plastic, of length to match slab thickness and with integral nailing flange on one end for installation in cast-in-place concrete slabs.

6. Special Coating: Corrosion resistant on interior of fittings.

2.8 MISCELLANEOUS SANITARY DRAINAGE PIPING SPECIALTIES

A. Floor Drain, Trap-Seal Primer Fittings TP:

1. Description: Cast iron, with threaded inlet and threaded or spigot outlet, and trap-seal primer valve connection.

2. Size: Same as floor drain outlet with NPS 1/2 side inlet.

B. Air-Gap Fittings AG:

1. Standard: ASME A112.1.2, for fitting designed to ensure fixed, positive air gap between installed inlet and outlet piping.

2. Body: Bronze or cast iron.
3. Inlet: Opening in top of body.
4. Outlet: Larger than inlet.
5. Size: Same as connected waste piping and with inlet large enough for associated indirect waste piping.

C. Sleeve Flashing Device:
 1. Description: Manufactured, cast-iron fitting, with clamping device, that forms sleeve for pipe floor penetrations of floor membrane. Include galvanized-steel pipe extension in top of fitting that will extend 2 inches above finished floor and galvanized-steel pipe extension in bottom of fitting that will extend through floor slab.
 2. Size: As required for close fit to riser or stack piping.

D. Stack Flashing Fittings:
 1. Description: Counterflashing-type, cast-iron fitting, with bottom recess for terminating roof membrane, and with threaded or hub top for extending vent pipe.
 2. Size: Same as connected stack vent or vent stack.

2.9 GREASE INTERCEPTORS

A. Grease Interceptors GI-1: Kitchen Dishwash Area
 1. Cast-Iron or Steel Grease Interceptors:
 a. Manufacturers: Subject to compliance with requirements, provide products by the following:
 1) Josam Company
 2. Standard: ASME A112.14.3 and PDI-G101, for intercepting and retaining fats, oils, and greases from food-preparation or -processing wastewater.
 3. Plumbing and Drainage Institute Seal: Required.
 4. Body Material: Cast iron or steel.
 5. Interior Lining: Corrosion-resistant enamel.
 7. Body Dimensions: 27 7/8” L x 25 1/2” W x 21 3/8” H
 10. Grease Retention Capacity: 100 lbs.
 11. Inlet and Outlet Size: 3 inches.
 13. Cleanout: Field installed on outlet.
 15. Flow-Control Fitting: Required.
 17. Integrated Solid Basket: Epoxy coated steel basket, screen on sides and bottom with 5/32” holes, 62% open area.
B. Grease Interceptors GI-2: Kitchen Kettle Area

1. Cast-Iron or Steel Grease Interceptors:
 a. Manufacturers: Subject to compliance with requirements, provide products by the following:
 1) Josam Company.

2. Standard: ASME A112.14.3 and PDI-G101, for intercepting and retaining fats, oils, and greases from food-preparation or -processing wastewater.

3. Plumbing and Drainage Institute Seal: Required.
4. Body Material: Cast iron or steel.
5. Interior Lining: Corrosion-resistant enamel.
7. Body Dimensions: 20 7/8" L x 19" W x 16 7/8" H
11. Inlet and Outlet Size: 3 inches.
13. Cleanout: Field installed on outlet.
15. Flow-Control Fitting: Required.
17. Integrated Solid Basket: Epoxy coated steel basket, screen on sides and bottom with 5/32” holes, 62% open area.

2.10 SOLIDS INTERCEPTORS

A. Solids Interceptors: SI-1: Kitchen Dishwash Grease Interceptor

1. Cast-Iron or Steel Solids Interceptor:
 a. Manufacturers: Subject to compliance with requirements, provide products by the following:
 1) Josam Company.

2. Type: Factory-fabricated interceptor made for removing sediment from wastewater. Top outlet cover.
3. Body Material: Cast iron or steel.
5. Interior Lining: Corrosion-resistant enamel.
7. Body Dimensions: 14 1/8” L x 14 1/8” W x 17 5/8” H.
8. Flow Rate: 75 gpm.
9. Inlet and Outlet Size: 3"
10. End Connections: Threaded FNPT.
11. Mounting: Recessed, flush with floor.

B. Solids Interceptors: SI-2: Art Room

1. Cast-Iron or Steel Solids Interceptors:
 a. Manufacturers: Subject to compliance with requirements, provide products by the following:
 1) Josam Company.

2. Type: Factory-fabricated interceptor made for removing and retaining lint sediment from wastewater. Bottom outlet cover.
3. Body Material: Cast iron or steel.
5. Interior Lining: Corrosion-resistant enamel.
7. Body Dimensions: 6” H x 3 ¾” O.D.
8. Flow Rate: Not required.
9. Inlet and Outlet Size: 1 1/2"

PART 3 - EXECUTION

3.1 INSTALLATION

A. Equipment Mounting:
 1. Install grease interceptors and solids interceptors on cast-in-place concrete equipment base(s) or in suspended carriers. Comply with requirements for equipment bases and foundations specified in "Cast-in-Place Concrete."

B. Install cleanouts in aboveground piping and building drain piping according to the following, unless otherwise indicated:
 1. Size same as drainage piping up to NPS 4. Use NPS 4 for larger drainage piping unless larger cleanout is indicated.
 2. Locate at each change in direction of piping greater than 45 degrees.
 3. Locate at minimum intervals of 50 feet for piping NPS 4 and smaller and 100 feet for larger piping.
 4. Locate at base of each vertical soil and waste stack.

C. For floor cleanouts for piping below floors, install cleanout deck plates with top flush with finished floor.
D. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.

E. Install floor drains at low points of surface areas to be drained. Set grates of drains flush with finished floor, unless otherwise indicated.
 1. Position floor drains for easy access and maintenance.
 2. Set floor drains below elevation of surrounding finished floor to allow floor drainage. Set with grates depressed according to the following drainage area radii:
 a. Radius, 30 Inches or Less: Equivalent to 1 percent slope, but not less than 1/4-inch total depression.
 3. Install floor-drain flashing collar or flange so no leakage occurs between drain and adjoining flooring. Maintain integrity of waterproof membranes where penetrated.
 4. Install individual traps for floor drains connected to sanitary building drain, unless otherwise indicated.

F. Install trench drains at low points of surface areas to be drained. Set grates of drains flush with finished surface, unless otherwise indicated.

G. Install floor sinks at equipment to be drained. Set full or partial grates as indicated.

H. Install fixture air-admittance valves on fixture drain piping.

I. Install air-admittance-valve wall boxes recessed in wall.

J. Install roof flashing assemblies on sanitary stack vents and vent stacks that extend through roof.

K. Install flashing fittings on sanitary stack vents and vent stacks that extend through roof.

L. Install through-penetration firestop assemblies in plastic conductors and stacks at floor penetrations.

M. Install floor-drain, trap-seal primer fittings on inlet to floor drains that require trap-seal primer connection.
 1. Exception: Fitting may be omitted if trap has trap-seal primer connection.
 2. Size: Same as floor drain inlet.

N. Install air-gap fittings on draining-type backflow preventers and on indirect-waste piping discharge into sanitary drainage system.

O. Install sleeve flashing device with each riser and stack passing through floors with waterproof membrane.

P. Install vent caps on each vent pipe passing through roof.

Q. Install grease and solids interceptors, including trapping, venting, and flow-control fitting, according to authorities having jurisdiction and with clear space for servicing.
1. Flush with Floor Installation: Set unit and extension, if required, with cover flush with finished floor. Provide carriers to suit sanitary mains invents.

R. Install wood-blocking reinforcement for wall-mounting-type specialties.

S. Install traps on plumbing specialty drain outlets. Omit traps on indirect wastes unless trap is indicated.

3.2 CONNECTIONS

A. Comply with requirements in Section 22 13 16 "Sanitary Waste and Vent Piping" for piping installation requirements. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to equipment to allow service and maintenance.

C. Grease Interceptors: Connect inlet and outlet to unit, and connect flow-control fitting and vent to unit inlet piping.

D. Ground equipment according to Section 26 05 26 "Grounding and Bonding for Electrical Systems."

3.3 FLASHING INSTALLATION

A. Fabricate flashing from single piece unless large pans, sumps, or other drainage shapes are required. Join flashing according to the following if required:

1. Lead Sheets: Burn joints of lead sheets 6.0-lb/sq. ft., 0.0938-inch thickness or thicker. Solder joints of lead sheets 4.0-lb/sq. ft., 0.0625-inch thickness or thinner.

2. Copper Sheets: Solder joints of copper sheets.

B. Install sheet flashing on pipes, sleeves, and specialties passing through or embedded in floors and roofs with waterproof membrane.

1. Pipe Flashing: Sleeve type, matching pipe size, with minimum length of 10 inches, and skirt or flange extending at least 8 inches around pipe.

2. Sleeve Flashing: Flat sheet, with skirt or flange extending at least 8 inches around sleeve.

3. Embedded Specialty Flashing: Flat sheet, with skirt or flange extending at least 8 inches around specialty.

C. Set flashing on floors and roofs in solid coating of bituminous cement.

D. Secure flashing into sleeve and specialty clamping ring or device.

E. Install flashing for piping passing through roofs with counterflashing or commercially made flashing fittings, according to Section 07 62 00 "Sheet Metal Flashing and Trim."

F. Extend flashing up vent pipe passing through roofs and turn down into pipe, or secure flashing into cast-iron sleeve having calking recess.
G. Fabricate and install flashing and pans, sumps, and other drainage shapes.

3.4 LABELING AND IDENTIFYING

A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:

1. Grease interceptors.

B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Section 22 05 53 "Identification for Plumbing Piping and Equipment."

3.5 FIELD QUALITY CONTROL

A. Perform tests and inspections and prepare test reports.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect field-assembled grease removal and solids interceptor devices and their installation, including piping, and to assist in testing.

B. Tests and Inspections:

1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

3.6 PROTECTION

A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.

B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

3.7 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain grease removal and solids interceptor devices. Refer to Section 01 79 00 "Demonstration and Training."

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Pipe, tube, and fittings.
 2. Specialty pipe fittings.
 B. Related Sections:
 1. Section 33 41 00 "Storm Utility Drainage Piping" for storm drainage piping outside the
 building.

1.3 PERFORMANCE REQUIREMENTS
 A. Components and installation shall be capable of withstanding the following minimum working
 pressure unless otherwise indicated:
 1. Storm Drainage Piping: 10-foot head of water.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of product indicated.
 B. Sustainable Design Submittals:

1.5 INFORMATIONAL SUBMITTALS
 A. Field quality-control reports.

1.6 QUALITY ASSURANCE
 A. Piping materials shall bear label, stamp, or other markings of specified testing agency.
PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.2 HUBLESS, CAST-IRON SOIL PIPE AND FITTINGS

A. Pipe and Fittings: ASTM A 888 or CISPI 301.
 1. Cast-Iron pipe and fittings shall be marked for Cast Iron Soil Pipe Institute (CISPI)

B. CISPI, Hubless-Piping Couplings:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ANACO-Husky.
 c. Fernco Inc.
 d. MIFAB, Inc.
 e. Mission Rubber Company, LLC; a division of MCP Industries.
 f. Tyler Pipe; a subsidiary of McWane Inc.
 2. Standards: ASTM C 1277 and NISP 1 310.
 3. Description: Stainless-steel corrugated shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.

2.3 SPECIALTY PIPE FITTINGS

A. Transition Couplings:
 1. General Requirements: Fitting or device for joining piping with small differences in ODs or of different materials. Include end connections same size as and compatible with pipes to be joined. Fitting-Type Transition Couplings: Manufactured piping coupling or specified-piping-system fitting.

 3. Shielded, Nonpressure Transition Couplings:
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2) Mission Rubber Company, LLC; a division of MCP Industries.
c. Description: Elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.

PART 3 - EXECUTION

3.1 EARTH MOVING

A. Comply with requirements for excavating, trenching, and backfilling specified in Section 31 20 00 "Earth Moving."

3.2 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations from layout are approved on coordination drawings.

B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

E. Install piping at indicated slopes.

F. Install piping free of sags and bends.

G. Install fittings for changes in direction and branch connections.

H. Install piping to allow application of insulation.

I. Make changes in direction for storm drainage piping using appropriate branches, bends, and long-sweep bends. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.

J. Lay buried building storm drainage piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements. Maintain swab in piping and pull past each joint as completed.

K. Install storm drainage piping at the following minimum slopes unless otherwise indicated:
1. Building Storm Drain: 2 percent downward in direction of flow for piping NPS 3 and smaller; 1 percent downward in direction of flow for piping NPS 4 and larger.
2. Horizontal Storm-Drainage Piping: 1 percent downward in direction of flow.

L. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."

M. Plumbing Specialties:
 1. Install cleanouts at grade and extend to where building storm drains connect to building storm sewers in storm drainage gravity-flow piping. Install cleanout fitting with closure plug inside the building in storm drainage force-main piping. Comply with requirements for cleanouts specified in Section 22 14 23 "Storm Drainage Piping Specialties."
 2. Install drains in storm drainage gravity-flow piping. Comply with requirements for drains specified in Section 22 14 23 "Storm Drainage Piping Specialties."

N. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.

O. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 22 05 17 "Sleeves and Sleeve Seals for Plumbing Piping."

P. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 22 05 17 "Sleeves and Sleeve Seals for Plumbing Piping."

Q. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 22 05 18 "Escutcheons for Plumbing Piping."

3.3 JOINT CONSTRUCTION

3.4 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements for pipe hanger and support devices and installation specified in Section 22 05 29 "Hangers and Supports for Plumbing Piping and Equipment."
 1. Install carbon-steel pipe hangers for horizontal piping in noncorrosive environments.
 2. Install carbon-steel pipe support clamps for vertical piping in noncorrosive environments.
 3. Vertical Piping: MSS Type 8 or Type 42, clamps.
 4. Individual, Straight, Horizontal Piping Runs:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.
 B. Support horizontal piping and tubing within 12 inches of each fitting and coupling.
C. Support vertical piping at base and at each floor.

D. Rod diameter may be reduced one size for double-rod hangers, with 3/8-inch minimum rods.

E. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1-1/2 and NPS 2: 60 inches with 3/8-inch rod.
 2. NPS 3: 60 inches with 1/2-inch rod.
 3. NPS 4 and NPS 5: 60 inches with 5/8-inch rod.
 4. NPS 6 and NPS 8: 60 inches with 3/4-inch rod.
 5. Spacing for 10-foot pipe lengths may be increased to 10 feet. Spacing for fittings is limited to 60 inches.

F. Install supports for vertical cast-iron soil piping every 15 feet.

G. Support piping and tubing not listed above according to MSS SP-69 and manufacturer's written instructions.

3.5 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect interior storm drainage piping to exterior storm drainage piping. Use transition fitting to join dissimilar piping materials.

C. Connect storm drainage piping to roof drains and storm drainage specialties.
 1. Install test tees (wall cleanouts) in conductors near floor, and floor cleanouts with cover flush with floor.
 2. Comply with requirements for cleanouts and drains specified in Section 22 14 23 "Storm Drainage Piping Specialties."

D. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.

E. Make connections according to the following unless otherwise indicated:
 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.

3.6 IDENTIFICATION

A. Identify exposed storm drainage piping. Comply with requirements for identification specified in Section 22 05 53 "Identification for Plumbing Piping and Equipment."
3.7 FIELD QUALITY CONTROL

A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.

1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in.
2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.

B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.

C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

D. Test storm drainage piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:

1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
2. Leave uncovered and unconcealed new, altered, extended, or replaced storm drainage piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.
3. Test Procedure: Test storm drainage piping, except outside leaders, on completion of roughing-in. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water. From 15 minutes before inspection starts until completion of inspection, water level must not drop. Inspect joints for leaks.
4. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
5. Prepare reports for tests and required corrective action.

3.8 CLEANING

A. Clean interior of piping. Remove dirt and debris as work progresses.

B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.

C. Place plugs in ends of uncompleted piping at end of day and when work stops.

3.9 PIPING SCHEDULE

A. Flanges and unions may be used on aboveground pressure piping unless otherwise indicated.

B. Aboveground storm drainage piping NPS 6 and smaller shall be the following:

1. Hubless, cast-iron soil pipe and fittings; CISPI, hubless-piping couplings; and coupled joints.
C. Underground storm drainage piping NPS 6 and smaller shall be the following:

1. Hubless, cast-iron soil pipe and fittings; CISPI, hubless-piping couplings; and coupled joints.

END OF SECTION
SECTION 22 14 23
STORM DRAINAGE PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Roof drains.
 2. Miscellaneous storm drainage piping specialties
 3. Cleanouts.
 4. Through-penetration firestop assemblies.
 5. Flashing materials.
 6. Area Drains

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 METAL ROOF DRAINS
A. Cast-Iron, Medium-Sump, General-Purpose Roof Drains RD:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. MIFAB, Inc.
 d. Tyler Pipe; a subsidiary of McWane Inc.
 e. Watts; a Watts Water Technologies company.
 f. Zurn Industries, LLC.
 2. Standard: ASME A112.6.4, for general-purpose roof drains.
4. Dimension of Body: 8- to 12-inch diameter.
5. Combination Flashing Ring and Gravel Stop: Required.
7. Outlet: Bottom.
8. Extension Collars: Not required.
10. Expansion Joint: Not required.
11. Sump Receiver Plate: Required.
16. Water Dam: Not required.

B. Metal, Parapet Roof Drains SD:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. MIFAB, Inc.
 d. Watts; a Watts Water Technologies company.
 e. Zurn Industries, LLC.

2. Standard: ASME A112.6.4, for parapet roof drains.
5. Grate Material: Nickel-bronze alloy.

C. Cast-Iron, Medium-Sump, Combination Main Roof & Overflow Roof Drains (RD):

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Josam Company.
 c. MIFAB, Inc.
 d. Tyler Pipe; a subsidiary of McWane Inc.
 e. Watts; a Watts Water Technologies company.
 f. Zurn Industries, LLC.

2. Standard: ASME A112.6.4, for general-purpose roof drains.
4. Dimension of Body: 11 1/2-inch diameter.
5. Combination Flashing Ring and Gravel Stop: Required.
7. Outlet: Bottom no-hub size as indicated
8. Extension Collars: Not required.
10. Expansion Joint: Not required.
11. Sump Receiver Plate: Required.
16. Water Dam: Not required.
17. Double top deck plate: Required.

2.2 MISCELLANEOUS STORM DRAINAGE PIPING SPECIALTIES

A. Downspout Adaptors:
 1. Description: Manufactured, gray-iron casting, for attaching to horizontal-outlet, parapet roof drain and to exterior, sheet metal downspout.
 2. Size: Inlet size to match parapet drain outlet.

B. Downspout Boots:
 1. Description: Manufactured, ASTM A 48/A 48M, gray-iron casting, with strap or ears for attaching to building; NPS 4 outlet; and shop-applied bituminous coating.
 3. Size: Inlet size to match downspout and NPS 4 outlet.

C. Conductor Nozzles:
 1. Description: Bronze body with threaded inlet and bronze wall flange with mounting holes.
 2. Size: Same as connected conductor.

2.3 CLEANOUTS

A. Floor Cleanouts CO:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Sioux Chief Manufacturing Company, Inc.
 d. Watts; a Watts Water Technologies company.
 e. Zurn Industries, LLC.
 2. Standard: ASME A112.36.2M, for threaded, adjustable housing cleanouts.
 3. Size: Same as connected branch.
 4. Type: Threaded, adjustable housing.
5. Body or Ferrule Material: Cast iron.
6. Clamping Device: Not required.
7. Outlet Connection: No Hub.
9. Adjustable Housing Material: Cast iron with threads.
11. Frame and Cover Shape: Round.
13. Riser: ASTM A 74, Service class, cast-iron drainage pipe fitting and riser to cleanout.

B. Test Tees:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Josam Company.
 c. MIFAB, Inc.
 d. Tyler Pipe; a subsidiary of McWane Inc.
 e. Watts; a Watts Water Technologies company.
 f. Zurn Industries, LLC.

2. Standard: ASME A112.36.2M and ASTM A 74, ASTM A 888, or CISPI 301, for cleanout test tees.

3. Size: Same as connected drainage piping.
4. Body Material: Hub-and-spigot, cast-iron soil-pipe T-branch or hubless, cast-iron soil-pipe test tee as required to match connected piping.
5. Closure Plug: Countersunk.
6. Closure Plug Size: Same as or not more than one size smaller than cleanout size.

C. Wall Cleanouts WCO:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Josam Company.
 c. MIFAB, Inc.
 d. Tyler Pipe; a subsidiary of McWane Inc.
 e. Watts; a Watts Water Technologies company.
 f. Zurn Industries, LLC.

2. Standard: ASME A112.36.2M, for cleanouts. Include wall access.

3. Size: Same as connected drainage piping.
6. Closure Plug Size: Same as or not more than one size smaller than cleanout size.

2.4 THROUGH-PENETRATION FIRESTOP ASSEMBLIES

A. Through-Penetration Firestop Assemblies:

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. ProSet Systems Inc.

2. Standard: ASTM E 814, for through-penetration firestop assemblies.

4. Size: Same as connected pipe.

5. Sleeve: Molded PVC plastic, of length to match slab thickness and with integral nailing flange on one end for installation in cast-in-place concrete slabs.

7. Special Coating: Corrosion resistant on interior of fittings.

2.5 AREA DRAINS AD:

A. Area Drains

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 c. Watts; a Watts Water Technologies company.
 d. Zurn Industries, LLC.

2. Standard: ASTM E for trench rainwater area drains.

3. Body Material: Polymer

4. Outlet: 4” Bottom.

5. Grate: Heel-proof, stainless steel Class A.

7. Tongue-in-groove connections, 2-meter sections, suit to installation, end caps, stainless steel frame.

8. Similar to Zurn Co. Model Z 886 system with 9870-451-SSPA grates or pre-accepted equivalent.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Install roof drains at low points of roof areas according to roof membrane manufacturer's written installation instructions.
 1. Install flashing collar or flange of roof drain to prevent leakage between drain and adjoining roofing. Maintain integrity of waterproof membranes where penetrated.
 2. Position roof drains for easy access and maintenance.

B. Install downspout adapters on outlet of back-outlet parapet roof drains and connect to sheet metal downspouts.

C. Install downspout boots at grade with top 18 inches above grade. Secure to building wall.

D. Install cleanouts in aboveground piping and building drain piping according to the following instructions unless otherwise indicated:
 1. Use cleanouts the same size as drainage piping up to NPS 4. Use NPS 4 for larger drainage piping unless larger cleanout is indicated.
 2. Locate cleanouts at each change in direction of piping greater than 45 degrees.
 3. Locate cleanouts at minimum intervals of 50 feet for piping NPS 4 and smaller and 100 feet for larger piping.
 4. Locate cleanouts at base of each vertical soil and waste stack.

E. For floor cleanouts for piping below floors, install cleanout deck plates with top flush with finished floor.

F. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.

G. Install test tees in vertical conductors and near floor.

H. Install wall cleanouts in vertical conductors. Install access door in wall if indicated.

I. Install through-penetration firestop assemblies in plastic conductors at concrete floor penetrations.

J. Install sleeve flashing device with each conductor passing through floors with waterproof membrane.

K. Install area drains at Band Room exit in accordance with Architectural Drawings A-311, 4/A-311.

3.2 CONNECTIONS

A. Comply with requirements for piping specified in Section 22 14 13 "Facility Storm Drainage Piping." Drawings indicate general arrangement of piping, fittings, and specialties.
3.3 FLASHING INSTALLATION

A. Set flashing on floors and roofs in solid coating of bituminous cement.
B. Secure flashing into sleeve and specialty clamping ring or device.
C. Fabricate and install flashing and pans, sumps, and other drainage shapes.

3.4 PROTECTION

A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.
B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION
SECTION 22 14 29

SUMP PUMPS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Submersible sump pumps.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product indicated. Include construction details, material
 descriptions, dimensions of individual components and profiles. Rated capacities, operating
 characteristics, electrical characteristics, and furnished specialties and accessories.
B. Wiring Diagrams: For power, signal, and control wiring.

1.4 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For pumps and controls, to include in operation and
 maintenance manuals.

1.5 QUALITY ASSURANCE
A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by
 a qualified testing agency, and marked for intended location and application.
B. UL Compliance: Comply with UL 778 for motor-operated water pumps.

1.6 DELIVERY, STORAGE, AND HANDLING
A. Retain shipping flange protective covers and protective coatings during storage.
B. Protect bearings and couplings against damage.
C. Comply with pump manufacturer's written rigging instructions for handling.
PART 2 - PRODUCTS

2.1 WET-PIT-VOLUTE SUMP PUMPS

A. Stancor Pumps, Inc. Zoeller Pump Co., Liberty Pump Co., CentriPro Corp. See Water, Inc, Oil Smart Co.

B. Description: Factory-assembled and -tested sump-pump unit.

C. Pump Type: Wet-pit-volute, single-stage, separately-coupled, overhung-impeller, centrifugal sump pump as defined in HI 1.1-1.2 and HI 1.3.

D. Pump Casing: Stainless Steel, with strainer inlet and threaded connection for NPS 2 (DN 50) and smaller and flanged connection for NPS 2-1/2 (DN 65) and larger discharge piping.

E. Impeller: Statically and dynamically balanced, ASTM A 532/A 532M, abrasion-resistant cast iron and ASTM B 584, cast bronze, semiopen design for clear wastewater handling, and keyed and secured to shaft.

F. Bearings: Grease-lubricated, ball-type thrust bearings.

G. Pump and Motor Shaft Coupling: Flexible, capable of absorbing torsional vibration and shaft misalignment.

H. Pump Discharge Piping: Factory or field fabricated, galvanized, ASTM A 53/A 53M, Schedule 40, steel pipe with ASME B16.4, Class 125, gray iron threaded fittings.

I. Motor: Single-speed; grease-lubricated ball bearings and mounting on vertical, cast-iron pedestal.

J. Controls:

1. High-Water Alarm: Cover-mounted, compression-probe alarm, with electric bell; 120-V ac, with transformer and contacts for remote alarm bell.

K. Controls:

1. Enclosure: NEMA 250, Type 4X Wall-mounted.
2. Switch Type: [Mechanical-float] [Mercury-float] [Pressure] <Insert type> type, in NEMA 250, Type 6 enclosures with mounting rod and electric cables.
3. Automatic Alternator: Start pumps on successive cycles and start multiple pumps if one cannot handle load.
4. High-Water Alarm: Rod-mounted, NEMA 250, Type 6 enclosure with mechanical-float, mercury-float, or pressure switch matching control and electric bell; 120-V ac, with transformer and contacts for remote alarm bell.

L. Control-Interface Features:

1. Remote Alarm Contacts: For remote alarm interface.
2.2 SUMP PUMP CAPACITIES AND CHARACTERISTICS

A. Unit Capacity: 74 gpm (max).

B. Number of Pumps: One.

C. Each Pump:
 2. Total Dynamic Head: 32 feet (max).
 4. Discharge Size: 2 NSP
 5. Electrical Characteristics:
 a. Motor Horsepower: 0.5
 b. Volts: 120.
 d. Hertz: 60.

D. Unit Electrical Characteristics:
 1. Full-Load Amperes: 4.2

2.3 MOTORS

A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 22 05 13 "Common Motor Requirements for Plumbing Equipment."
 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

B. Motors for submersible pumps shall be hermetically sealed.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in for plumbing piping to verify actual locations of storm drainage piping connections before sump pump installation.

3.2 INSTALLATION

A. Pump Installation Standards: Comply with HI 1.4 for installation of sump pumps.

3.3 CONNECTIONS

A. Comply with requirements for piping specified in Section 22 14 13 "Facility Storm Drainage Piping." Drawings indicate general arrangement of piping, fittings, and specialties.
B. Install piping adjacent to equipment to allow service and maintenance.

3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

B. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

C. Tests and Inspections:
 1. Perform each visual and mechanical inspection.
 2. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

D. Pumps and controls will be considered defective if they do not pass tests and inspections.

E. Prepare test and inspection reports.

3.5 STARTUP SERVICE

A. Perform Startup service.
 1. Complete installation and startup checks according to manufacturer's written instructions.

3.6 ADJUSTING

A. Adjust pumps to function smoothly, and lubricate as recommended by manufacturer.

B. Adjust control set points.

3.7 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain controls and pumps.

END OF SECTION
SECTION 22 16 23

FACILITY NATURAL-GAS PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Pipes, tubes, and fittings.
 2. Piping specialties.
 3. Piping and tubing joining materials.
 4. Valves.
 5. Pressure regulators.

1.3 DEFINITIONS

A. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.

B. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions.

1.4 PERFORMANCE REQUIREMENTS

A. Minimum Operating-Pressure Ratings:
 1. Piping and Valves: 100 psig minimum unless otherwise indicated.
 2. Service Regulators: 65 psig 100 psig minimum unless otherwise indicated.

B. Natural-Gas System Pressure within Buildings: More than 0.5 psig but not more than 2 psig.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of the following:
 1. Piping specialties.
 2. Valves. Include pressure rating, capacity, settings, and electrical connection data of selected models.
3. Pressure regulators. Indicate pressure ratings and capacities.
5. Dielectric fittings.

B. Shop Drawings: For facility natural-gas piping layout. Include plans, piping layout and elevations, sections, and details for fabrication of pipe anchors, hangers, supports for multiple pipes, alignment guides, expansion joints and loops, and attachments of the same to building structure. Detail location of anchors, alignment guides, and expansion joints and loops.
 1. Shop Drawing Scale: 1/4 inch per foot.
 2. Detail mounting, supports, and valve arrangements for service meter assembly and pressure regulator assembly. Copies of Utility provided shop drawings are also acceptable.

C. Delegated-Design Submittal: For natural-gas piping and equipment indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 1. Detail fabrication and assembly of seismic restraints.
 2. Design Calculations: Calculate requirements for selecting seismic restraints.

1.6 INFORMATIONAL SUBMITTALS
A. Coordination Drawings: Plans and details, drawn to scale, on which natural-gas piping is shown and coordinated with other installations, using input from installers of the items involved.
B. Site Survey: Plans, drawn to scale, on which natural-gas piping is shown and coordinated with other services and utilities.
C. Qualification Data: For qualified professional engineer.
D. Welding certificates.
E. Field quality-control reports.

1.7 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For motorized gas valves and pressure regulators to include in emergency, operation, and maintenance manuals.

1.8 QUALITY ASSURANCE
A. Steel Support Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."
B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

Tetra Tech

FACILITY NATURAL-GAS PIPING

23 11 23 - 2
C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

D. Regulatory Requirements:

1. Install gas equipment, piping materials and provide testing in accordance with latest edition of International Mechanical Code, applicable American National Standards Institute (ANSI) code and NFPA 54 - National Fuel Gas Code, and rules and regulations of local gas company.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Handling Flammable Liquids: Remove and dispose of liquids from existing natural-gas piping according to requirements of authorities having jurisdiction.

B. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.

C. Store and handle pipes and tubes having factory-applied protective coatings to avoid damaging coating, and protect from direct sunlight.

1.10 PROJECT CONDITIONS

A. Perform site survey, research public utility records, and verify existing utility locations. Contact utility-locating service for area where Project is located.

B. Interruption of Existing Natural-Gas Service: Refer to Section 01 10 00 “Summary” for requirements associated with interrupting the existing natural gas supply to facilities occupied by the Owner.

1.11 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

PART 2 - PRODUCTS

2.1 PIPES, TUBES, AND FITTINGS

A. Seamless Steel Pipe: ASTM A106, black steel, Schedule 40, Grade B. ASTM A53 / A53M, black steel, Schedule 40, Type E or S, Grade B.

4. Forged-Steel Flanges and Flanged Fittings: ASME B16.5, minimum Class 150, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
 b. End Connections: Threaded or butt welding to match pipe.
 c. Lapped Face: Not permitted underground.
 e. Bolts and Nuts: ASME B18.2.1, carbon steel aboveground and stainless steel underground.

5. Protective Coating for Underground Piping: Factory-applied, three-layer coating of epoxy, adhesive, and PE.
 a. Joint Cover Kits: Epoxy paint, adhesive, and heat-shrink PE sleeves.

6. Mechanical Couplings:
 a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1) Dresser Piping Specialties; Division of Dresser, Inc.
 2) Smith-Blair, Inc.
 b. Steel flanges and tube with epoxy finish.
 c. Buna-nitrile seals.
 d. Stainless-steel bolts, washers, and nuts.
 e. Coupling shall be capable of joining PE pipe to PE pipe, steel pipe to PE pipe, or steel pipe to steel pipe.
 f. Steel body couplings installed underground on plastic pipe shall be factory equipped with anode.

2.2 PIPING SPECIALTIES

A. Weatherproof Vent Cap: Cast- or malleable-iron increaser fitting with corrosion-resistant wire screen, with free area at least equal to cross-sectional area of connecting pipe and threaded-end connection.

2.3 JOINING MATERIALS

A. Joint Compound and Tape: Suitable for natural gas.

C. Brazing Filler Metals: Alloy with melting point greater than 1000 deg F complying with AWS A5.8/A5.8M. Brazing alloys containing more than 0.05 percent phosphorus are prohibited.
2.4 MANUAL GAS SHUTOFF VALVES

A. See "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles for where each valve type is applied in various services.

B. General Requirements for Metallic Valves, NPS 2 and Smaller: Comply with ASME B16.33.
 1. CWP Rating: 125 psig.
 3. Dryseal Threads on Flare Ends: Comply with ASME B1.20.3.
 5. Listing: Listed and labeled by an NRTL acceptable to authorities having jurisdiction for valves 1 inch and smaller.
 6. Service Mark: Valves 1-1/4 inches to NPS 2 shall have initials "WOG" permanently marked on valve body.

C. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim: MSS SP-110.
 1. Basis-of-Design Product: Subject to compliance with requirements, provide NIBCO INC.; Model T-585-70-UL or comparable product by one of the following:
 a. Jomar International Ltd.
 b. BrassCraft Manufacturing Company, a Masco company.
 d. Lyall, R. W. & Company, Inc.
 e. McDonald, A. Y. Mfg. Co.
 f. Perfection Corporation; a subsidiary of American Meter Company.
 3. Ball: Chrome-plated bronze.
 4. Stem: Bronze; blowout proof.
 5. Seats: Reinforced TFE; blowout proof.
 6. Packing: Threaded-body packnut design with adjustable-stem packing.
 8. CWP Rating: 600 psig.
 9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
 10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.

D. Cast-Iron, Lubricated Plug Valves: MSS SP-78.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. A.Y. McDonald Mfg. Co.
 b. Flowserve Corporation.
 c. Homestead Valve.
 d. Milliken Valve Company.
2. Body: Cast iron, complying with ASTM A 126, Class B.
3. Plug: Bronze or nickel-plated cast iron.
4. Seat: Coated with thermoplastic.
5. Stem Seal: Compatible with natural gas.
7. Operator: Square head or lug type with tamperproof feature where indicated.
8. Pressure Class: 125 psig.
9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.

2.5 PRESSURE REGULATORS

A. General Requirements:
1. Single stage and suitable for natural gas.
2. Steel jacket and corrosion-resistant components.
3. Elevation compensator.

B. Service Pressure Regulators: Comply with ANSI Z21.80.
1. Basis-of-Design Product: Subject to compliance with requirements, provide comparable product by one of the following:
 a. Actaris.
 b. American Meter Company.
 c. Fisher Control Valves and Regulators; Division of Emerson Process Management.
 d. Invensys.
 e. Richards Industries; Jordan Valve Div.
2. Body and Diaphragm Case: Cast iron or die-cast aluminum.
5. Seat Disc: Nitrile rubber resistant to gas impurities, abrasion, and deformation at the valve port.
6. Orifice: Aluminum; interchangeable.
8. Single-port, self-contained regulator with orifice no larger than required at maximum pressure inlet, and no pressure sensing piping external to the regulator.
9. Pressure regulator shall maintain discharge pressure setting downstream, and not exceed 150 percent of design discharge pressure at shutoff.
11. Atmospheric Vent: Factory- or field-installed, stainless-steel screen in opening if not connected to vent piping.
12. Maximum Inlet Pressure: 100 psig.

C. Appliance Pressure Regulators: Comply with ANSI Z21.18.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Canadian Meter Company Inc.
 b. Eaton Corporation; Controls Div.
 c. Harper Wyman Co.
 d. Maxitrol Company.
 e. SCP, Inc.
 5. Seat Disc: Nitrile rubber.
 8. Regulator may include vent limiting device, instead of vent connection, if approved by authorities having jurisdiction.

2.6 DIELECTRIC FITTINGS
 A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined. Refer to Section 22 05 00 "Common Work Results for Plumbing" for piping joining materials, joint construction, and basic installation requirements.

2.7 LABELING AND IDENTIFYING
 A. Detectable Warning Tape: Refer to Section 22 05 53 "Identification for Plumbing Piping and Equipment" for warning tape materials and basic installation requirements.
 B. Paint: Refer to Section 09 91 00 "Painting" for interior and exterior natural-gas piping paint materials and basic installation requirements.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine roughing-in for natural-gas piping system to verify actual locations of piping connections before equipment installation.
 B. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 PREPARATION

A. Close equipment shutoff valves before turning off natural gas to premises or piping section.

B. Inspect natural-gas piping according to NFPA 54 and the International Fuel Gas Code to determine that natural-gas utilization devices are turned off in piping section affected.

C. Comply with NFPA 54 and the International Fuel Gas Code requirements for prevention of accidental ignition.

3.3 OUTDOOR PIPING INSTALLATION

B. Install underground, natural-gas piping buried at least 36 inches below finished grade. Comply with requirements in Section 31 20 00 "Earth Moving" for excavating, trenching, and backfilling.

1. If natural-gas piping is installed less than 36 inches below finished grade, install it in containment conduit.

C. Steel Piping with Protective Coating:

1. Apply joint cover kits to pipe after joining to cover, seal, and protect joints.
2. Repair damage to PE coating on pipe as recommended in writing by protective coating manufacturer.
3. Replace pipe having damaged PE coating with new pipe.

D. Install fittings for changes in direction and branch connections.

E. Install pressure gage upstream and downstream from each service regulator. Pressure gages are specified in Section 23 05 19 "Meters and Gages for HVAC Piping."

3.4 INDOOR PIPING INSTALLATION

B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

C. Arrange for pipe spaces, chases, slots, sleeves, and openings in building structure during progress of construction, to allow for mechanical installations.

D. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
E. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

F. Locate valves for easy access.

G. Install natural-gas piping at uniform grade of 2 percent down toward drip and sediment traps.

H. Install piping free of sags and bends.

I. Install fittings for changes in direction and branch connections.

J. Verify final equipment locations for roughing-in.

K. Comply with requirements in Sections specifying gas-fired appliances and equipment for roughing-in requirements.

L. Drips and Sediment Traps: Install drips at points where condensate may collect, including service-meter outlets. Locate where accessible to permit cleaning and emptying. Do not install where condensate is subject to freezing.

1. Construct drips and sediment traps using tee fitting with bottom outlet plugged or capped. Use nipple a minimum length of 3 pipe diameters, but not less than 3 inches long and same size as connected pipe. Install with space below bottom of drip to remove plug or cap.

M. Extend relief vent connections for service regulators, line regulators, and overpressure protection devices to outdoors and terminate with weatherproof vent cap.

N. Conceal pipe installations in walls, pipe spaces, utility spaces, above ceilings, below grade or floors, and in floor channels unless indicated to be exposed to view.

O. Concealed Location Installations: Except as specified below, install concealed natural-gas piping and piping installed under the building in containment conduit constructed of steel pipe with welded joints as described in Part 2. Install a vent pipe from containment conduit to outdoors and terminate with weatherproof vent cap.

1. Above Accessible Ceilings: Natural-gas piping, fittings, valves, and regulators may be installed in accessible spaces without containment conduit.

2. In Floors: Install natural-gas piping with welded or brazed joints and protective coating in cast-in-place concrete floors. Cover piping to be cast in concrete slabs with minimum of 1-1/2 inches of concrete. Piping may not be in physical contact with other metallic structures such as reinforcing rods or electrically neutral conductors. Do not embed piping in concrete slabs containing quick-set additives or cinder aggregate.

3. In Floor Channels: Install natural-gas piping in floor channels. Channels must have cover and be open to space above cover for ventilation.

4. In Walls or Partitions: Protect tubing installed inside partitions or hollow walls from physical damage using steel striker barriers at rigid supports.

a. Exception: Tubing passing through partitions or walls does not require striker barriers.
5. Prohibited Locations:
 a. Do not install natural-gas piping in or through circulating air ducts, clothes or trash chutes, chimneys or gas vents (flues), ventilating ducts, or dumbwaiter or elevator shafts.
 b. Do not install natural-gas piping in solid walls or partitions.

P. Use eccentric reducer fittings to make reductions in pipe sizes. Install fittings with level side down.

Q. Connect branch piping from top or side of horizontal piping.

R. Install unions in pipes NPS 2 and smaller, adjacent to each valve, at final connection to each piece of equipment. Unions are not required at flanged connections.

S. Do not use natural-gas piping as grounding electrode.

T. Install strainer on inlet of each line-pressure regulator and automatic or electrically operated valve.

U. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 23 05 17 "Sleeves and Sleeve Seals for HVAC Piping."

V. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 23 05 17 "Sleeves and Sleeve Seals for HVAC Piping."

3.5 VALVE INSTALLATION

A. Install manual gas shutoff valve for each gas appliance ahead of steel tubing.

B. Install underground valves with valve boxes.

C. Install regulators and overpressure protection devices with maintenance access space adequate for servicing and testing.

D. Install anode for metallic valves in underground PE piping.

3.6 PIPING JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Threaded Joints:
 1. Thread pipe with tapered pipe threads complying with ASME B1.20.1.
 2. Cut threads full and clean using sharp dies.
 3. Ream threaded pipe ends to remove burrs and restore full inside diameter of pipe.
4. Apply appropriate tape or thread compound to external pipe threads unless dryseal threading is specified.
5. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

D. Welded Joints:
 2. Bevel plain ends of steel pipe.
 3. Patch factory-applied protective coating as recommended by manufacturer at field welds and where damage to coating occurs during construction.

E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook", "Pipe and Tube" Chapter.

F. Flanged Joints: Install gasket material, size, type, and thickness appropriate for natural-gas service. Install gasket concentrically positioned.

3.7 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements for pipe hangers and supports specified in Section 23 05 29 "Hangers and Supports for Plumbing Piping and Equipment."

B. Install hangers for horizontal steel piping with the following maximum spacing and minimum rod sizes:
 1. NPS 1 and Smaller: Maximum span, 96 inches; minimum rod size, 3/8 inch.
 2. NPS 1-1/4: Maximum span, 108 inches; minimum rod size, 3/8 inch.
 3. NPS 1-1/2 and NPS 2: Maximum span, 108 inches; minimum rod size, 3/8 inch.

3.8 CONNECTIONS

A. Connect to utility's gas main according to utility's procedures and requirements.

B. Install natural-gas piping electrically continuous, and bonded to gas appliance equipment grounding conductor of the circuit powering the appliance according to NFPA 70.

C. Install piping adjacent to appliances to allow service and maintenance of appliances.

D. Connect piping to appliances using manual gas shutoff valves and unions. Install valve within 72 inches of each gas-fired appliance and equipment. Install union between valve and appliances or equipment.

E. Sediment Traps: Install tee fitting with capped nipple in bottom to form drip, as close as practical to inlet of each appliance.
3.9 LABELING AND IDENTIFYING

A. Comply with requirements in Section 22 05 53 "Identification for Plumbing Piping and Equipment" for piping and valve identification.

B. Install detectable warning tape directly above gas piping, 12 inches below finished grade, except 6 inches below subgrade under pavements and slabs.

3.10 PAINTING

A. Comply with requirements in Section 09 91 13 "Exterior Painting" and Section 09 91 23 "Interior Painting" for painting interior and exterior natural-gas piping.

B. Paint exposed, exterior metal piping, valves, service regulators, service meters and meter bars, earthquake valves, and piping specialties, except components, with factory-applied paint or protective coating.

1. Alkyd System: MPI EXT 5.1D.
 c. Topcoat: Exterior alkyd enamel (flat).
 d. Color: Yellow.

C. Paint exposed, interior metal piping, valves, service regulators, service meters and meter bars, earthquake valves, and piping specialties, except components, with factory-applied paint or protective coating.

1. Latex Over Alkyd Primer System: MPI INT 5.1Q.
 c. Topcoat: Interior latex low sheen.
 d. Color: Yellow.

2. Alkyd System: MPI INT 5.1E.
 c. Topcoat: Interior alkyd eggshell.
 d. Color: Yellow.

D. Damage and Touchup: Repair marred and damaged factory-applied finishes with materials and by procedures to match original factory finish.

3.11 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:
1. Test, inspect, and purge natural gas according to NFPA 54 and the International Fuel Gas Code and authorities having jurisdiction.

C. Natural-gas piping will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

3.12 OUTDOOR PIPING SCHEDULE

A. Underground natural-gas piping shall be one of the following:

1. Steel pipe with wrought-steel fittings and welded joints, or mechanical couplings. Coat pipe and fittings with protective coating for steel piping.

B. Aboveground natural-gas piping shall be one of the following:

1. Steel pipe with malleable-iron fittings and threaded joints.
2. Steel pipe with wrought-steel fittings and welded joints.

C. Containment Conduit: Steel pipe with wrought-steel fittings and welded joints. Coat pipe and fittings with protective coating for steel piping.

3.13 INDOOR PIPING SCHEDULE

A. Aboveground, branch piping NPS 2 and smaller shall be the following:

1. ASTM A106 seamless steel pipe with malleable-iron fittings and threaded joints.

B. Aboveground, distribution piping NPS 2 and smaller shall be the following:

1. ASTM A106 seamless steel pipe with malleable-iron fittings and threaded joints.
2. ASTM A106 seamless steel pipe with wrought-steel fittings and welded joints.

C. Underground, below building, piping shall be one of the following:

1. Steel pipe with malleable-iron fittings and threaded joints.
2. Steel pipe with wrought-steel fittings and welded joints.

D. Containment Conduit: Steel pipe with wrought-steel fittings and welded joints. Coat pipe and fittings with protective coating for steel piping.

E. Containment Conduit Vent Piping: Steel pipe with malleable-iron fittings and threaded or wrought-steel fittings with welded joints. Coat underground pipe and fittings with protective coating for steel piping.

3.14 ABOVEGROUND MANUAL GAS SHUTOFF VALVE SCHEDULE

A. Valves for pipe sizes NPS 2 and smaller shall be one of the following:

1. Two-piece, full-port, bronze ball valves with bronze trim.
2. Bronze plug valve.

END OF SECTION
SECTION 22 35 00

FUEL-FIRED, DOMESTIC-WATER HEATER

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

B. Refer To Section 22 12 23: Facility Indoor Potable-Water Storage Tanks

1.2 SUMMARY

A. Section Includes:
 1. Condensing, high-efficiency, circulating, domestic-water boiler/heat exchanger.
 2. Domestic-water, heat-exchanger accessories.
 3. Heated Water Storage tank.

1.3 ACTION SUBMITTALS

A. Product Data: For the type and size of domestic-water boiler/heat exchanger indicated. Include rated capacities, operating characteristics, and furnished specialties and accessories. Provide separate storage water tank unit and expansion tank.

B. Shop Drawings:
 1. Wiring Diagrams: For power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Product Certificates: For the type of condensing, high-efficiency, circulating, domestic-water boiler/heat exchanger, from manufacturer.

B. Domestic-Water, Boiler/Heat-Exchanger Labeling: Certified and labeled by testing agency acceptable to authorities having jurisdiction.

C. Source quality-control reports.

D. Field quality-control reports.

E. Warranty: Sample of special warranty.
1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For domestic-water boiler/heat exchanger to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. ASHRAE 90.1 Compliance: Applicable requirements in ASHRAE 90.1.

C. ASME Compliance: Where ASME-code construction is indicated, fabricate and label heat-exchanger storage tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1, “H” stamp.

D. NSF Compliance: Fabricate and label equipment components that will be in contact with potable water to comply with NSF 61, "Drinking Water System Components - Health Effects."

E. Certification: Boiler shall be CSA certified for minimum 92% efficiency and AHRI listed and certified.

1.7 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

B. Equipment shall be handled, stored and installed in accordance with the manufacturer’s instructions.

1.8 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of domestic-water heat exchanger that fail in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:
 a. Structural failures including heat exchanger, storage tank, and supports.
 b. Faulty operation of controls.
 c. Deterioration of metals, metal finishes, and other materials beyond normal use.

2. Warranty Periods: From date of Substantial Completion.

 a. Circulating, Domestic-Water Heat Exchanger:
 1) Storage Tank: One (1) years.
 2) Boiler and Accessories: One (1) years.
 4) Controls and Other Components: One (1) years.
 5) Expansion Tank: Two (2) years.
2.1 CIRCULATING, DOMESTIC-WATER HEAT EXCHANGER

A. Condensing, Circulating, High Efficiency, Domestic-Water Boiler/Heat Exchanger:

1. **Basis-of-Design Product**: Patterson-Kelley; a division of Harsco Corporation as the standard of design and construction.

2. Subject to compliance with requirements, provide a comparable product by one of the following:
 a. Harsco Industrial – Patterson-Kelly
 b. Lochnivar

3. **Description**: High efficiency, condensing, domestic water heater consisting of a boiler and heat exchanger section. Included are boiler-exchanger circulator, storage water tank circulator, controls, burner, condensate neutralization kit, and factory start-up and training. Burner shall be constructed for operation with Natural.

4. **Flow Pattern**: Heater water from boiler section to heat exchanger section through circulator, domestic water from heat exchanger section to storage water tank through domestic water circulator. Provide building hot water outlet at top of vertical tank and aquastat sensor to tank.

5. **Storage Water Tank**: 275 gallon nominal, vertical, steel storage vessel. Refer to specification section 22 12 23 “Facility Indoor Potable Water Storage Tanks.”

6. **Heat Exchanger**:
 a. The hot water boiler shall consist of a cast aluminum heat exchanger complete with trim, valve trains, burner, and boiler control system. The boiler manufacturer shall fully coordinate the boiler as to the interaction of its elements with the burner and the boiler control system in order to provide the required capacities, efficiencies, and performance as specified.
 b. The boiler heat exchanger shall be cast from an aluminum alloy that is suitable to resist the corrosive gases produced from flue gas condensation. The casting shall be a counter-flow design for maximum heat transfer with the multiple flow paths arranged in a reverse return configuration to assure balanced flow through each channel. Each section shall be an independent vessel connected together on the water side by a common manifold without the inclusion of pin-nipples and/or water-side gaskets or may be of a Mono-Block design in lieu of sectional design. Heat exchanger that consist of a primary and secondary heat exchanger are not acceptable.
 c. The boiler shall be capable of operating with a minimum outlet water temperature of 68 deg F.

7. **Main Gas Trains**:
 a. The boiler shall be provided with an integral main gas valve train. The main gas valve train(s) shall be factory assembled, piped, and wired. Each gas valve train shall include at least the following:
1) One (1) manual shutoff valve.
2) Two (2) safety solenoid valves. Valves equipped with dual solenoids that can be independently energized for leak testing and must be integrated into a single body design.
3) Air-Gas ratio control (maximum inlet pressure 14” W.C.).
4) One (1) low gas pressure switch (manual reset).
5) Two (2) pressure test ports.

b. If gas pressure exceeds 14” W.C. the Contractor shall supply a suitable intermediate lockup type gas pressure regulator to reduce the pressure to acceptable levels.

c. The boiler manufacturer shall furnish the boiler with an integral power type fuel burner. The fuel burner shall be an assembly of a gas burner, combustion air blower, valve train, and ignition system. The burner manufacturer shall fully coordinate the burner as to the interaction of its elements with the boiler heat exchanger and the boiler control system in order to provide the required capacities, efficiencies, and performance as specified.

d. The burner shall be located near the top of combustion chamber with combustion gases flowing downward through the heat exchanger and constructed of stainless steel flange with perforated stainless steel inner backing plate and stainless steel outer knit.

e. The boiler shall be equipped with direct spark ignition. Main flame shall be monitored and controlled by a flame rod (rectification) system.

f. Burner shall be capable of a 5:1 turndown.

8. Boiler Safety and Trim Devices:

a. Boiler safety and trim devices shall be as follows:
 1) Safety relief valve shall be provided in compliance with the ASME code.
 2) Water pressure/temperature gauge.
 3) Low Water/low cutoff.
 4) Manual reset high limit water temperature controller.
 5) Operating temperature control to control the sequential operation of the burner.
 6) High and Low Gas Pressure switches as required.
 7) Flame rod (rectification) system.

9. Boiler Control System:

a. The boiler shall be provided with all necessary controls, all necessary programming sequences, and all safety interlocks. The boiler control system shall be properly interlocked with all safeties.

b. The boiler shall be provided with a “Full Modulating” firing control system whereby the firing rate is infinitely proportional at any firing rate between 20% and 100% as determined by the pulse width modulation input control signal. Both fuel input and air input must be sequenced in unison to the appropriate firing rate without the use of mechanical linkage.

c. Control system shall provide the minimum capabilities:
 1) Maintain single set point
 2) Internal dual set point program with an external point of closure.
 3) Alarm relay for any manual reset alarm function.
 4) Programmable Low Fire Delay to prevent short cycling based on a time and temperature factor for release to modulation.
5) LCD text display showing current supply and return temperatures, current set points as well as differential set points. It must also display any fault codes whether automatically reset or manually reset.

7) Cascade control for up to 24 boilers without the need for external control source.

8) Remote Control System (Building Management/Sequencer Control) - The boiler control shall be capable of accepting a 0 to 10vdc remote external analog signal to control the firing rate and temperature setpoint.

9) All equipment shall be provided with necessary communication capabilities and hardware to allow integration with Mod-Bus Communications with building Automation System (provided by others.)

10) Optional converter for LONWORKS® and BacNet® must be available.

B. Capacity and Characteristics:

2. Recovery: 699 gph at 100 deg F temperature rise.
3. Domestic-Water Pipe Size: 2” NPS.
4. Hot-Water Temperature Setting: 140 deg F.
5. Electrical Characteristics:
 a. Refer to schedules on the Drawings.

C. The Water Heater shall be equipped with the following Required Options:

1. Condensate Neutralization Kit
2. Alarm Bell
3. Modbus or BACnet Open Protocol Communications
 a. Provide interface with the following readable and writable points.

<table>
<thead>
<tr>
<th></th>
<th>BACnet Object Type</th>
<th>BACnet Object ID</th>
<th>N2 Data Type</th>
<th>N2 Point Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiler Enable/Room Thermostat 1/Stg 1</td>
<td>BV</td>
<td>1</td>
<td>DO</td>
<td>1</td>
</tr>
<tr>
<td>Tank Thermostat</td>
<td>BV</td>
<td>2</td>
<td>DO</td>
<td>2</td>
</tr>
<tr>
<td>Manual Reset High Limit 1</td>
<td>BI</td>
<td>3</td>
<td>DI</td>
<td>3</td>
</tr>
<tr>
<td>Flow Switch 1</td>
<td>BI</td>
<td>4</td>
<td>DI</td>
<td>4</td>
</tr>
<tr>
<td>Gas Pressure Switch 1</td>
<td>BI</td>
<td>5</td>
<td>DI</td>
<td>5</td>
</tr>
<tr>
<td>Louver Proving Switch 1</td>
<td>BI</td>
<td>6</td>
<td>DI</td>
<td>6</td>
</tr>
<tr>
<td>Air Pressure Switch/Flap Vlv 1</td>
<td>BI</td>
<td>7</td>
<td>DI</td>
<td>7</td>
</tr>
<tr>
<td>Blocked Drain Switch 1</td>
<td>BI</td>
<td>8</td>
<td>DI</td>
<td>8</td>
</tr>
<tr>
<td>Auto Reset High Limit 1</td>
<td>BI</td>
<td>9</td>
<td>DI</td>
<td>9</td>
</tr>
<tr>
<td>Flame 1</td>
<td>BI</td>
<td>10</td>
<td>DI</td>
<td>10</td>
</tr>
<tr>
<td>Enable/Room Thermostat 1/Stg 1</td>
<td>BI</td>
<td>11</td>
<td>DI</td>
<td>11</td>
</tr>
<tr>
<td>Tank Thermostat</td>
<td>BI</td>
<td>12</td>
<td>DI</td>
<td>12</td>
</tr>
<tr>
<td>Manual Reset High Limit 2</td>
<td>BI</td>
<td>13</td>
<td>DI</td>
<td>13</td>
</tr>
<tr>
<td>Flow Switch 2</td>
<td>BI</td>
<td>14</td>
<td>DI</td>
<td>14</td>
</tr>
<tr>
<td>Gas Pressure Switch 2</td>
<td>BI</td>
<td>15</td>
<td>DI</td>
<td>15</td>
</tr>
<tr>
<td>Description</td>
<td>BI</td>
<td>DI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>----</td>
<td>----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Louver Proving Switch 2</td>
<td>16</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air Pressure Switch/Flap Vlv 2</td>
<td>17</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blocked Drain Switch 2</td>
<td>18</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flame 2</td>
<td>19</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Run-time Contacts</td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alarm Contacts 1</td>
<td>21</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH Pump 1</td>
<td>22</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DHW Pump 1</td>
<td>23</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas Vlv 1</td>
<td>24</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>System Pump</td>
<td>25</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Run-time Contacts 2</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alarm Contacts 2</td>
<td>27</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH Pump 2</td>
<td>28</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas Vlv 2</td>
<td>29</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discrete Inputs 1 - 16</td>
<td>30</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discrete Inputs 17 - 32</td>
<td>31</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discrete Inputs 33 - 48</td>
<td>32</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>System/Cascade Setpoint</td>
<td>33</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cascade Total Power</td>
<td>34</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cascade Current Power</td>
<td>35</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outlet Setpoint 1</td>
<td>36</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outlet Temperature 1</td>
<td>37</td>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inlet Temperature 1</td>
<td>38</td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flue Temperature 1</td>
<td>39</td>
<td>39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firing Rate 1</td>
<td>40</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boiler 1 Status Code</td>
<td>41</td>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boiler 1 Blocking Code</td>
<td>42</td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boiler 1 Lockout Code</td>
<td>43</td>
<td>43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outlet Setpoint 2</td>
<td>44</td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outlet Temperature 2</td>
<td>45</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inlet Temperature 2</td>
<td>46</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flue Temperature 2</td>
<td>47</td>
<td>47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firing Rate 2</td>
<td>48</td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boiler 2 Status Code</td>
<td>49</td>
<td>49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boiler 2 Blocking Code</td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boiler 2 Lockout Code</td>
<td>51</td>
<td>51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Configuration</td>
<td>52</td>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coils</td>
<td>53</td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-10 Volt Input/Rate Cmd/SP Cmd</td>
<td>54</td>
<td>54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tank Setpoint</td>
<td>55</td>
<td>55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tank Temperature</td>
<td>56</td>
<td>56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outdoor Temperature</td>
<td>57</td>
<td>57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>System Supply Temperature</td>
<td>58</td>
<td>58</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PART 3 - EXECUTION

3.1 DOMESTIC-WATER, HEAT-EXCHANGER INSTALLATION

A. Install domestic-water heat exchanger level and plumb, according to layout drawings, original design, and referenced standards. Maintain manufacturer's recommended clearances. Arrange units so controls and devices needing service are accessible.

1. Install shutoff valves on domestic-water-supply piping to heater and on domestic-hot-water outlet piping. Comply with requirements for shutoff valves specified in Section 22 05 23 "General-Duty Valves for Plumbing Piping."

2. Install shutoff valves on heating hot-water piping to heater. Comply with requirements for shutoff valves specified in Section 22 05 23 "General-Duty Valves for Plumbing Piping."

B. Install temperature and pressure relief valves in top portion of storage-tank shell of domestic-water heater. Use relief valves with sensing elements that extend into shells. Extend relief-valve outlet, with drain piping same as domestic-water piping in continuous downward pitch, and discharge by positive air gap onto closest floor drain.

C. Install combination temperature-and-pressure relief valves in water piping for domestic-water heater without storage. Extend relief-valve outlet, with drain piping same as domestic-water piping in continuous downward pitch, and discharge by positive air gap onto closest floor drain.

D. Install heater drain piping as indirect waste to spill by positive air gap into open drains or over floor drains. Install hose-end drain valves at low points in water piping for domestic-water heater that do not have tank drains. Comply with requirements for hose-end drain valves specified in Section 22 11 19 "Domestic Water Piping Specialties."

E. Install thermometer on the domestic-water, heater, inlet and outlet piping, and install thermometer on the domestic-water, heater, heating-fluid inlet and outlet piping. Comply with requirements for thermometers specified in Section 22 05 19 "Meters and Gages for Plumbing Piping."

F. Install pressure gages on domestic-water, heater, heating-fluid piping. Comply with requirements for pressure gages specified in Section 22 05 19 "Meters and Gages for Plumbing Piping."

G. Fill domestic-water boiler and heat exchanger with water.

H. Install heater and storage tank on 4" concrete pad(s), anchored-in-place.

3.2 CONNECTIONS

A. Comply with requirements for piping specified in Section 22 11 16 "Domestic Water Piping."

B. Comply with requirements for piping specialties specified in Section 22 11 19 "Domestic Water Piping Specialties."

C. Drawings indicate general arrangement of piping, fittings, and specialties.
D. Where installing piping adjacent to domestic-water boiler/heat exchanger, allow space for service and maintenance of same. Arrange piping for easy removal of unit components.

E. Provide Natural Gas connection according to NFPA 54, ANSI 223.1.

F. Provide electrical connection according to applicable codes:
 1. Power: 120 VAC, 1-phase, 60 Hz.
 2. Control: 120 VAC

3.3 IDENTIFICATION

A. Identify system components. Comply with requirements for identification specified in Section 22 05 53 "Identification for Plumbing Piping and Equipment."

3.4 FIELD QUALITY CONTROL

A. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
 2. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper operation.
 4. Test and adjust controls and safeties: Replace damaged and malfunctioning controls and equipment.

B. Domestic-water heater will be considered defective if it do not pass tests and inspections.

C. Prepare test and inspection reports.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain circulating domestic-water boiler/heat exchanger.

END OF SECTION
SECTION 22 42 13.13
COMMERCIAL WATER CLOSETS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Water closets.
 2. Flushometer valves.
 3. Toilet seats.
 4. Supports.

1.3 DEFINITIONS
A. Effective Flush Volume: Average of two reduced flushes and one full flush per fixture.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components
 and profiles, and finishes for water closets.
 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished
 specialties and accessories.

B. Shop Drawings: Include diagrams for power, signal, and control wiring.

1.5 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For flushometer valves and electronic sensors to include in
 operation and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials that are packaged with protective covering for storage and identified
 with labels describing contents.
1. Flushometer-Valve Repair Kits: Equal to 10 percent of amount of each type installed, but no fewer than six of each type.

PART 2 - PRODUCTS

2.1 WALL-MOUNTED WATER CLOSETS

A. Water Closets (WC): Wall mounted, top spud, standard and accessible.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Crane Plumbing, L.L.C.
 c. Kohler Co.
 d. Zurn Industries, LLC.

2. Bowl:
 b. Material: Vitreous china.
 c. Type: Siphon jet.
 d. Style: Flushometer valve, dual flush.
 e. Height: Standard and accessible.
 f. Rim Contour: Elongated.
 g. Water Consumption: 1.1/1.6 gal. per flush.
 h. Spud Size and Location: NPS 1-1/2; top.

3. Flushometer Valve: Sloan model WES-111, 1.1/1.6 gal. per flush.
4. Toilet Seat: Church model 9500 SSCT, open front, elongated, less cover.
5. Support:
 a. Standard: ASME A112.6.1M.
 b. Description: Waste-fitting assembly as required to match drainage piping material and arrangement with faceplates, couplings gaskets, and feet; bolts and hardware matching fixture.
 c. Water-Closet Mounting Height: Standard and Handicapped according to ICC/ANSI A117.1. Mount fixture at height as indicated on drawings.

2.2 FLUSHOMETER VALVES

A. Lever-Handle, Diaphragm Flushometer Valves (WC):

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
a. Delany Products.
b. Sloan Valve Company.
c. Zurn Industries, LLC.

4. Features: Include integral check stop and backflow-prevention device.
5. Material: Brass body with corrosion-resistant components.
7. Panel Finish: Chrome plated or stainless steel.
9. Consumption: 1.1/1.6 gal. per flush.

2.3 TOILET SEATS

A. Toilet Seats:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. American Standard America
 b. Bemis Manufacturing Company
 c. Church Seats; Bemis Manufacturing Company
 d. Zurn Industries, LLC

2. Standard: IAPMO/ANSI Z124.5

3. Material: Plastic
4. Type: Commercial (Heavy duty).
5. Shape: Elongated rim, open front.
8. Seat Cover: Not required.

2.4 SUPPORTS

A. Water Closet Carrier:

1. Manufacturers: Subject to compliance with requirements, provide products by the following:

 a. Zurn Industries, LLC.
 c. Josam Company.
 d. Wade Drains.
e. Watts; a Waters Water Treatment company.

2. Standard: ASME A112.6.1M.

3. Description: Waste-fitting assembly, as required to match drainage piping material and arrangement with faceplates, couplings gaskets, and feet; bolts and hardware matching fixture. Include additional extension coupling, faceplate, and feet for installation in wide pipe space when indicated.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before water-closet installation.

B. Examine walls and floors for suitable conditions where water closets will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Water-Closet Installation:

1. Install level and plumb according to roughing-in drawings.
2. Install accessible, wall-mounted water closets at mounting height for accessible, according to ICC/ANSI A117.1.

B. Support Installation:

1. Install wall-mounted, back-outlet water-closet supports with waste-fitting assembly and waste-fitting seals; and affix to building substrate.

C. Flushometer-Valve Installation:

1. Install flushometer-valve, water-supply fitting on each supply to each water closet.
2. Attach supply piping to supports or substrate within pipe spaces behind fixtures.
3. Install lever-handle flushometer valves for accessible water closets with handle mounted on open side of water closet.

D. Install toilet seats on water closets.

E. Wall Flange and Escutcheon Installation:

1. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations and within cabinets and millwork.
2. Install deep-pattern escutcheons if required to conceal protruding fittings.
3. Comply with escutcheon requirements specified in Section 22 05 18 "Escutcheons for Plumbing Piping."
F. Joint Sealing:
 1. Seal joints between water closets and walls and floors using sanitary-type, one-part, mildew-resistant silicone sealant.
 2. Match sealant color to water-closet color.
 3. Comply with sealant requirements specified in Section 07 92 00 "Joint Sealants."

3.3 CONNECTIONS
A. Connect water closets with water supplies and soil, waste, and vent piping. Use size fittings required to match water closets.
B. Comply with water piping requirements specified in Section 22 11 16 "Domestic Water Piping."
C. Comply with soil and waste piping requirements specified in Section 22 3 16 "Sanitary Waste and Vent Piping."
D. Where installing piping adjacent to water closets, allow space for service and maintenance.

3.4 ADJUSTING
A. Operate and adjust water closets and controls. Replace damaged and malfunctioning water closets, fittings, and controls.
B. Adjust water pressure at flushometer valves to produce proper flow.

3.5 CLEANING AND PROTECTION
A. Clean water closets and fittings with manufacturers' recommended cleaning methods and materials.
B. Install protective covering for installed water closets and fittings.
C. Do not allow use of water closets for temporary facilities unless approved in writing by Owner.

END OF SECTION
SECTION 22 42 13.16
COMMERCIAL URINALS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Urinals.
2. Flushometer valves.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product:

1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for urinals.
2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Shop Drawings: Include diagrams for power, signal, and control wiring.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For flushometer valves and electronic sensors to include in operation and maintenance manuals.

1.5 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that are packaged with protective covering for storage and identified with labels describing contents.

1. Flushometer-Valve Repair Kits: Equal to 10 percent of amount of each type installed, but no fewer than one of each type.
PART 2 - PRODUCTS

2.1 WALL-HUNG URINALS

A. Urinals (URL): Wall hung, back outlet, washout, standard and accessible.

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 b. Crane Plumbing, L.L.C.
 c. Kohler Co.
 d. Zurn Industries, LLC.

 2. Fixture:

 b. Material: Vitreous china.
 c. Type: Washout with extended shields.
 d. Strainer or Trapway: Manufacturer's standard strainer with integral trap.
 e. Water Consumption: 0.25 GPF.
 f. Spud Size and Location: NPS 3/4, top.
 g. Outlet Size and Location: NPS 2, back.
 h. Color: White.

 3. Flushometer Valve: Sloan model 186-0.25.

2.2 URINAL FLUSHOMETER VALVES

A. Solenoid-Actuator, Diaphragm Flushometer Valves:

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Delany Products.
 b. Gerber Plumbing Fixtures LLC.
 c. Sloan Valve Company.
 d. Zurn Industries, LLC.

4. Features: Include integral check stop and backflow-prevention device.
5. Material: Brass body with corrosion-resistant components.
7. Panel Finish: Chrome plated or stainless steel.
9. Consumption: 0.25 gal per flush.

2.3 SUPPORTS

A. Type I Urinal Carrier:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Josam Company.
 c. Wade Drains.
 d. Watts; a Watts Water Technologies company.
 e. Zurn Industries, LLC.

2. Standard: ASME A112.6.1M.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before urinal installation.

B. Examine walls and floors for suitable conditions where urinals will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Urinal Installation:

1. Install urinals level and plumb according to roughing-in drawings.
2. Install wall-hung, back-outlet urinals onto waste fitting seals and attached to supports.
3. Install accessible, wall-mounted urinals at mounting height for the handicapped/elderly, according to ICC/ANSI A117.1.

B. Support Installation:

1. Install supports, affixed to building substrate, for wall-hung urinals.
CAPE HENLOPEN SCHOOL DISTRICT
R. SHIELDS ELEMENTARY SCHOOL

2. Use off-floor carriers with waste fitting and seal for back-outlet urinals.

C. Flushometer-Valve Installation:
 1. Install flushometer-valve water-supply fitting on each supply to each urinal.
 2. Attach supply piping to supports or substrate within pipe spaces behind fixtures.

D. Wall Flange and Escutcheon Installation:
 1. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations.
 2. Install deep-pattern escutcheons if required to conceal protruding fittings.
 3. Comply with escutcheon requirements specified in Section 22 05 16 "Escutcheons for Plumbing Piping."

E. Joint Sealing:
 1. Seal joints between urinals and walls and floors using sanitary-type, one-part, mildew-resistant silicone sealant.
 2. Match sealant color to urinal color.
 3. Comply with sealant requirements specified in Section 07 92 00 "Joint Sealants."

3.3 CONNECTIONS

A. Connect urinals with water supplies and soil, waste, and vent piping. Use size fittings required to match urinals.

B. Comply with water piping requirements specified in Section 22 11 16 "Domestic Water Piping."

C. Comply with soil and waste piping requirements specified in Section 22 13 16 "Sanitary Waste and Vent Piping."

D. Where installing piping adjacent to urinals, allow space for service and maintenance.

3.4 ADJUSTING

A. Operate and adjust urinals and controls. Replace damaged and malfunctioning urinals, fittings, and controls.

B. Adjust water pressure at flushometer valves to produce proper flow.

3.5 CLEANING AND PROTECTION

A. Clean urinals and fittings with manufacturers' recommended cleaning methods and materials.

B. Install protective covering for installed urinals and fittings.

C. Do not allow use of urinals for temporary facilities unless approved in writing by Owner.
SECTION 22 42 16.13
COMMERCIAL LAVATORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Lavatories.
 2. Faucets.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product:
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for lavatories.
 2. Include rated capacities, operating characteristics, and furnished specialties and accessories.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Counter cutout templates for mounting of counter-mounted lavatories.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For lavatories and faucets to include in operation and maintenance manuals.
 1. In addition to items specified in Section 01 78 23 "Operation and Maintenance Data," include the following:
 a. Servicing and adjustments of automatic faucets.
1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Faucet Cartridges and O-Rings: Equal to 5 percent of amount of each type and size installed.

PART 2 - PRODUCTS

2.1 VITREOUS-CHINA, WALL-MOUNTED LAVATORIES

A. Lavatory (LAV): Ledge back, vitreous china, wall mounted.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Crane Plumbing, L.L.C.
 c. Gerber Plumbing Fixtures LLC.
 d. Kohler Co.
 e. Mansfield Plumbing Products LLC.

2. Fixtures:
 b. Type: For wall hanging.
 c. Nominal Size: Oval, 20 by 18 inches.
 d. Faucet-Hole Punching: Three holes, 2-inch centers.
 e. Faucet-Hole Location: Top.
 g. Mounting Material: Chair carrier.

5. Lavatory Mounting Height: according to ICC A117.1.

2.2 SOLID-BRASS, MANUALLY OPERATED FAUCETS

A. NSF Standard: Comply with NSF/ANSI 61 Annex G, "Drinking Water System Components - Health Effects," for faucet materials that will be in contact with potable water.

B. Lavatory Faucets: Manual-type, two-handle mixing, commercial, solid-brass valve.
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
b. Chicago Faucets; Geberit Company.

c. Delta Faucet Company.

d. Moen Incorporated.

e. Speakman Company.

f. Zurn Industries, LLC.

3. General: Include hot- and cold-water indicators; coordinate faucet inlets with supplies and fixture hole punchings; coordinate outlet with spout and fixture receptor.

4. Body Type: Centerset.

7. Maximum Flow Rate: 1.5 gpm.

8. Mounting Type: Deck, exposed.

9. Valve Handle(s): Single lever Wrist blade, 4 inches.

11. Drain: As indicated on Fixture Schedule.

2.3 SUPPORTS

A. Type II Lavatory Carrier:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 b. Josam Company.

 c. Wade Drains.

 d. Watts; a Watts Water Technologies company.

 e. Zurn Industries, LLC.

2. Standard: ASME A112.6.1M.

2.4 SUPPLY FITTINGS

A. NSF Standard: Comply with NSF/ANSI 61 Annex G, "Drinking Water System Components - Health Effects," for supply-fitting materials that will be in contact with potable water.

B. Standard: ASME A112.18.1/CSA B125.1.

C. Supply Piping: Chrome-plated-brass pipe or chrome-plated copper tube matching water-supply piping size. Include chrome-plated-brass or stainless-steel wall flange.

D. Supply Stops: Chrome-plated-brass, one-quarter-turn, ball-type or compression valve with inlet connection matching supply piping.

E. Operation: Wheel handle.
F. Risers:
 2. Chrome-plated, soft-copper flexible tube riser.

2.5 WASTE FITTINGS
 A. Standard: ASME A112.18.2/CSA B125.2.
 B. Drain: Grid type with NPS 1-1/4 offset and straight tailpiece.
 C. Trap:
 2. Material: Chrome-plated, two-piece, cast-brass trap and ground-joint swivel elbow with 0.032-inch-thick brass tube to wall; and chrome-plated, brass or steel wall flange.
 3. Material: Stainless-steel, two-piece trap and swivel elbow with 0.012-inch-thick stainless-steel tube to wall; and stainless-steel wall flange.

2.6 SUPPORTS
 A. Type II Lavatory Carrier:
 1. Standard: ASME A112.6.1M.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before lavatory installation.
 B. Examine counters and walls for suitable conditions where lavatories will be installed.
 C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION
 A. Install lavatories level and plumb according to roughing-in drawings.
 B. Install supports, affixed to building substrate, for wall-mounted lavatories.
 C. Install accessible wall-mounted lavatories at handicapped/elderly mounting height for people with disabilities or the elderly, according to ICC/ANSI A117.1.
D. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons if required to conceal protruding fittings. Comply with escutcheon requirements specified in Section 22 05 18 "Escutcheons for Plumbing Piping."

E. Seal joints between lavatories, counters, and walls using sanitary-type, one-part, mildew-resistant silicone sealant. Match sealant color to fixture color. Comply with sealant requirements specified in Section 07 92 00 "Joint Sealants."

F. Install protective shielding pipe covers and enclosures on exposed supplies and waste piping of accessible lavatories. Comply with requirements in Section 22 07 19 "Plumbing Piping Insulation."

3.3 CONNECTIONS

A. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.

B. Comply with water piping requirements specified in Section 22 11 16 "Domestic Water Piping."

C. Comply with soil and waste piping requirements specified in Section 22 13 16 "Sanitary Waste and Vent Piping."

3.4 ADJUSTING

A. Operate and adjust lavatories and controls. Replace damaged and malfunctioning lavatories, fittings, and controls.

B. Adjust water pressure at faucets to produce proper flow.

3.5 CLEANING AND PROTECTION

A. After completing installation of lavatories, inspect and repair damaged finishes.

B. Clean lavatories, faucets, and other fittings with manufacturers' recommended cleaning methods and materials.

C. Provide protective covering for installed lavatories and fittings.

D. Do not allow use of lavatories for temporary facilities unless approved in writing by Owner.

END OF SECTION
SECTION 22 42 16.16

COMMERCIAL SINKS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
1. Service basins.
2. Classroom & Administrative Sinks.
3. Communal Sinks
4. Sink faucets.
5. Laminar-flow, faucet-spout outlets.
7. Waste fittings.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for sinks.
 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

1.4 INFORMATIONAL SUBMITTALS
A. Coordination Drawings: Counter cutout templates for mounting of counter-mounted lavatories.

1.5 CLOSEOUT SUBMITTALS
A. Maintenance Data: For sinks to include in maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

Tetra Tech
1. Faucet Cartridges and O-Rings: Equal to 5 percent of amount of each type and size installed.

PART 2 - PRODUCTS

2.1 SERVICE BASINS

A. Service Basins (P-12): Terrazzo, floor mounted.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Crane Plumbing, L.L.C.
 c. Florestone Products Co., Inc.
 d. Stern-Williams Co., Inc.

2. Fixture:
 b. Shape: Square.
 c. Nominal Size: 24 by 24 inches.
 d. Height: 12 inches with dropped front.
 e. Tiling Flange: Not required.
 f. Rim Guard: On all top surfaces.
 g. Color: Manufacturer’s standard.
 h. Drain: Grid with NPS 3” outlet.

3. Mounting: On floor and flush to wall.

2.2 CLASSROOM & ADMINISTRATIVE SINKS

A. Classroom & Administrative Sinks (P-6/7/8): Stainless steel, counter mounted.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Advance Tabco.
 b. Eagle Group.
 c. Elkay Manufacturing Co.
 d. Griffin Products, Inc.
 e. Just Manufacturing.

2. Fixture:
 b. Type: Ledge back.
c. Number of Compartments: One.
d. Overall Dimensions: Per Fixture Schedule.
e. Metal Thickness: 0.050 inch.
f. Compartment:
 1) Dimensions: Per Fixture Schedule.
 2) Drain: Grid with NPS 1-1/2 tailpiece and twist drain.
 3) Drain Location: Centered in compartment.
g. Each Compartment:
 1) Dimensions: Overall, as noted on schedule.
 2) Drains: Grid with NPS 1-1/2 tailpiece and twist drain.
 3) Drain Location: Centered in compartment.

3. Faucet(s): 4” Centerset gooseneck spout faucet and lever handle bubbler on P-6.
 a. Number Required: One.
 b. Mounting: On ledge.

4. Supply Fittings:
 b. Supplies: Chrome-plated brass compression stop with inlet connection matching
 water-supply piping type and size.
 1) Operation: Wheel handle.
 2) Risers: NPS 1/2, chrome-plated, soft-copper flexible tube.

5. Waste Fittings:
 b. Trap(s):
 1) Size: NPS 1-1/2.
 2) Material: Chrome-plated, two-piece, cast-brass trap and ground-joint swivel
 elbow with 0.032-inch-thick brass tube to wall; and chrome-plated brass or
 steel wall flange.
 3) Material: Stainless-steel, two-piece trap and swivel elbow with 0.012-inch-
 thick stainless-steel tube to wall; and stainless-steel wall flange.
 c. Continuous Waste:
 1) Size: NPS 1-1/2.
 2) Material: Chrome-plated, 0.032-inch-thick brass tube.

2.3 COMMUNAL SINKS

A. Communal Sinks (P-5): Single piece molded design, off-floor, wall-mounted, wall outlet.

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Bradley Corp.

 2. Fixture:

 a. Standard: ANSI Z124.3, ANSI Z124.6, UFAS and ADA.
 b. Type: Single piece molded design wall-mounted, with access panel, Accessible compliant.
 c. Number of Stations: Two.
 d. Overall Dimensions: 59-3/4” L x 21” W x 20” D Bowl.
 e. Basin: Evero Geo Series.
 f. Drain: Manufacturers standard trench drain system.

 3. Faucet(s): Single handle, one hole mount, no metal pop-up, rigid spout, polished chrome finish.

 a. Number Required: Two, 0.5 gpm, and vandal resistant.
 b. Navigator thermostatic mixing assembly w/ stops and hot & cold supply hoses.
 c. Compatible with Delta Faucet Co., Compel Model No. 561-HGM-DST, or pre-accepted substitution.

 4. Supply Fittings:

 b. Supplies: Chrome-plated brass compression stop with inlet connection matching water-supply piping type and size; 1/2” nom. stub-out 2” from wall included with sink unit.
 1) Operation: Wheel handle.
 2) Risers: NPS 1/2, chrome-plated, soft-copper flexible tube.

 5. Waste Fittings:

 b. Trap(s):
 1) Size: NPS 1-1/2.
 2) Material: Manufacturer’s standard single chrome plated p-trap, swivel elbow with 0.032-inch-thick brass tube to wall; and chrome-plated brass or steel wall flange.
 3) Manufacturer’s standard 300 series stainless steel trench drain cap, tailpiece and chrome plated p-trap.

 c. Continuous Waste:
2.4 SINK FAUCETS

A. NSF Standard: Comply with NSF/ANSI 61 Annex G, "Drinking Water System Components - Health Effects," for faucet-spout materials that will be in contact with potable water.

B. Sink Faucets: Manual type, cross 4-arm mixing valve.

 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) American Standard America.
 2) Chicago Faucets; Geberit Company.
 3) Delta Faucet Company.
 4) Elkay Manufacturing Co.
 5) Moen Incorporated.
 6) Speakman Company.
 7) Zurn Industries, LLC.

3. General: Include hot- and cold-water indicators; coordinate faucet inlets with supplies and fixture hole punchings; coordinate outlet with spout and sink receptor.

4. Body Type: Centerset.

7. Maximum Flow Rate: 1.5 gpm.

8. Handle(s): Cross, four arm, Wrist blade, 4 inches.

9. Mounting Type: Deck, exposed or Back/wall, exposed.

10. Spout Type: Rigid, solid brass or Rigid, solid brass with wall brace.

12. Spout Outlet: Hose thread according to ASME B1.20.7 on Janitor’s basin.

C. For Communal Sinks, refer to Article 2.3.

2.5 SUPPLY FITTINGS

A. NSF Standard: Comply with NSF/ANSI 61 Annex G, "Drinking Water System Components - Health Effects," for supply-fitting materials that will be in contact with potable water.

B. Standard: ASME A112.18.1/CSA B125.1.

C. Supply Piping: Chrome-plated brass pipe or chrome-plated copper tube matching water-supply piping size. Include chrome-plated brass or stainless-steel wall flange.
D. Supply Stops: Chrome-plated brass, one-quarter-turn, ball-type or compression valve with inlet connection matching supply piping.

E. Operation: Wheel handle.

F. Risers:
 1. NPS 1/2.
 2. Chrome-plated, rigid-copper pipe.

2.6 WASTE FITTINGS

A. Standard: ASME A112.18.2/CSA B125.2.

B. Drain: Grid type with NPS 1-1/2 offset and straight tailpiece, on Utility Sink; 3” on Janitor’s Basin.

C. Trap:
 1. Size: NPS 1-1/2, on Utility Sink and Janitor’s Basin.
 2. Material: Chrome-plated, two-piece, cast-brass trap and ground-joint swivel elbow with 0.032-inch-thick brass tube to wall; and chrome-plated brass or steel wall flange.

2.7 GROUT

B. Characteristics: Nonshrink; recommended for interior and exterior applications.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before sink installation.

B. Examine walls, floors, and counters for suitable conditions where sinks will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 INSTALLATION

A. Install sinks level and plumb according to roughing-in drawings.

B. Install accessible wall-mounted sinks at accessible mounting height according to ICC/ANSI A117.1.

C. Set floor-mounted sinks in leveling bed of cement grout.

D. Install water-supply piping with stop on each supply to each sink faucet.
 1. Exception: Use ball or gate valves if supply stops are not specified with sink. Comply with valve requirements specified in Section 22 05 23.12 "Ball Valves for Plumbing Piping" and Section 22 05 23.15 "Gate Valves for Plumbing Piping."
 2. Install stops in locations where they can be easily reached for operation.

E. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons if required to conceal protruding fittings. Comply with escutcheon requirements specified in Section 22 05 18 "Escutcheons for Plumbing Piping."

F. Seal joints between sinks and counters, floors, and walls using sanitary-type, one-part, mildew-resistant silicone sealant. Match sealant color to fixture color. Comply with sealant requirements specified in Section 07 92 00 "Joint Sealants."

3.3 CONNECTIONS

A. Connect sinks with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.

B. Comply with water piping requirements specified in Section 22 11 16 "Domestic Water Piping."

C. Comply with soil and waste piping requirements specified in Section 22 13 16 "Sanitary Waste and Vent Piping."

3.4 ADJUSTING

A. Operate and adjust sinks and controls. Replace damaged and malfunctioning sinks, fittings, and controls.

B. Adjust water pressure at faucets to produce proper flow.

3.5 CLEANING AND PROTECTION

A. After completing installation of sinks, inspect and repair damaged finishes.

B. Clean sinks, faucets, and other fittings with manufacturers' recommended cleaning methods and materials.

C. Provide protective covering for installed sinks and fittings.
D. Do not allow use of sinks for temporary facilities unless approved in writing by Owner.

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Individual shower module.
 2. Shower faucets.
 3. Shower basins.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for showers.
 2. Include rated capacities, operating characteristics, and furnished specialties and accessories.

1.4 CLOSEOUT SUBMITTALS

A. Maintenance Data: For shower faucets to include in maintenance manuals.

1.5 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Faucet Cartridges and O-Rings: Equal to 5 percent of amount of each type and size installed.
PART 2 - PRODUCTS

2.1 INDIVIDUAL SHOWERS

A. Individual FRP Showers (P-9 & P-11):

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Aqua Glass Corporation.
 b. Barrier Free Architecturals, Inc.
 c. LASCO Bathware.

2. General: FRP, accessible, transfer or roll-in type shower enclosure with faucet and receptor and appurtenances.

4. Type: Sectional unit with top, transfer or roll-in, gel coat fiberglass.

5. Style: Handicapped/wheelchair.

7. Nominal Size and Shape: 76 3/4 by 60 inches rectangular.

11. Shower Rod and Curtain: Required by Owner.

13. Provide collapsible rubber water retainer, semi-permanent threshold adaptor and caulkless drain.

2.2 SHOWER FAUCETS

A. NSF Standard: Comply with NSF 61 Annex G, "Drinking Water System Components - Health Effects," for shower materials that will be in contact with potable water.

B. Shower Faucets provided with module:

1. Description: Single-handle, pressure-balance mixing valve with hot- and cold-water indicators; check stops; and shower head.

 Faucet:

 a. Standards: ASME A112.18.1/CSA B125.1 and ASSE 1016.
 c. Finish: Polished chrome plate.
 d. Maximum Flow Rate: 2.5 gpm unless otherwise indicated.
 e. Mounting: Concealed.
 f. Operation: Single-handle, twist or rotate control.
 g. Antiscald Device: Integral with mixing valve.
 h. Check Stops: Check-valve type, integral with or attached to body; on hot- and cold-water supply connections.
4. Shower Head: Provided with module.
 b. Type: Sliding head as indicated on Fixture Schedule.
 c. Shower Head Material: Metallic with chrome-plated finish.
 e. Integral Volume Control: Not required.
 f. Temperature Indicator: Not required.

2.3 GROUT

B. Characteristics: Nonshrink; recommended for interior and exterior applications.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in of water-supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before shower installation.

B. Examine walls and floors for suitable conditions where showers will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Assemble shower components according to manufacturers' written instructions.

B. Install showers level and plumb according to roughing-in drawings.

C. Install water-supply piping with stop on each supply to each shower faucet.

1. Exception: Use ball or gate valves if supply stops are not specified with shower. Comply with valve requirements specified in Section 22 05 23.12 "Ball Valves for Plumbing Piping" and Section 22 05 23.15 "Gate Valves for Plumbing Piping."

2. Install stops in locations where they can be easily reached for operation.

D. Set shower module in leveling bed of cement grout.
E. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons if required to conceal protruding fittings. Comply with escutcheons requirements specified in Section 22 05 18 "Escutcheons for Plumbing Piping."

F. Seal joints between showers and floors and walls using sanitary-type, one-part, mildew-resistant silicone sealant. Match sealant color to fixture color. Comply with sealant requirements specified in "Joint Sealants."

3.3 CONNECTIONS

A. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.

B. Comply with water piping requirements specified in Section 22 11 16 "Domestic Water Piping."

C. Comply with traps and soil and waste piping requirements specified in Section 22 13 16 "Sanitary Waste and Vent Piping."

3.4 ADJUSTING

A. Operate and adjust showers and controls. Replace damaged and malfunctioning showers, fittings, and controls.

B. Adjust water pressure at faucets to produce proper flow.

3.5 CLEANING AND PROTECTION

A. After completing installation of showers, inspect and repair damaged finishes.

B. Clean showers, faucets, and other fittings with manufacturers' recommended cleaning methods and materials.

C. Provide protective covering for installed fixtures and fittings.

D. Do not allow use of showers for temporary facilities unless approved in writing by Architect.

END OF SECTION
SECTION 22 45 00
EMERGENCY PLUMBING FIXTURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Eye/face wash equipment.
 2. Supplemental equipment.
 3. Water-tempering equipment.

1.3 DEFINITIONS
A. Accessible Fixture: Emergency plumbing fixture that can be approached, entered, and used by people with disabilities.
B. Plumbed Emergency PlumbingFixture: Fixture with fixed, potable-water supply.
D. Tepid: Moderately warm.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product indicated. Include flow rates and capacities, furnished specialties, and accessories.

1.5 INFORMATIONAL SUBMITTALS
A. Product Certificates: Submit certificates of performance testing specified in "Source Quality Control" Article.
B. Field quality-control test reports.

Tetra Tech
EMERGENCY PLUMBING FIXTURES
22 45 00 - 1
1.6 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For emergency plumbing fixtures to include in operation and
 maintenance manuals.

1.7 MAINTENANCE MATERIAL SUBMITTALS
 A. Furnish extra materials that match products installed and that are packaged with protective
 covering for storage and identified with labels describing contents.

1.8 QUALITY ASSURANCE
 Effects," for fixture materials that will be in contact with potable water.
 C. Regulatory Requirements: Comply with requirements in ICC/ANSI A117.1, "Accessible and
 Law 101-336, "Americans with Disabilities Act", for plumbing fixtures for people with
 disabilities.

PART 2 - PRODUCTS

2.1 EYE/FACE WASH EQUIPMENT
 A. Standard, Freestanding, Plumbed, Eye/Face Wash Units, (P-13):
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the
 following:
 a. Acorn Safety.
 b. Bradley Corporation.
 c. Haws Corporation.
 d. Speakman Company.
 e. WaterSaver Faucet Co.
 2. Capacity: Not less than 3.0 gpm for at least 15 minutes.
 3. Supply Piping: NPS 1/2 chrome-plated brass or stainless steel with flow regulator and
 stay-open control valve.
 5. Spray-Head Assembly: Two receptor-mounted spray heads.
 7. Drain Piping: NPS 1-1/4 minimum, Include galvanized-steel indirect connection to
 drainage system.
2.2 WATER-TEMPERING EQUIPMENT

A. Hot- and Cold-Water, Water-Tempering Equipment:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Acorn Safety.
 b. Haws Corporation.
 c. Lawler Manufacturing Company, Inc.
 d. Leonard Valve Company.
 e. Powers.
 f. Speakman Company.

2. Description: Factory-fabricated equipment with thermostatic mixing valve.
 a. Thermostatic Mixing Valve: Designed to provide 85 deg F tepid, potable water at emergency plumbing fixtures, to maintain temperature at plus or minus 5 deg F throughout required 15-minute test period, and in case of unit failure to continue cold-water flow, with union connections, controls, metal piping, and corrosion-resistant enclosure.
 b. Supply Connections: For hot and cold water.

2.3 SOURCE QUALITY CONTROL

A. Certify performance of emergency plumbing fixtures by independent testing organization acceptable to authorities having jurisdiction.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in for water and waste piping systems to verify actual locations of piping connections before plumbed emergency plumbing fixture installation.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 EMERGENCY PLUMBING FIXTURE INSTALLATION

A. Assemble emergency plumbing fixture piping, fittings, control valves, and other components.

B. Install fixtures level and plumb.

C. Fasten fixtures to substrate.

D. Install shutoff valves in water-supply piping to fixtures. Use ball or gate valve if specific type valve is not indicated. Install valves chained or locked in open position if permitted. Install valves in locations where they can easily be reached for operation. Comply with requirements...
for valves specified in Section 22 05 23.12 "Ball Valves for Plumbing Piping" and Section 22 05 23.15 "Gate Valves for Plumbing Piping."

E. Install dielectric fitting in supply piping to emergency equipment if piping and equipment connections are made of different metals. Comply with requirements for dielectric fittings specified in Section 22 11 16 "Domestic Water Piping."

F. Install thermometers in supply and outlet piping connections to water-tempering equipment. Comply with requirements for thermometers specified in Section 22 05 19 "Meters and Gages for Plumbing Piping."

G. Install indirect waste piping on drain outlet of emergency equipment receptors that are indicated to be indirectly connected to drainage system. Comply with requirements for waste piping specified in Section 22 13 16 "Sanitary Waste and Vent Piping."

H. Install escutcheons on piping wall and ceiling penetrations in exposed, finished locations. Comply with requirements for escutcheons specified in Section 22 05 18 "Escutcheons for Plumbing Piping."

3.3 CONNECTIONS

A. Connect hot- and cold-water-supply piping to hot- and cold-water, water-tempering equipment. Connect output from water-tempering equipment to emergency plumbing fixtures. Comply with requirements for hot- and cold-water piping specified in Section 22 11 16 "Domestic Water Piping."

B. Indirectly connect emergency plumbing fixture receptors without trapped drain outlet to sanitary waste or storm drainage piping.

C. Where installing piping adjacent to emergency plumbing fixtures, allow space for service and maintenance of fixtures.

3.4 IDENTIFICATION

A. Install equipment nameplates or equipment markers on emergency plumbing fixtures and equipment and equipment signs on water-tempering equipment. Comply with requirements for identification materials specified in Section 22 05 53 "Identification for Plumbing Piping and Equipment."

3.5 FIELD QUALITY CONTROL

A. Mechanical-Component Testing: After plumbing connections have been made, test for compliance with requirements. Verify ability to achieve indicated capacities.

B. Tests and Inspections:
 1. Perform each visual and mechanical inspection.
2. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

C. Emergency plumbing fixtures and water-tempering equipment will be considered defective if they do not pass tests and inspections.

D. Prepare test and inspection reports.

3.6 ADJUSTING
A. Adjust or replace fixture flow regulators for proper flow.
B. Adjust equipment temperature settings.

END OF SECTION
SECTION 22 47 16
PRESSURE WATER COOLERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes pressure water coolers and related components.

1.3 SUBMITTALS
A. Product Data: For each type of pressure water cooler.
 1. Include construction details, material descriptions, dimensions of individual components
 and profiles, and finishes.
 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished
 specialties and accessories.
B. Shop Drawings: Include diagrams for power, signal, and control wiring.
C. Closeout Submittals
 1. Maintenance Data: For pressure water coolers to include in maintenance manuals.
D. Maintenance Material Submittals
 1. Furnish extra materials that match products installed and that are packaged with
 protective covering for storage and identified with labels describing contents.
 a. Filter Cartridges: Equal to 5 percent of quantity installed for each type and size
 indicated, but no fewer than one of each.

PART 2 - PRODUCTS
A. Pressure Water Coolers P-14: Wall mounted, dual, bottle fill, standard, and wheelchair
 accessible.
 1. Elkay.
 2. Cabinet: Bi-level with two attached cabinets, bottle filling attachment, vinyl-covered steel
 with stainless-steel top.

Tetra Tech
3. Bubbler: One, with adjustable stream regulator, located on each cabinet deck.
5. Drain: Grid with NPS 1-1/2 tailpiece.
8. Filter: One or more water filters complying with NSF 42 and NSF 53 for cyst and lead reduction to below EPA standards; with capacity sized for unit peak flow rate.
9. Cooling System: Electric, with hermetically sealed compressor, cooling coil, air-cooled condensing unit, corrosion-resistant tubing, refrigerant, corrosion-resistant-metal storage tank, and adjustable thermostat.
 a. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

10. Capacities and Characteristics:
 b. Ambient-Air Temperature: 90 deg F
 c. Inlet-Water Temperature: 80 deg F.
 d. Cooled-Water Temperature: 50 deg F.
 e. Cooled-Water Storage: Required.
 f. Electrical Characteristics:
 1) Motor Horsepower: 360 Watts.
 2) Volts: 120-V ac.
 3) Phase: Single.
 4) Hertz: 60.
 5) Full-Load Amperes 3.2.

11. Support: Manufacturer’s standard wall hanger.

B. Pressure Water Coolers P-14: Wall mounted, bottle fill, standard, and wheelchair accessible.

1. Elkay.
2. Cabinet: Bottle filling attachment, vinyl-covered steel with stainless-steel top.
3. Bubbler: One, with adjustable stream regulator, located on deck.
5. Drain: Grid with NPS 1-1/2 tailpiece.
8. Filter: One or more water filters complying with NSF 42 and NSF 53 for cyst and lead reduction to below EPA standards; with capacity sized for unit peak flow rate.
9. Cooling System: Electric, with hermetically sealed compressor, cooling coil, air-cooled condensing unit, corrosion-resistant tubing, refrigerant, corrosion-resistant-metal storage tank, and adjustable thermostat.
 a. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
10. Capacities and Characteristics:
 b. Ambient-Air Temperature: 90 deg F
 c. Inlet-Water Temperature: 80 deg F.
 d. Cooled-Water Temperature: 50 deg F.
 e. Cooled-Water Storage: Required.
 f. Electrical Characteristics:
 1) Motor Horsepower: 360 Watts.
 2) Volts: 120-V ac.
 3) Phase: Single.
 4) Hertz: 60.
 5) Full-Load Amperes 3.2.

11. Support: Manufacturer’s standard wall hanger.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine roughing-in for water-supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before fixture installation.
 B. Examine walls and floors for suitable conditions where fixtures will be installed.
 C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION
 A. Install fixtures level and plumb according to roughing-in drawings.
 B. Install Manufacturer’s standard wall hanger, affixed to building substrate, for wall-mounted fixtures.
 C. Install water-supply piping with shutoff valve on supply to each fixture to be connected to domestic-water distribution piping. Use ball or gate valve. Install valves in locations where they can be easily reached for operation. Valves are specified in Section 22 05 23.12 "Ball Valves for Plumbing Piping" and Section 22 05 23.15 "Gate Valves for Plumbing Piping."
 D. Install trap and waste piping on drain outlet of each fixture to be connected to sanitary drainage system.
 E. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons where required to conceal protruding fittings. Comply with escutcheon requirements specified in Section 22 05 18 "Escutcheons for Plumbing Piping."
F. Seal joints between fixtures and walls using sanitary-type, one-part, mildew-resistant, silicone sealant. Match sealant color to fixture color. Comply with sealant requirements specified in Section 07 92 00 "Joint Sealants."

3.3 CONNECTIONS

A. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.

B. Comply with water piping requirements specified in Section 22 11 16 "Domestic Water Piping."

C. Comply with soil and waste piping requirements specified in Section 22 13 16 "Sanitary Waste and Vent Piping."

3.4 ADJUSTING

A. Adjust fixture flow regulators for proper flow and stream height.

B. Adjust pressure water-cooler temperature settings.

3.5 CLEANING

A. After installing fixture, inspect unit. Remove paint splatters and other spots, dirt, and debris. Repair damaged finish to match original finish.

B. Clean fixtures, on completion of installation, according to manufacturer's written instructions.

C. Provide protective covering for installed fixtures.

D. Do not allow use of fixtures for temporary facilities unless approved in writing by Owner.

END OF SECTION
SECTION 23 05 13
COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on alternating-current power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.3 COORDINATION
A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 1. Motor controllers.
 2. Torque, speed, and horsepower requirements of the load.
 3. Ratings and characteristics of supply circuit and required control sequence.
 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS
A. Comply with NEMA MG 1 unless otherwise indicated.
B. Comply with IEEE 841 for severe-duty motors.

2.2 MOTOR CHARACTERISTICS
A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet above sea level.
B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.
2.3 POLYPHASE MOTORS

A. Description: NEMA MG 1, Design B, medium induction motor.

B. Efficiency: Premium efficient, as defined in NEMA MG 1.

C. Service Factor: 1.15.

D. Multispeed Motors: Variable torque.
 1. For motors with 2:1 speed ratio, consequent pole, single winding.
 2. For motors with other than 2:1 speed ratio, separate winding for each speed.

E. Multispeed Motors: Separate winding for each speed.

F. Rotor: Random-wound, squirrel cage.

G. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.

H. Temperature Rise: Match insulation rating.

I. Insulation: Class F.

J. Code Letter Designation:
 1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
 2. Motors Smaller Than 15 HP: Manufacturer's standard starting characteristic.

K. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.4 ADDITIONAL REQUIREMENTS FOR POLYPHASE MOTORS

A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.

B. Motors Used with Variable-Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width-modulated inverters.
 2. Premium-Efficient Motors: Class B temperature rise; Class F insulation.
 3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
 4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.

C. Severe-Duty Motors: Comply with IEEE 841, with 1.15 minimum service factor.
2.5 SINGLE-PHASE MOTORS

A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:

1. Permanent-split capacitor.
2. Split phase.
3. Capacitor start, inductor run.
4. Capacitor start, capacitor run.

B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.

C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.

D. Motors 1/20 HP and Smaller: Shaded-pole type.

E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION 23 05 13
SECTION 23 05 17
SLEEVES AND SLEEVE SEALS FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Sleeves.
2. Stack-sleeve fittings.
3. Sleeve-seal systems.
4. Sleeve-seal fittings.
5. Grout.

B. Related Requirements:

1. Section 07 84 13 "Penetration Firestopping" for penetration firestopping installed in fire-resistance-rated walls, horizontal assemblies, and smoke barriers, with and without penetrating items.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Sustainable Design Submittals:

1. Double click to insert sustainable design text for sealants.

1.4 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.
PART 2 - PRODUCTS

2.1 SLEEVES

A. Steel Pipe Sleeves: ASTM A53/A53M, Type E, Grade B, Schedule 40, with plain ends and integral welded waterstop collar.

2.2 STACK-SLEEVE FITTINGS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. JR. Smith

B. Description: Manufactured, Dura-coated or Duco-coated cast-iron sleeve with integral cast flashing flange for use in waterproof floors and roofs. Include clamping ring, bolts, and nuts for membrane flashing.

1. Underdeck Clamp: Clamping ring with setscrews.

2.3 SLEEVE-SEAL FITTINGS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Advance Products & Systems, Inc.
2. CALPICO, Inc.
3. GPT; an EnPro Industries company.
4. Metraflex Company (The).

B. Description:

1. Manufactured plastic, sleeve-type, waterstop assembly, made for imbedding in concrete slab or wall.
2. Plastic or rubber waterstop collar with center opening to match piping OD.

2.4 GROUT

A. Description: Nonshrink, recommended for interior and exterior sealing openings in nonfire-rated walls or floors.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.
2.5 SILICONE SEALANTS

A. Silicone, S, NS, 25, NT: Single-component, nonsag, plus 25 percent and minus 25 percent movement capability, nontraffic-use, neutral-curing silicone joint sealant; ASTM C920, Type S, Grade NS, Class 25, use NT.

B. Silicone, S, P, 25, T, NT: Single-component, pourable, plus 25 percent and minus 25 percent movement capability, traffic- and nontraffic-use, neutral-curing silicone joint sealant; ASTM C920, Type S, Grade P, Class 25, Uses T and NT. Grade P Pourable (self-leveling) formulation is for opening in floors and other horizontal surfaces that are not fire rated.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.

B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.

1. Sleeves are not required for core-drilled holes.

C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.

1. Cut sleeves to length for mounting flush with both surfaces.

a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.

2. Using grout or silicone sealant, seal space outside of sleeves in slabs and walls without sleeve-seal system.

D. Install sleeves for pipes passing through interior partitions.

1. Cut sleeves to length for mounting flush with both surfaces.

2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.

3. Seal annular space between sleeve and piping or piping insulation; use sealants appropriate for size, depth, and location of joint.

E. Fire-Resistance-Rated Penetrations, Horizontal Assembly Penetrations, and Smoke-Barrier Penetrations: Maintain indicated fire or smoke rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with fire- and smoke-stop materials. Comply with requirements for firestopping and fill materials specified in Section 07 84 13 "Penetration Firestopping."

NOT FOR BIDDING PURPOSES
3.2 STACK-SLEEVE-FITTING INSTALLATION

A. Install stack-sleeve fittings in new slabs as slabs are constructed.
 1. Install fittings that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 2. Secure flashing between clamping flanges for pipes penetrating floors with membrane waterproofing. Comply with requirements for flashing specified in Section 07 62 00 "Sheet Metal Flashing and Trim."
 3. Install section of cast-iron soil pipe to extend sleeve to 3 inches above finished floor level.
 4. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
 5. Using waterproof silicone sealant, seal space between top hub of stack-sleeve fitting and pipe.

B. Fire-Resistance-Rated, Horizontal Assembly, and Smoke Barrier Penetrations: Maintain indicated fire or smoke rating of floors at pipe penetrations. Seal pipe penetrations with fire- and smoke-stop materials. Comply with requirements for firestopping specified in Section 07 84 13 "Penetration Firestopping."

3.3 SLEEVE-SEAL-FITTING INSTALLATION

A. Install sleeve-seal fittings as new walls and slabs are constructed.

B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.

C. Secure nailing flanges to concrete forms.

D. Using grout or silicone sealant, seal space around outside of sleeve-seal fittings.

3.4 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:
 1. Leak Test: After allowing for a full cure, test sleeves and sleeve seals for leaks. Repair leaks and retest until no leaks exist.

B. Sleeves and sleeve seals will be considered defective if they do not pass tests and inspections.

3.5 SLEEVE AND SLEEVE-SEAL SCHEDULE

A. Use sleeves and sleeve seals for the following piping-penetration applications:
 1. Exterior Concrete Walls Above Grade:
 a. Piping Smaller Than NPS 6: Sleeve-seal fittings.
2. Concrete Slabs Above Grade:
 a. Piping Smaller Than NPS 6: Stack-sleeve fittings.

3. Interior Partitions:
 a. Piping Smaller Than NPS 6: Steel pipe sleeves.

END OF SECTION 23 05 17
SECTION 23 05 18

ESCUTCHEONS FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Escutcheons.
 2. Floor plates.

1.3 DEFINITIONS
A. Existing Piping to Remain: Existing piping that is not to be removed and that is not otherwise indicated to be removed, removed and salvaged, or removed and reinstalled.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS
A. One Piece, Cast-Brass Type: With polished, chrome-plated or rough brass finish and setscrew fastener.
B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with polished, chrome-plated finish and spring-clip fasteners.

2.2 FLOOR PLATES
A. Split Floor Plates: Steel with concealed hinge.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Install escutcheons for exposed piping penetrations of walls, ceilings, and finished floors.

B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

1. Escutcheons for New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep pattern.
 b. Insulated Piping: One-piece cast brass with polished, chrome-plated finish.
 c. Bare Piping in Unfinished Service Spaces: One-piece cast brass with rough-brass finish.
 d. Bare Piping in Equipment Rooms: One-piece cast brass with rough-brass finish.

C. Install floor plates for exposed piping penetrations of floors.

D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

1. New Piping: Split floor plate.

3.2 FIELD QUALITY CONTROL

A. Using new materials, replace broken and damaged escutcheons and floor plates.

END OF SECTION 23 05 18
SECTION 23 05 29
HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:

1. Metal pipe hangers and supports.
2. Trapeze pipe hangers.
3. Metal framing systems.
4. Thermal-hanger shield inserts.
5. Fastener systems.
6. Pipe stands.
7. Equipment supports.

B. Related Requirements:

1. Section 05 50 00 "Metal Fabrications" for structural-steel shapes and plates for trapeze hangers for pipe and equipment supports.
2. Section 233113 "Metal Ducts" for duct hangers and supports.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.

B. Shop Drawings: Show fabrication and installation details and include calculations for the following; include Product Data for components:

1. Trapeze pipe hangers.
2. Metal framing systems.
3. Pipe stands.
4. Equipment supports.

1.4 INFORMATIONAL SUBMITTALS
A. Welding certificates.
1.5 QUALITY ASSURANCE

A. Structural-Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code, Section IX.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Structural Performance: Hangers and supports for HVAC piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.

1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

2.2 METAL PIPE HANGERS AND SUPPORTS

A. Carbon-Steel Pipe Hangers and Supports:

1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.

B. Stainless-Steel Pipe Hangers and Supports:

1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.

2.3 TRAPEZE PIPE HANGERS

A. Description: MSS SP-58, Type 59, shop- or field-fabricated pipe-support assembly made from structural hot-dip galvanized carbon-steel shapes with MSS SP-58 galvanized carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.4 METAL FRAMING SYSTEMS

A. MFMA Manufacturer Metal Framing Systems:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. B-line, an Eaton business.
 b. Flex-Strut Inc.
 c. Unistrut; Part of Atkore International.
2. Description: Shop- or field-fabricated, pipe-support assembly made of steel channels, accessories, fittings, and other components for supporting multiple parallel pipes.
4. Channels: Continuous slotted carbon-steel or stainless-steel, Type 316 channel with inturned lips.
 a. Stainless steel shall be used for exterior supports.
5. Channel Width: Selected for applicable load criteria.
6. Channel Nuts: Formed or stamped nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.
 a. Stainless steel shall be utilized for exterior applications.
 a. Hot-dip galvanized shall be used for interior applications.
 b. Stainless steel components shall be used for exterior applications.

2.5 THERMAL-HANGER SHIELD INSERTS

A. Insulation-Insert Material for Cold Piping: ASTM C552, Type II cellular glass with 100-psi or ASTM C591, Type VI, Grade 1 polyisocyanurate with 125-psi minimum compressive strength and vapor barrier.
 1. All refrigerant and cooling coil condensate piping shall be considered cold piping.
B. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.
C. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.
D. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.6 FASTENER SYSTEMS

A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Hilti, Inc.
 b. ITW Ramset/Red Head; Illinois Tool Works, Inc.
B. Mechanical-Expansion Anchors: Insert-wedge-type anchors for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. B-line, an Eaton business.
 b. Hilti, Inc.
 c. ITW Ramset/Red Head; Illinois Tool Works, Inc.

2. Indoor Applications: Zinc-coated steel.

2.7 PIPE STANDS

A. General Requirements for Pipe Stands: Shop- or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.

B. Compact Pipe Stand:

1. Description: Single base unit with integral-rod roller, pipe clamps, or V-shaped cradle to support pipe, for roof installation without membrane penetration.
2. Base: Single, vulcanized rubber, molded polypropylene, or polycarbonate.

C. Low-Profile, Single Base, Single Pipe Stand:

1. Description: Single base with vertical and horizontal members, and pipe support, for roof installation without membrane protection.
2. Base: Single, vulcanized rubber, molded polypropylene, or polycarbonate.
3. Vertical Members: Two, stainless-steel, continuous-thread 1/2-inch rods.
4. Horizontal Member: Adjustable horizontal, stainless-steel pipe support channels.
5. Pipe Supports: Strut clamps.
8. Height: 12 inches above roof.

2.8 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.

2.9 MATERIALS

A. Aluminum: ASTM B221.
B. Carbon Steel: ASTM A1011/A1011M.

C. Structural Steel: ASTM A36/A36M, carbon-steel plates, shapes, and bars; galvanized.

D. Stainless Steel: ASTM A240/A240M.

E. Threaded Rods: Continuously threaded. Zinc-plated or galvanized steel for indoor applications and stainless steel for outdoor applications. Mating nuts and washers of similar materials as rods.

F. Grout: ASTM C1107/C1107M, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.

 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with requirements in Section 07 84 13, "Penetration Firestopping" for firestopping materials and installation for penetrations through fire-rated walls, ceilings, and assemblies.

B. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.

3.2 HANGER AND SUPPORT INSTALLATION

A. Metal Pipe-Hanger Installation: Comply with MSS SP-58. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.

B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-58. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.

 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
 2. Field fabricate from ASTM A36/A36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.

C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled strut systems.

D. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.

E. Fastener System Installation:
1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.

2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

F. Pipe Stand Installation:

1. Pipe Stand Types except Curb-Mounted Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.

G. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.

I. Install hangers and supports to allow controlled thermal movement of piping systems, to permit freedom of movement between pipe anchors.

J. Install lateral bracing with pipe hangers and supports to prevent swaying.

K. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

L. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

M. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

N. Insulated Piping:

1. Attach clamps and spacers to piping.
 a. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 b. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.

2. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

3. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.

4. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.
3.3 EQUIPMENT SUPPORTS

A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.

B. Grouting: Place grout under supports for equipment and make bearing surface smooth.

C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.4 METAL FABRICATIONS

A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.

B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.

C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:

1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
2. Obtain fusion without undercut or overlap.
3. Remove welding flux immediately.
4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.5 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.6 PAINTING

A. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A780/A780M.

3.7 HANGER AND SUPPORT SCHEDULE

A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.

B. Comply with MSS SP-58 for pipe-hanger selections and applications that are not specified in piping system Sections.
C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.

D. Use carbon-steel pipe hangers and supports metal trapeze pipe hangers and metal framing systems and attachments for general service applications.

E. Use stainless-steel pipe hangers and stainless-steel attachments for exterior environment applications.

F. Use thermal-hanger shield inserts for insulated piping and tubing.

G. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.
 2. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30, from two rods if longitudinal movement caused by expansion and contraction might occur.

H. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.
 2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.

I. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
 3. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
 4. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.

J. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
 3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
 4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
 5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
 6. C-Clamps (MSS Type 23): For structural shapes.
 7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.

10. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
11. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
12. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.

K. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

L. Comply with MSS SP-58 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.

M. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.

N. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

END OF SECTION 23 05 29
SECTION 23 05 48.13
VIBRATION CONTROLS FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Spring hangers.
 2. Restrained isolation roof-curb rails.

B. Related Requirements:
 1. Section 21 05 48.13 "Vibration Controls for Fire Suppression" for devices for fire-suppression equipment and systems.
 2. Section 22 05 48.13 "Vibration Controls for Plumbing" for devices for plumbing equipment and systems.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include rated load, rated deflection, and overload capacity for each vibration isolation device.
 2. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of vibration isolation device type required.

B. Shop Drawings:
 1. Detail fabrication and assembly of equipment bases. Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
 2. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.

C. Delegated-Design Submittal: For each vibration isolation device.
 1. Include design calculations for selecting vibration isolators and for designing vibration isolation bases.
1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Show coordination of vibration isolation device installation for HVAC piping and equipment with other systems and equipment in the vicinity, including other supports and restraints, if any.

B. Qualification Data: For testing agency.

C. Welding certificates.

1.5 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Wind-Restraint Loading:

1. Basic Wind Speed: 130 mph.
2. Building Classification Category: III.
3. Minimum 10 lb/sq. ft. multiplied by maximum area of HVAC component projected on vertical plane normal to wind direction, and 45 degrees either side of normal.

2.2 SPRING HANGERS (INLINE FANS, SUSPENDED FAN COIL UNITS (FCUs), PROPELLER UNIT HEATERS)

A. Combination Coil-Spring and Elastomeric-Insert Hanger with Spring and Insert in Compression:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Kinetics Noise Control, Inc.
 b. Mason Industries, Inc.
 c. Vibration Isolation.
2. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
3. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
4. Minimum Additional Travel: 50 percent of the required deflection at rated load.
5. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
6. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
7. Elastomeric Element: Molded, oil-resistant rubber or neoprene. Steel-washer-reinforced cup to support spring and bushing projecting through bottom of frame.
8. Adjustable Vertical Stop: Steel washer with neoprene washer "up-stop" on lower threaded rod.
9. Self-centering hanger rod cap to ensure concentricity between hanger rod and support spring coil.

2.3 RERAINT CABLES
A. Restraint Cables: ASTM A492 stainless-steel cables. End connections made of steel assemblies with thimbles, brackets, swivel, and bolts designed for restraining cable service; with a minimum of two clamping bolts for cable engagement.

2.4 MECHANICAL ANCHOR BOLTS
A. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E488.

2.5 RESTRANDED ISOLATION ROO-F-CURB RALES: (RTUs, DOAS, MAUs, ERVs)
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Kinetics Noise Control, Inc.
 2. Novia; A Division of C&P.
 3. Thybar Corporation.
B. Description: Factory-assembled, fully enclosed, insulated, air- and watertight curb rail designed to resiliently support equipment and to withstand wind forces.
C. Upper Frame: Upper frame shall provide continuous and captive support for equipment and shall be captive to resiliently resist wind forces.
D. Lower Support Assembly: The lower support assembly shall be formed sheet metal section containing adjustable and removable steel springs that support upper frame. The lower support assembly shall have a means for attaching to building structure and a wood nailer for attaching roof materials and shall be insulated with a minimum of 2 inches of rigid glass-fiber insulation on inside of assembly. Adjustable, restrained-spring isolators shall be mounted on elastomeric vibration isolation pads and shall have access ports, for level adjustment, with removable waterproof covers at all isolator locations. Isolators shall be located so they are accessible for adjustment at any time during the life of the installation without interfering with the integrity of the roof.
E. Snubber Bushings: All-directional, elastomeric snubber bushings at least 1/4 inch thick.
F. Water Seal: Galvanized sheet metal with EPDM seals at corners, attached to upper support frame, extending down past wood nailer of lower support assembly, and counterflashed over roof materials.

G. Contractor shall coordinate equipment center-of-gravity with isolation roof-curb manufacturer to ensure that equipment is evenly supported.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and equipment to receive vibration isolation control devices for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 VIBRATION CONTROL DEVICE INSTALLATION

A. Coordinate the location of embedded connection hardware with supported equipment attachment and mounting points and with requirements for concrete reinforcement and formwork specified in Section 03 30 40 “Cast-in-Place Concrete.”

B. Installation of vibration isolators must not cause any change of position of equipment, piping, or ductwork resulting in stresses or misalignment.

END OF SECTION 23 05 48.13
SECTION 23 05 53
IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Equipment labels.
2. Warning signs and labels.
3. Pipe labels.
4. Duct labels.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Samples: For color, letter style, and graphic representation required for each identification material and device.

C. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.

D. Valve numbering scheme.

E. Valve Schedules: For each piping system to include in maintenance manuals.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Plastic Labels for Equipment:

1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.
4. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

NOT FOR BIDDING PURPOSES
5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.
7. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), and the Specification Section number and title where equipment is specified.

C. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2 by 11-inch bond paper. Tabulate equipment identification number, and identify Drawing numbers where equipment is indicated (plans, details, and schedules) and the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.
B. Letter Color: Red.
C. Background Color: White.
D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.
G. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
H. Label Content: Include caution and warning information plus emergency notification instructions.

2.3 PIPE LABELS

A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction according to ASME A13.1.
B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.
C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings; also include pipe size and an arrow indicating flow direction.
 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions or as separate unit on each pipe label to indicate flow direction.
 2. Lettering Size: Size letters according to ASME A13.1 for piping.

2.4 DUCT LABELS

A. Self-Adhesive Duct Labels: Printed plastic with contact-type, permanent-adhesive backing.

C. Background Color:
 1. Blue: For cold- and hot-air supply ducts.
 2. Yellow: For hot-air supply ducts.

D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.

G. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

H. Duct Label Contents: Include identification of duct service using same designations or abbreviations as used on Drawings; also include duct size and an arrow indicating flow direction.
 1. Flow-Direction Arrows: Integral with duct system service lettering to accommodate both directions or as separate unit on each duct label to indicate flow direction.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.
3.2 GENERAL INSTALLATION REQUIREMENTS

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

B. Coordinate installation of identifying devices with locations of access panels and doors.

C. Install identifying devices before installing acoustical ceilings and similar concealment.

3.3 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.

B. Locate equipment labels where accessible and visible.

3.4 PIPE LABEL INSTALLATION

A. Pipe Label Locations: Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:

1. Near each valve and control device.
2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
3. Near penetrations and on both sides of through walls, floors, ceilings, and inaccessible enclosures.
4. At access doors, manholes, and similar access points that permit view of concealed piping.
5. Near major equipment items and other points of origination and termination.
6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.

B. Directional Flow Arrows: Arrows shall be used to indicate direction of flow in pipes, including pipes where flow is allowed in both directions.

C. Pipe Label Color Schedule:
 2. Cooling Coil Condensate Piping: Black letters on a safety-orange background.

3.5 DUCT LABEL INSTALLATION

A. Install self-adhesive duct labels with permanent adhesive on air ducts in the following color codes:

1. Blue: For cold- and hot-air supply ducts.
2. Yellow: For hot-air supply ducts.
B. Locate labels near points where ducts enter into and exit from concealed spaces and at maximum intervals of 50 feet in each space where ducts are exposed or concealed by removable ceiling system.

END OF SECTION 23 05 53
SECTION 23 05 93
TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Balancing Air Systems:
 a. Constant-volume air systems.
 b. Variable-air-volume systems.
 c. Kitchen exhaust systems.
 2. Testing, Adjusting, and Balancing Equipment:
 a. Heat exchangers.
 b. Motors.
 c. Condensing units.
 d. Heat-transfer coils.
 3. Testing, adjusting, and balancing existing systems and equipment.
 4. Sound tests.
 5. Vibration tests.
 6. Duct leakage tests.
 7. Control system verification.

1.3 DEFINITIONS

B. BAS: Building automation systems.
D. TAB: Testing, adjusting, and balancing.
F. TAB Specialist: An independent entity meeting qualifications to perform TAB work.
G. TDH: Total dynamic head.

1.4 PREINSTALLATION MEETINGS

A. TAB Conference: If requested by the Owner, conduct a TAB conference at Project site after approval of the TAB strategies and procedures plan to develop a mutual understanding of the details. Provide a minimum of 14 days' advance notice of scheduled meeting time and location.

1. Minimum Agenda Items:
 b. The TAB plan.
 c. Needs for coordination and cooperation of trades and subcontractors.
 d. Proposed procedures for documentation and communication flow.

1.5 ACTION SUBMITTALS

1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: Within 30 days of Contractor's Notice to Proceed, submit documentation that the TAB specialist and this Project's TAB team members meet the qualifications specified in "Quality Assurance" Article.

B. Contract Documents Examination Report: Within 60 days of Contractor's Notice to Proceed, submit the Contract Documents review report as specified in Part 3.

D. System Readiness Checklists: Within 90 days of Contractor's Notice to Proceed, submit system readiness checklists as specified in "Preparation" Article.

E. Examination Report: Submit a summary report of the examination review required in "Examination" Article.

F. Certified TAB reports.

G. Sample report forms.

H. Instrument calibration reports, to include the following:
 1. Instrument type and make.
 2. Serial number.
 3. Application.
 4. Dates of use.
 5. Dates of calibration.
1.7 QUALITY ASSURANCE

A. TAB Specialists Qualifications: Certified by AABC.
 1. TAB Field Supervisor: Employee of the TAB specialist and certified by AABC.
 2. TAB Technician: Employee of the TAB specialist and certified by AABC as a TAB technician.

B. Instrumentation Type, Quantity, Accuracy, and Calibration: Comply with requirements in ASHRAE 111, Section 4, "Instrumentation."

C. ASHRAE/IES 90.1 Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6.7.2.3 - "System Balancing."

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems designs that may preclude proper TAB of systems and equipment.

B. Examine installed systems for balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are applicable for intended purpose and are accessible.

C. Examine the approved submittals for HVAC systems and equipment.

D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems output, and statements of philosophies and assumptions about HVAC system and equipment controls.

E. Examine equipment performance data including fan curves.
 1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.
 2. Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment performance. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," or in SMACNA's "HVAC Systems - Duct Design." Compare results with the design data and installed conditions.

F. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.

G. Examine test reports specified in individual system and equipment Sections.
H. Examine HVAC equipment and verify that bearings are greased, belts are aligned and tight, filters are clean, and equipment with functioning controls is ready for operation.

I. Examine terminal units, such as variable refrigerant fan coil units, and verify that they are accessible and their controls are connected and functioning.

J. Examine heat-transfer coils for correct piping connections and for clean and straight fins.

K. Examine operating safety interlocks and controls on HVAC equipment.

L. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.2 PREPARATION

A. Prepare a TAB plan that includes the following:

1. Equipment and systems to be tested.
3. Instrumentation to be used.
4. Sample forms with specific identification for all equipment.

B. Perform system-readiness checks of HVAC systems and equipment to verify system readiness for TAB work. Include, at a minimum, the following:

1. Airside:
 a. Verify that leakage and pressure tests on air distribution systems have been satisfactorily completed.
 b. Duct systems are complete with terminals installed.
 c. Volume, smoke, and fire dampers are open and functional.
 d. Clean filters are installed.
 e. Fans are operating, free of vibration, and rotating in correct direction.
 f. Variable-frequency controllers’ startup is complete and safety switches are verified.
 g. Automatic temperature-control systems are operational.
 h. Ceilings are installed.
 i. Windows and doors are installed.
 j. Suitable access to balancing devices and equipment is provided.

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

A. Perform testing and balancing procedures on each system according to the procedures contained in AABC’s "National Standards for Total System Balance" and in this Section.

B. Cut insulation, ducts, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.
1. After testing and balancing, patch probe holes in ducts with same material and thickness as used to construct ducts.
2. After testing and balancing, install test ports and duct access doors that comply with requirements in Section 23 33 00 "Air Duct Accessories."
3. Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish according to Section 23 07 13 "Duct Insulation," and Section 23 07 19 "HVAC Piping Insulation."

C. Mark equipment and balancing devices, including damper-control positions, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.

D. Take and report testing and balancing measurements in inch-pound (IP) units.

3.4 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS
A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Cross-check the summation of required outlet volumes with required fan volumes.

B. Prepare schematic diagrams of systems' "as-built" duct layouts.

C. For variable-air-volume systems, develop a plan to simulate diversity.

D. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.

E. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaust-air dampers through the supply-fan discharge and mixing dampers.

F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.

G. Verify that motor starters are equipped with properly sized thermal protection.

H. Check dampers for proper position to achieve desired airflow path.

I. Check for airflow blockages.

J. Check condensate drains for proper connections and functioning.

K. Check for proper sealing of air-handling-unit components.

L. Verify that air duct system is sealed as specified in Section 23 31 13 "Metal Ducts."

3.5 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS
A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.

1. Measure total airflow.
a. Set outside-air, return-air, and relief-air dampers for proper position that simulates minimum outdoor-air conditions.
b. Where duct conditions allow, measure airflow by main Pitot-tube traverse. If necessary, perform multiple Pitot-tube traverses, close to the fan and prior to any outlets, to obtain total airflow.
c. Where duct conditions are not suitable for Pitot-tube traverse measurements, a coil traverse may be acceptable.

2. Measure fan static pressures as follows:
 a. Measure static pressure directly at the fan outlet or through the flexible connection.
 b. Measure static pressure directly at the fan inlet or through the flexible connection.
 c. Measure static pressure across each component that makes up the air-handling system.
 d. Report artificial loading of filters at the time static pressures are measured.

3. Review Record Documents to determine variations in design static pressures versus actual static pressures. Calculate actual system-effect factors. Recommend adjustments to accommodate actual conditions.

4. Obtain approval from Construction Manager for adjustment of fan speed higher or lower than indicated speed. Comply with requirements in HVAC Sections for air-handling units for adjustment of fans, belts, and pulley sizes to achieve indicated air-handling-unit performance.

5. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload occurs. Measure amperage in full-cooling, full-heating, economizer, and any other operating mode to determine the maximum required brake horsepower.

B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows.
 1. Measure airflow of submain and branch ducts.
 2. Adjust submain and branch duct volume dampers for specified airflow.
 3. Re-measure each submain and branch duct after all have been adjusted.

C. Adjust air inlets and outlets for each space to indicated airflows.
 1. Set airflow patterns of adjustable outlets for proper distribution without drafts.
 2. Measure inlets and outlets airflow.
 3. Adjust each inlet and outlet for specified airflow.
 4. Re-measure each inlet and outlet after they have been adjusted.

D. Verify final system conditions.
 1. Re-measure and confirm that minimum outdoor, return, and relief airflows are within design. Readjust to design if necessary.
 2. Re-measure and confirm that total airflow is within design.
 3. Re-measure all final fan operating data, rpms, volts, amps, and static profile.
 4. Mark all final settings.
 5. Test system in economizer mode. Verify proper operation and adjust if necessary.
6. Measure and record all operating data.
7. Record final fan-performance data.

3.6 PROCEDURES FOR VARIABLE-AIR-VOLUME SYSTEMS

A. May only be applicable for Lower Level add alternate option.

B. Adjust the variable-air-volume systems as follows:

1. Verify that the system static pressure sensor is located two-thirds of the distance down the duct from the fan discharge.
2. Verify that the system is under static pressure control.
3. Select the terminal unit that is most critical to the supply-fan airflow. Measure inlet static pressure, and adjust system static pressure control set point so the entering static pressure for the critical terminal unit is not less than the sum of the terminal-unit manufacturer's recommended minimum inlet static pressure plus the static pressure needed to overcome terminal-unit discharge system losses.
4. Calibrate and balance each terminal unit for maximum and minimum design airflow as follows:
 a. Adjust controls so that terminal is calling for maximum airflow. Some controllers require starting with minimum airflow. Verify calibration procedure for specific project.
 b. Measure airflow and adjust calibration factor as required for design maximum airflow. Record calibration factor.
 c. When maximum airflow is correct, balance the air outlets downstream from terminal units.
 d. Adjust controls so that terminal is calling for minimum airflow.
 e. Measure airflow and adjust calibration factor as required for design minimum airflow. Record calibration factor. If no minimum calibration is available, note any deviation from design airflow.

5. After terminals have been calibrated and balanced, test and adjust system for total airflow. Adjust fans to deliver total design airflows within the maximum allowable fan speed listed by fan manufacturer.
 a. Set terminals for maximum airflow. If system design includes diversity, adjust terminals for maximum and minimum airflow so that connected total matches fan selection and simulates actual load in the building.
 b. Where duct conditions allow, measure airflow by Pitot-tube traverse. If necessary, perform multiple Pitot-tube traverses to obtain total airflow.
 c. Where duct conditions are not suitable for Pitot-tube traverse measurements, a coil traverse may be acceptable.
 d. If a reliable Pitot-tube traverse or coil traverse is not possible, measure airflow at terminals and calculate the total airflow.

6. Measure fan static pressures as follows:
 a. Measure static pressure directly at the fan outlet or through the flexible connection.
 b. Measure static pressure directly at the fan inlet or through the flexible connection.
c. Measure static pressure across each component that makes up the air-handling system.
d. Report any artificial loading of filters at the time static pressures are measured.

7. Re-measure the inlet static pressure at the most critical terminal unit and adjust the system static pressure set point to the most energy-efficient set point to maintain the optimum system static pressure. Record set point and give to controls contractor.

8. Verify final system conditions as follows:
 a. Re-measure and confirm that outdoor and exhaust airflows are within design. Readjust to match design if necessary.
 b. Re-measure and confirm that total airflow is within design.
 c. Re-measure final fan operating data, rpms, volts, amps, and static profile.
 d. Mark final settings.
 e. Test system in economizer mode. Verify proper operation and adjust if necessary. Measure and record all operating data.
 f. Verify tracking between supply and return fans.

3.7 PROCEDURES FOR KITCHEN EXHAUST SYSTEMS

A. Scope: This testing procedure shall apply to all kitchen exhaust systems serving cooking equipment.

B. Adjust the kitchen exhaust and makeup air system as follows:
 1. Measure exhaust and makeup air flowrates at maximum and minimum airflow setpoints. Ensure systems providing transfer air are operating during the testing (Cafeteria RTU). Adjust the system to match design.
 2. If a demand control system is installed for the kitchen exhaust, turn on equipment and verify that fan speed changes from low to high setpoint as temperature rises.
 3. Verify final system conditions as follows:
 a. Re-measure and confirm that exhaust and makeup air airflows are within design. Readjust to match design if necessary.
 b. Re-measure final fan operating data, rpms, volts, amps, and static profile.
 c. Mark final settings.
 d. Mark final settings.
 e. Test system in economizer mode. Verify proper operation and adjust if necessary.
 f. Measure and record all operating data.
 g. Submit final ventilation balance report.

C. Verify building pressure as follows:
 1. Place all equipment in normal operation with all windows and doors closed.
 2. Verify building pressure does not exceed 0.04 inches water column negative.
 3. Test on high and low exhaust settings.

D. Perform a visual capture test to demonstrate proper capture and containment performance of installed commercial kitchen exhaust systems. Submit and receive approval of the final ventilation report for the kitchen HVAC systems, and any HVAC systems providing makeup air (Cafeteria), prior to performing capture tests.
 1. Equipment required for testing:
 a. Smoke candles (cartridges): burn time minimum 45 seconds; volume 50 cubic feet; measures 0.5” Dia. X .375” L; weight 0.0 oz.; smoke.
b. Test container: metal cylindrical container approximately 6” in diameter and 7” high.

2. Test Conditions:
 a. Interior and exterior doors are to be kept closed. Exterior windows are to be kept closed.
 b. Movement of persons is to be minimized.
 c. All equipment (exhaust, make-up air, rooftop unit, sensible cooling supply air, etc.) that may affect the performance of the hood shall be activated during the test.

3. Test locations:
 a. Locate the test container on the cooking surface or inside the cooking vessel or cavity as necessary.
 b. Where the test location is to be the cooking surface, adjust the centering of the test container inward 12 inches from the leading edge of the cooking surface and 12 inches from the hood end, measured horizontally.
 c. Where ends are exposed, the test container is to be located 12 inches from the wall and 12 inches inward from the open hood end, measured horizontally.
 d. Each subsequent test location is to be 36 inches to the left or right from the previous test location until the full length of the hood is tested.

4. Cooking Equipment:
 a. The cooking equipment shall be tested and operated in a manner similar to normal usage.
 b. When deep-fat fryers are included in a bank of cooking equipment, the fryers may be operated using water in place of oil and the temperature adjusted to produce simmering, not vigorous boiling, water. (If oil is used, it must be discarded following the evaluation in order to prevent potential food contamination). The test container is to be located in or on the surface of the fryer basket(s).
 c. When ovens are installed (except convection, range, and combi ovens), only the top cavity door is to be open and the heat/steam source activated for all compartments; open means a position 90 degrees from the closed position. The centerline of the test container is to be located inward a minimum of 12 inches from the front edge and inside the oven cavity. NOTE: Range ovens are to be operated, but not tested if the range top gas-fired burners or the electric heating elements are to be tested.
 d. Convection and combi ovens are to operate with all doors closed, the heat source activated in all compartments, and the air circulating fan(s) activated. Locate the top lip of the test container 42” above the floor and in contact with the front of the oven. Where ovens are installed so as to be at the ends of the hood and a full side curtain or wall is not installed, the lip of the test container is to be located level with the top of the oven cabinet.
 e. Conveyor-type ovens shall be set at operating temperatures and the air circulating fan(s) activated. Test container shall be placed at each end of the oven openings. 6. When range tops, gas-fired burners, or electric heating elements are installed, open cooking containers filled with water are to be located on 25% of the burners and heated surfaces and allowed to heat to 180 degrees
 f. A minimum of 51% of the range surface and heating devices and the range ovens are to be activated. 7. Brazing units, steam jacketed kettles, Chinese wok ranges, and similar cooking equipment are to be filled with water to a level of 2-3 inches or as recommended by the manufacturer; the heating elements activated; and the water allowed to heat but not boil. Covers, if provided, are to be in the open position. The test container is to be located inside the open vessel. NOTE: Chinese
wok ranges equipped with continuous water-cooling, should have these devices activated.

5. Performance Evaluation: Acceptable performance, consist of capture of all visible smoke generated. A demonstration is a complete testing of all identified test locations.

6. The owner’s representative or commissioning agent shall be giving notice prior to testing and provided the opportunity to observe the testing.

E. Reporting:
1. Hood capture report shall include the following:
 a. Location.
 b. Systems Tested.
 c. Sketch or description of smoke candle positions tested.
 d. Outcome of each test. If any tests failed to capture smoke, provide description of adjustments made and results of follow up tests.
 e. Photos of smoke capture at various points under the hood.
 f. Any notes or observations from the balancer of conditions affecting hood capture.

3.8 PROCEDURES FOR MOTORS

A. Motors 1/2 HP and Larger: Test at final balanced conditions and record the following data:
 1. Manufacturer's name, model number, and serial number.
 4. Phase and hertz.
 5. Nameplate and measured voltage, each phase.
 6. Nameplate and measured amperage, each phase.
 7. Starter size and thermal-protection-element rating.
 8. Service factor and frame size.

B. Motors Driven by Variable-Frequency Controllers: Test manual bypass of controller to prove proper operation.

3.9 PROCEDURES FOR CONDENSING UNITS

A. Verify proper rotation of fans.

B. Measure entering- and leaving-air temperatures.

C. Record fan and motor operating data.

3.10 PROCEDURES FOR HEAT-TRANSFER COILS

A. Measure, adjust, and record the following data for each electric heating coil:
 1. Nameplate data.
 2. Airflow.
 3. Entering- and leaving-air temperature at full load.
4. Voltage and amperage input of each phase at full load.
5. Calculated kilowatt at full load.
6. Fuse or circuit-breaker rating for overload protection.

B. Measure, adjust, and record the following data for each refrigerant coil:
1. Dry-bulb temperature of entering and leaving air.
2. Wet-bulb temperature of entering and leaving air.
3. Airflow.

3.11 SOUND TESTS

A. After the systems are balanced and construction is Substantially Complete, measure and record sound levels at 15 locations as designated by the Architect.

B. Instrumentation:
1. The sound-testing meter shall be a portable, general-purpose testing meter consisting of a microphone, processing unit, and readout.
2. The sound-testing meter shall be capable of showing fluctuations at minimum and maximum levels, and measuring the equivalent continuous sound pressure level (LEQ).
3. The sound-testing meter must be capable of using 1/3 octave band filters to measure mid-frequencies from 31.5 Hz to 8000 Hz.
4. The accuracy of the sound-testing meter shall be plus or minus one decibel.

C. Test Procedures:
1. Perform test at quietest background noise period. Note cause of unpreventable sound that affects test outcome.
2. Equipment should be operating at design values.
3. Calibrate the sound-testing meter prior to taking measurements.
4. Use a microphone suitable for the type of noise levels measured that is compatible with meter. Provide a windshield for outside or in-duct measurements.
5. Record a set of background measurements in dBA and sound pressure levels in the eight un-weighted octave bands 63 Hz to 8000 Hz (NC) with the equipment off.
6. Take sound readings in dBA and sound pressure levels in the eight un-weighted octave bands 63 Hz to 8000 Hz (NC) with the equipment operating.
7. Take readings no closer than 36 inches from a wall or from the operating equipment and approximately 60 inches from the floor, with the meter held or mounted on a tripod.
8. For outdoor measurements, move sound-testing meter slowly and scan area that has the most exposure to noise source being tested. Use A-weighted scale for this type of reading.

D. Reporting:
1. Report shall record the following:
 a. Location.
 b. System tested.
 c. dBA reading.
d. Sound pressure level in each octave band with equipment on and off.

2. Plot sound pressure levels on NC worksheet with equipment on and off.

3.12 VIBRATION TESTS

A. After systems are balanced and construction is Substantially Complete, measure and record vibration levels on equipment having motor horsepower equal to or greater than 10.

B. Instrumentation:

1. Use portable, battery-operated, and microprocessor-controlled vibration meter with or without a built-in printer.
2. The meter shall automatically identify engineering units, filter bandwidth, amplitude, and frequency scale values.
3. The meter shall be able to measure machine vibration displacement in mils of deflection, velocity in inches per second, and acceleration in inches per second squared.
4. Verify calibration date is current for vibration meter before taking readings.

C. Test Procedures:

1. To ensure accurate readings, verify that accelerometer has a clean, flat surface and is mounted properly.
2. With the unit running, set up vibration meter in a safe, secure location. Connect transducer to meter with proper cables. Hold magnetic tip of transducer on top of the bearing, and measure unit in mils of deflection. Record measurement, then move transducer to the side of the bearing and record in mils of deflection. Record an axial reading in mils of deflection by holding nonmagnetic, pointed transducer tip on end of shaft.
3. Change vibration meter to velocity (inches per second) measurements. Repeat and record above measurements.
4. Record CPM or rpm.
5. Read each bearing on motor, fan, and pump as required. Track and record vibration levels from rotating component through casing to base.

D. Reporting:

1. Report shall record location and the system tested.
2. Include horizontal-vertical-axial measurements for tests.
3. Verify that vibration limits follow Specifications, or, if not specified, follow the General Machinery Vibration Severity Chart or Vibration Acceleration General Severity Chart from the AABC National Standards. Acceptable levels of vibration are normally "smooth" to "good."
4. Include in report General Machinery Vibration Severity Chart, with conditions plotted.

3.13 DUCT LEAKAGE TESTS

A. Witness the duct pressure testing performed by Installer.
B. Verify that proper test methods are used and that leakage rates are within specified tolerances.

C. Report deficiencies observed.

3.14 CONTROLS VERIFICATION

A. In conjunction with system balancing, perform the following:

1. Verify temperature control system is operating within the design limitations.
2. Confirm that the sequences of operation are in compliance with Contract Documents.
3. Verify that controllers are calibrated and function as intended.
4. Verify that controller set points are as indicated.
5. Verify the operation of lockout or interlock systems.
6. Verify the operation of damper actuators.
7. Verify that controlled devices are properly installed and connected to correct controller.
8. Verify that controlled devices travel freely and are in position indicated by controller: open, closed, or modulating.
9. Verify location and installation of sensors to ensure that they sense only intended temperature, humidity, or pressure.

B. Reporting: Include a summary of verifications performed, remaining deficiencies, and variations from indicated conditions.

3.15 TOLERANCES

A. Set HVAC system's airflow rates and water flow rates within the following tolerances:

1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus 10 percent or minus 5 percent.
2. Air Outlets and Inlets: Plus 10 percent or minus 5 percent.

B. Maintaining pressure relationships as designed shall have priority over the tolerances specified above.

3.16 PROGRESS REPORTING

A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems balancing devices. Recommend changes and additions to systems balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.

3.17 FINAL REPORT

A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.
1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
2. Include a list of instruments used for procedures, along with proof of calibration.
3. Certify validity and accuracy of field data.

B. Final Report Contents: In addition to certified field-report data, include the following:
 1. Fan curves.
 2. Manufacturers' test data.
 3. Field test reports prepared by system and equipment installers.
 4. Other information relative to equipment performance; do not include Shop Drawings and Product Data.

C. General Report Data: In addition to form titles and entries, include the following data:
 1. Title page.
 2. Name and address of the TAB specialist.
 3. Project name.
 4. Project location.
 5. Architect's name and address.
 6. Engineer's name and address.
 7. Contractor's name and address.
 9. Signature of TAB supervisor who certifies the report.
 10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
 11. Summary of contents including the following:
 a. Indicated versus final performance.
 b. Notable characteristics of systems.
 c. Description of system operation sequence if it varies from the Contract Documents.
 12. Nomenclature sheets for each item of equipment.
 13. Data for terminal units, including manufacturer's name, type, size, and fittings.
 14. Notes to explain why certain final data in the body of reports vary from indicated values.
 15. Test conditions for fans performance forms including the following:
 a. Settings for outdoor-, return-, and exhaust-air dampers.
 b. Conditions of filters.
 c. Cooling coil, wet- and dry-bulb conditions.
 d. Other system operating conditions that affect performance.

D. System Diagrams: Include schematic layouts of air distribution systems. Present each system with single-line diagram and include the following:
 1. Quantities of outdoor, supply, return, and exhaust airflows.
 2. Duct, outlet, and inlet sizes.
 3. VRF fan coil units.

E. Air-Handling-Unit Test Reports: For air-handling units with coils, include the following:

Tetra Tech
TESTING, ADJUSTING, AND BALANCING
FOR HVAC
23 05 93 - 14
1. Unit Data:
 a. Unit identification.
 b. Location.
 c. Make and type.
 d. Model number and unit size.
 e. Manufacturer's serial number.
 f. Unit arrangement and class.
 g. Discharge arrangement.
 h. Sheave make, size in inches, and bore.
 i. Center-to-center dimensions of sheave and amount of adjustments in inches.
 j. Number, make, and size of belts.
 k. Number, type, and size of filters.

2. Motor Data:
 a. Motor make, and frame type and size.
 b. Horsepower and rpm.
 c. Volts, phase, and hertz.
 d. Full-load amperage and service factor.
 e. Sheave make, size in inches, and bore.
 f. Center-to-center dimensions of sheave and amount of adjustments in inches.

3. Test Data (Indicated and Actual Values):
 a. Total airflow rate in cfm.
 b. Total system static pressure in inches wg.
 c. Fan rpm.
 d. Discharge static pressure in inches wg.
 e. Filter static-pressure differential in inches wg.
 f. Cooling-coil static-pressure differential in inches wg.
 g. Heating-coil static-pressure differential in inches wg.
 h. Outdoor airflow in cfm.
 i. Return airflow in cfm.
 j. Exhaust airflow in cfm (where applicable).
 k. Outdoor-air damper position.
 l. Return-air damper position.

F. Apparatus-Coil Test Reports:

1. Coil Data:
 a. System identification.
 b. Location.
 c. Coil type.
 d. Number of rows.
 e. Fin spacing in fins per inch o.c.
 f. Make and model number.
 g. Face area in sq. ft..
 h. Tube size in NPS.
 i. Tube and fin materials.
j. Circuiting arrangement.

2. Test Data (Indicated and Actual Values):
 a. Airflow rate in cfm.
 b. Average face velocity in fpm.
 c. Air pressure drop in inches wg.
 d. Outdoor-air, wet- and dry-bulb temperatures in deg F.
 e. Return-air, wet- and dry-bulb temperatures in deg F.
 f. Entering-air, wet- and dry-bulb temperatures in deg F.
 g. Leaving-air, wet- and dry-bulb temperatures in deg F.
 h. Refrigerant expansion valve and refrigerant types.
 i. Refrigerant suction pressure in psig.
 j. Refrigerant suction temperature in deg F.

G. Enthalpy Wheel Test Reports (where applicable):
 1. Wheel Data:
 a. System identification.
 b. Location.
 c. Make and type.
 d. Model number and unit size.
 e. Manufacturer's serial number.
 f. Total or Sensible Wheel

 2. Motor Data:
 a. Motor make, and frame type and size.
 b. Horsepower and rpm.
 c. Volts, phase, and hertz.
 d. Full-load amperage and service factor.
 e. Sheave make, size in inches, and bore.
 f. Center-to-center dimensions of sheave and amount of adjustments in inches.

 3. Test Data (Indicated and Actual Values):
 a. Outdoor Airflow rate in cfm.
 b. Exhaust Airflow rate in cfm.
 c. Purge Airflow rate in cfm.
 d. Supply Airflow rate in cfm.
 e. Outdoor air average face velocity in fpm.
 f. Exhaust air average face velocity in fpm.
 g. Outdoor air pressure drop in inches wg.
 h. Exhaust air pressure drop in inches wg.
 i. Outdoor-air, wet- and dry-bulb temperatures in deg F.
 j. Return-air, wet- and dry-bulb temperatures in deg F.
 k. Exhaust-air, wet- and dry-bulb temperatures in deg F.
 l. Supply-air, wet- and dry-bulb temperatures in deg F.
 m. Unit effectiveness.
H. Gas- and Oil-Fired Heat Apparatus Test Reports (where applicable): In addition to manufacturer's factory startup equipment reports, include the following:

1. Unit Data:
 a. System identification.
 b. Location.
 c. Make and type.
 d. Model number and unit size.
 e. Manufacturer's serial number.
 f. Fuel type in input data.
 g. Output capacity in Btu/h.
 h. Ignition type.
 i. Burner-control types.
 j. Motor horsepower and rpm.
 k. Motor volts, phase, and hertz.
 l. Motor full-load amperage and service factor.
 m. Sheave make, size in inches, and bore.
 n. Center-to-center dimensions of sheave and amount of adjustments in inches.

2. Test Data (Indicated and Actual Values):
 a. Total airflow rate in cfm.
 b. Entering-air temperature in deg F.
 c. Leaving-air temperature in deg F.
 d. Air temperature differential in deg F.
 e. Entering-air static pressure in inches wg.
 f. Leaving-air static pressure in inches wg.
 g. Air static-pressure differential in inches wg.
 h. Low-fire fuel input in Btu/h.
 i. High-fire fuel input in Btu/h.
 j. Manifold pressure in psig.
 k. High-temperature-limit setting in deg F.
 l. Operating set point in Btu/h.
 m. Motor voltage at each connection.
 n. Motor amperage for each phase.
 o. Heating value of fuel in Btu/h.

I. Electric-Coil Test Reports: For electric furnaces, duct coils, and electric coils installed in central-station air-handling units, include the following:

1. Unit Data:
 a. System identification.
 b. Location.
 c. Coil identification.
 d. Capacity in Btu/h.
 e. Number of stages.
 f. Connected volts, phase, and hertz.
 g. Rated amperage.
 h. Airflow rate in cfm.
i. Face area in sq. ft.,

j. Minimum face velocity in fpm.

2. Test Data (Indicated and Actual Values):

a. Heat output in Btu/h.

b. Airflow rate in cfm.

c. Air velocity in fpm.

d. Entering-air temperature in deg F.

e. Leaving-air temperature in deg F.

f. Voltage at each connection.

g. Amperage for each phase.

J. Fan Test Reports: For supply, return, and exhaust fans, include the following:

1. Fan Data:

a. System identification.

b. Location.

c. Make and type.

d. Model number and size.

e. Manufacturer's serial number.

f. Arrangement and class.

g. Sheave make, size in inches, and bore.

h. Center-to-center dimensions of sheave and amount of adjustments in inches.

2. Motor Data:

a. Motor make, and frame type and size.

b. Horsepower and rpm.

c. Volts, phase, and hertz.

d. Full-load amperage and service factor.

e. Sheave make, size in inches, and bore.

f. Center-to-center dimensions of sheave, and amount of adjustments in inches.

g. Number, make, and size of belts.

3. Test Data (Indicated and Actual Values):

a. Total airflow rate in cfm.

b. Total system static pressure in inches wg.

c. Fan rpm.

d. Discharge static pressure in inches wg.

e. Suction static pressure in inches wg.

K. Round, Flat-Oval, and Rectangular Duct Traverse Reports: Include a diagram with a grid representing the duct cross-section and record the following:

1. Report Data:

a. System and air-handling-unit number.

b. Location and zone.
c. Traverse air temperature in deg F.
d. Duct static pressure in inches wg.
e. Duct size in inches.
f. Duct area in sq. ft
.g. Indicated airflow rate in cfm.
h. Indicated velocity in fpm.
i. Actual airflow rate in cfm.
j. Actual average velocity in fpm.
k. Barometric pressure in psig.

L. VRF Fan Coil Unit Reports:

1. Unit Data:
 a. Condensing Unit System and DOAS air-handling unit identification.
 b. Location and zone.
 c. Apparatus used for test.
 d. Area served.
 e. Make.
 f. Number from system diagram.
 g. Type and model number.
 h. Size.
 i. Effective area in sq. ft.

2. Test Data (Indicated and Actual Values):
 a. Airflow rate in cfm.
 b. Air velocity in fpm.
 c. Preliminary airflow rate as needed in cfm.
 d. Preliminary velocity as needed in fpm.
 e. Final airflow rate in cfm.
 f. Final velocity in fpm.
 g. Space temperature in deg F.
 h. DX Refrigerant coil data:
 1) Water pressure drop in feet of head or psig.
 2) Entering-air temperature in deg F.
 3) Leaving-air temperature in deg F.

M. Instrument Calibration Reports:

1. Report Data:
 a. Instrument type and make.
 b. Serial number.
 c. Application.
 d. Dates of use.
 e. Dates of calibration.
3.18 VERIFICATION OF TAB REPORT

A. The TAB specialist's test and balance engineer shall conduct the inspection in the presence of a Construction Manager.

B. The Architect shall randomly select measurements, documented in the final report, to be rechecked. Rechecking shall be limited to either 10 percent of the total measurements recorded or the extent of measurements that can be accomplished in a normal 8-hour business day.

C. If rechecks yield measurements that differ from the measurements documented in the final report by more than the tolerances allowed, the measurements shall be noted as "FAILED."

D. If the number of "FAILED" measurements is greater than 10 percent of the total measurements checked during the final inspection, the testing and balancing shall be considered incomplete and shall be rejected.

E. If TAB work fails, proceed as follows:
 1. TAB specialists shall recheck all measurements and make adjustments. Revise the final report and balancing device settings to include all changes; resubmit the final report and request a second final inspection.
 2. If the second final inspection also fails, the Owner may contract the services of another TAB specialist to complete TAB work according to the Contract Documents and deduct the cost of the services from the original TAB specialist's final payment.
 3. If the second verification also fails, the Owner may contact AABC Headquarters regarding the AABC National Performance Guaranty.

F. Prepare test and inspection reports.

3.19 ADDITIONAL TESTS

A. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional TAB during near-peak summer and winter conditions.

END OF SECTION 23 05 93
SECTION 23 07 13
DUCT INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes insulating the following duct services:
 1. Indoor, concealed supply and outdoor air.
 2. Indoor, exposed supply and outdoor air.
 3. Indoor, concealed, Type I, commercial, kitchen hood exhaust.
 4. Indoor, exposed, Type I, commercial, kitchen hood exhaust.
 5. Indoor, concealed oven and warewash (Type II) exhaust.
 6. Indoor, exposed oven and warewash (Type II) exhaust.
 7. Indoor, concealed exhaust 10 feet from penetration of building exterior.
 8. Indoor, exposed exhaust 10 feet from penetration of building exterior.
 9. Outdoor, concealed supply and return.
 10. Outdoor, exposed supply and return.
B. Related Sections:
 1. Section 23 07 19 "HVAC Piping Insulation."
 2. Section 23 31 13 "Metal Ducts" for double-wall ducts with interstitial insulation.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied if any).
B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 2. Detail insulation application at elbows, fittings, dampers, specialties and flanges for each type of insulation.
 3. Detail application of field-applied jackets.
 4. Detail application at linkages of control devices.
1.4 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.

B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.

1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.

2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.6 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 23 05 29 "Hangers and Supports for HVAC Piping and Equipment."

B. Coordinate clearance requirements with duct Installer for duct insulation application. Before preparing ductwork Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

1.7 SCHEDULING

A. Schedule insulation application after pressure testing systems. Insulation application may begin on segments that have satisfactory test results.

B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

A. Comply with requirements in "Duct Insulation Schedule, General," "Indoor Duct and Plenum Insulation Schedule" and "Aboveground, Outdoor Duct and Plenum Insulation Schedule" articles for where insulating materials shall be applied.
B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C871.

D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C795.

E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

F. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C553, Type II and ASTM C1290, Type III with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. CertainTeed Corporation.
 b. Johns Manville; a Berkshire Hathaway company.
 c. Knauf Insulation.

G. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C612, Type IA or Type IB, for duct and plenum applications, provide insulation with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. CertainTeed Corporation.
 b. Johns Manville; a Berkshire Hathaway company.
 c. Knauf Insulation.

2.2 FIRE-RATED INSULATION SYSTEMS

A. Fire-Rated Board: Structural-grade, press-molded, xonolite calcium silicate, fireproofing board suitable for operating temperatures up to 1700 deg F. Comply with ASTM C656, Type II, Grade 6. Tested and certified to provide a 2-hour fire rating by an NRTL acceptable to authorities having jurisdiction.

2.3 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.

B. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.

2.4 MASTICS AND COATINGS

A. Materials shall be compatible with insulation materials, jackets, and substrates.

B. Vapor-Retarder Mastic: Water based; suitable for indoor use on below ambient services.
 1. Water-Vapor Permeance: Comply with ASTM C755, Section 7.2.2, Table 2, for insulation type and service conditions.
 2. Service Temperature Range: Minus 20 to plus 180 deg F.
 3. Comply with MIL-PRF-19565C, Type II, for permeance requirements.

C. Breather Mastic: Water based; suitable for indoor and outdoor use on above ambient services.
 1. Water-Vapor Permeance: ASTM E96, greater than 1.0 perm at manufacturer's recommended dry film thickness.
 2. Service Temperature Range: Minus 20 to plus 180 deg F.

2.5 LAGGING ADHESIVES

A. Description: Comply with MIL-A-3316C, Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates.
 1. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over duct insulation.
 2. Service Temperature Range: 0 to plus 180 deg F.

2.6 SEALANTS

A. FSK and Metal Jacket Flashing Sealants:
 1. Materials shall be compatible with insulation materials, jackets, and substrates.
 2. Fire- and water-resistant, flexible, elastomeric sealant.
 3. Service Temperature Range: Minus 40 to plus 250 deg F.

2.7 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 1. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C1136, Type II.
2.8 FIELD-APPLIED JACKETS

A. Metal Jacket:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. ITW Insulation Systems; Illinois Tool Works, Inc.

 a. Sheet and roll stock ready for shop or field sizing.
 b. Finish and thickness are indicated in field-applied jacket schedules.
 d. Moisture Barrier for Outdoor Applications: 3-mil thick, heat-bonded polyethylene and kraft paper.

2.9 TAPES

A. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C1136.
 1. Width: 3 inches.
 2. Thickness: 6.5 mils.
 4. Elongation: 2 percent.
 5. Tensile Strength: 40 lbf/inch in width.
 6. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

2.10 SECUREMENTS

A. Insulation Pins and Hangers:

 1. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.135-inch diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.

2.11 CORNER ANGLES

A. Aluminum Corner Angles: 0.040 inch thick, minimum 1 by 1 inch, aluminum according to ASTM B209, Alloy 3003, 3005, 3105, or 5005; Temper H-14.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 1. Verify that systems to be insulated have been tested and are free of defects.
 2. Verify that surfaces to be insulated are clean and dry.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of ducts and fittings.

B. Install insulation materials, vapor barriers or retarders, jackets, and thicknesses required for each item of duct system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Keep insulation materials dry during application and finishing.

G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

H. Install insulation with least number of joints practical.

I. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
J. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

K. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 3. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct flanges and fittings.

L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 4. Seal jacket to wall flashing with flashing sealant.

C. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
D. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches.

1. Comply with requirements in Section 07 84 13 "Penetration Firestopping."

E. Insulation Installation at Floor Penetrations:

1. Duct: For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least 2 inches.

2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 07 84 13 "Penetration Firestopping."

3.5 INSTALLATION OF MINERAL-FIBER INSULATION

A. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.

1. Apply adhesives according to manufacturer’s recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.

2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.

3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:

 a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.

 b. On duct sides with dimensions larger than 18 inches, place pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation lightly against surface at cross bracing.

 c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.

 d. Do not overcompress insulation during installation.

 e. Impale insulation over pins and attach speed washers.

 f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.

4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with tape. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.

 a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.

 b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped
pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches.

5. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.

6. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

B. Board Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.

1. Apply adhesives according to manufacturer’s recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.

2. Install either capacitor-discharge-weld pins and speed washers or standard-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 b. On duct sides with dimensions larger than 18 inches, space pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 d. Do not overcompress insulation during installation.
 e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.

3. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with tape. Install vapor barrier consisting of factory or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches.

4. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
5. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

3.6 FIELD-APPLIED JACKET INSTALLATION
A. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

3.7 FIRE-RATED INSULATION SYSTEM INSTALLATION
A. Where fire-rated insulation system is indicated, secure system to ducts and duct hangers and supports to maintain a continuous fire rating.
B. Insulate duct access panels and doors to achieve same fire rating as duct.
C. Install firestopping at penetrations through fire-rated assemblies. Fire-stop systems are specified in Section 07 84 13 "Penetration Firestopping."

3.8 FINISHES
A. Do not field paint aluminum or stainless-steel jackets.

3.9 FIELD QUALITY CONTROL
A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
B. Perform tests and inspections.
C. Tests and Inspections:
 1. Inspect ductwork, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each duct system defined in the "Duct Insulation Schedule, General" Article.
D. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.10 DUCT INSULATION SCHEDULE, GENERAL
A. Plenums and Ducts Requiring Insulation:
 1. Indoor, concealed supply and outdoor air.
 a. Exceptions: Room neutral DOAS supply ductwork.
2. Indoor, exposed supply and outdoor air (except where indicated as double-wall ductwork with interstitial insulation).
3. Indoor, concealed, Type I, commercial, kitchen hood exhaust.
4. Indoor, exposed, Type I, commercial, kitchen hood exhaust.
5. Indoor, concealed oven and warewash exhaust.
6. Indoor, exposed oven and warewash exhaust.
7. Indoor, concealed exhaust 10 feet from penetration of building exterior.
8. Indoor, exposed exhaust 10 feet from penetration of building exterior.
9. Outdoor, concealed supply and return.
10. Outdoor, exposed supply and return.

B. Items Not Insulated:
1. Fibrous-glass ducts.
2. Metal ducts with duct liner of sufficient thickness to comply with energy code and ASHRAE/IESNA 90.1.
3. Factory-insulated flexible ducts.
5. Flexible connectors.
7. Factory-insulated access panels and doors.

3.11 INDOOR DUCT AND PLENUM INSULATION SCHEDULE

A. Concealed, supply-air duct insulation shall be one of the following:
1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.

B. Concealed, outdoor-air duct insulation shall be one of the following:
1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.

C. Concealed, exhaust-air duct insulation that is within 10 feet of an exterior penetration shall be one of the following:
1. Mineral-Fiber Blanket: 1-1/2 inches thick and 0.75-lb/cu. ft. nominal density.

D. Concealed, Type I, Commercial, Kitchen Hood Exhaust Duct and Plenum Insulation: Fire-rated blanket or board; thickness as required to achieve 2-hour fire rating.

E. Concealed, Type II, Commercial, Kitchen Hood Exhaust Duct and Plenum Insulation: Mineral-Fiber Board: 2 inches thick and 2.25-lb/cu. ft. nominal density.

F. Concealed, supply-air plenum insulation shall be the following:

G. Concealed, outdoor-air plenum insulation shall be the following:
H. Concealed, exhaust-air plenum insulation shall be the following:
 1. Mineral-Fiber Board: 1-1/2 inches thick and 1.6-lb/cu. ft. nominal density.

I. Exposed, supply-air duct insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.

J. Exposed, outdoor-air duct insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density.

K. Exposed, exhaust-air duct insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 1-1/2 inches thick and 0.75-lb/cu. ft. nominal density.

L. Exposed, Type I, Commercial, Kitchen Hood Exhaust Duct and Plenum Insulation: Fire-rated board; thickness as required to achieve 2-hour fire rating.

M. Exposed, Type II, Commercial, Kitchen Hood Exhaust Duct and Plenum Insulation: Mineral-Fiber Board: 2 inches thick and 2.25-lb/cu. ft. nominal density.

N. Exposed, supply-air plenum insulation shall be the following:
 1. Mineral-Fiber Board: 1-1/2 inches thick and 1.6-lb/cu. ft. nominal density.

O. Exposed, outdoor-air plenum insulation shall be the following:

P. Exposed, exhaust-air plenum insulation shall be the following:
 1. Mineral-Fiber Board: 1-1/2 inches thick and 1.6-lb/cu. ft. nominal density.

3.12 ABOVEGROUND, OUTDOOR DUCT AND PLENUM INSULATION SCHEDULE

A. Insulation materials and thicknesses are identified below. If more than one material is listed for a duct system, selection from materials listed is Contractor's option.

B. Concealed, rectangular, supply-air duct insulation shall be [one of] the following:
 1. Mineral-Fiber Blanket: 2 inches and 1.5-lb/cu. ft. nominal density.

C. Concealed, rectangular, return-air duct insulation shall be the following:
 1. Mineral-Fiber Blanket: 2 inches and 1.5-lb/cu. ft. nominal density.

D. Exposed, rectangular, supply-air duct insulation shall be the following:
 1. Mineral-Fiber Board: 3 inches thick and 2-lb/cu. ft. nominal density.

E. Exposed, rectangular, return-air duct insulation shall be the following:
 1. Mineral-Fiber Board: 3 inches thick and 2-lb/cu. ft. nominal density.
3.13 INDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Ducts and Plenums, Concealed:

 1. None.

D. Ducts and Plenums, Exposed (except double-wall ducts):
 1. Painted Aluminum, Stucco Embossed: 0.032 inch thick.

3.14 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Ducts and Plenums, Exposed, up to 48 Inches in Diameter or with Flat Surfaces up to 72 Inches:

 1. Aluminum, Stucco Embossed.

END OF SECTION 23 07 13
SECTION 23 07 19
HVAC PIPING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes insulation for HVAC piping systems.
B. Related Sections:
 1. Section 23 07 13 "Duct Insulation" for duct insulation.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory and field applied if any).
B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 2. Detail insulation application at elbows and fittings, for each type of insulation.
 3. Detail application of field-applied jackets.

1.4 QUALITY ASSURANCE
A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products in accordance with ASTM E84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.
1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.6 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 23 05 29 "Hangers and Supports for HVAC Piping and Equipment."

B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

1.7 SCHEDULING

A. Schedule insulation application after pressure testing. Insulation application may begin on segments that have satisfactory test results.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Flexible Elastomeric: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C534/C534M, Type I for tubular materials, Type II for sheet materials.

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Aeroflex USA, Inc.
 b. Armacell LLC.

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Johns Manville; a Berkshire Hathaway company.
 b. Knauf Insulation.
 c. Manson Insulation Inc.
2. Preformed Pipe Insulation: Type I, Grade A with factory-applied ASJ-SSL.
3. 850 deg F.
4. Factory fabricate shapes in accordance with ASTM C450 and ASTM C585.
5. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

2.2 INSULATING CEMENTS

2.3 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.

 1. Flame-spread index shall be 25 or less and smoke-developed index shall be 50 or less as tested in accordance with ASTM E84.
 2. Wet Flash Point: Below 0 deg F.
 3. Service Temperature Range: 40 to 200 deg F.

C. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.

D. ASJ Adhesive and FSK and PVDC Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A, for bonding insulation/jacket lap seams and joints.

E. PVC Jacket Adhesive: Compatible with PVC jacket.

2.4 MASTICS AND COATINGS

A. Materials shall be compatible with insulation materials, jackets, and substrates.

B. Vapor-Retarder Mastic, Water Based: Suitable for indoor use on below-ambient services.
 1. Water-Vapor Permeance: Comply with ASTM E96/E96M or ASTM F1249.
 2. Service Temperature Range: 0 to plus 180 deg F.
 3. Comply with MIL-PRF-19565C, Type II, for permeance requirements.

C. Vapor-Retarder Mastic, Solvent Based, Outdoor Use: Suitable for outdoor use on below-ambient services.
 1. Water-Vapor Permeance: Comply with ASTM E96/E96M or ASTM F1249.
 2. Service Temperature Range: Minus 50 to plus 220 deg F.

D. Breather Mastic: Water based; suitable for indoor and outdoor use on above-ambient services.
1. Water-Vapor Permeance: ASTM E96/E96M, greater than 1.0 perm at manufacturer's recommended dry film thickness.
2. Service Temperature Range: 0 to plus 180 deg F.

2.5 SEALANTS

A. Materials shall be as recommended by the insulation manufacturer and shall be compatible with insulation materials, jackets, and substrates.

B. Joint Sealants:
 1. Permanently flexible, elastomeric sealant.
 a. Service Temperature Range: Minus 100 to plus 300 deg F.
 b. Color: White or gray.

C. FSK and Metal Jacket Flashing Sealants:
 1. Fire- and water-resistant, flexible, elastomeric sealant.
 2. Service Temperature Range: Minus 40 to plus 250 deg F.

D. ASJ Flashing Sealants and PVDC and PVC Jacket Flashing Sealants:
 1. Fire- and water-resistant, flexible, elastomeric sealant.
 2. Service Temperature Range: Minus 40 to plus 250 deg F.

2.6 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 1. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C1136, Type I.

2.7 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C1136, Type I, unless otherwise indicated.

B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Johns Manville; a Berkshire Hathaway company.
 b. P.I.C. Plastics, Inc.
 c. Proto Corporation.
 2. Adhesive: As recommended by jacket material manufacturer.
4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.

C. Metal Jacket:
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. ITW Insulation Systems; Illinois Tool Works, Inc.
 a. Sheet and roll stock ready for shop or field sizing.
 b. Finish and thickness are indicated in field-applied jacket schedules.
 c. Moisture Barrier for Outdoor Applications: 3-mil thick, heat-bonded polyethylene and kraft paper.
 d. Factory-Fabricated Fitting Covers:
 1) Same material, finish, and thickness as jacket.
 2) Preformed two-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 3) Tee covers.
 4) End caps.
 5) Beveled collars.
 6) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

2.8 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C1136.
 1. Width: 3 inches.
 2. Thickness: 11.5 mils.
 4. Elongation: 2 percent.
 5. Tensile Strength: 40 lbf/inch in width.
 6. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

B. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.
 1. Width: 2 inches.
 2. Thickness: 6 mils.
 3. Adhesion: 64 ounces force/inch in width.
 4. Elongation: 500 percent.
 5. Tensile Strength: 18 lbf/inch in width.
2.9 SECUREMENTS

A. Bands:
 1. Aluminum: ASTM B209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 1/2 inch wide with wing seal.

B. Wire: 0.062-inch soft-annealed, galvanized steel.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 1. Verify that systems to be insulated have been tested and are free of defects.
 2. Verify that surfaces to be insulated are clean and dry.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

B. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping, including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and of thicknesses required for each item of pipe system, as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during storage, application, and finishing. Replace insulation materials that get wet.
H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.

J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends attached to structure with vapor-barrier mastic.
 3. Install insert materials and insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

L. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover joints and seams with tape in accordance with insulation material manufacturer's written instructions, to maintain vapor seal.
 3. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.

M. Cut insulation in a manner to avoid compressing insulation more than 25 percent of its nominal thickness.

N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, tape and seal patches in similar fashion to butt joints.

P. For above-ambient services, do not install insulation to the following:
 1. Vibration-control devices.
 2. Testing agency labels and stamps.
 3. Nameplates and data plates.

3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
1. Seal penetrations with flashing sealant.
2. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
3. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.

1. Seal penetrations with flashing sealant.
2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
4. Seal jacket to wall flashing with flashing sealant.

C. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

D. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.

1. Comply with requirements in Section 07 84 13 "Penetration Firestopping" for firestopping and fire-resistant joint sealers.

E. Insulation Installation at Floor Penetrations:

1. Pipe: Install insulation continuously through floor penetrations.
2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 07 84 13 "Penetration Firestopping."

3.5 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials, except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings:

1. Install insulation over fittings, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as that of adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as that used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
4. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.

5. For services not specified to receive a field-applied jacket, except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing, using PVC tape.

3.6 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

A. Seal longitudinal seams and end joints with manufacturer’s recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

B. Insulation Installation on Pipe Fittings and Elbows:
 1. Install mitered sections of pipe insulation.
 2. Secure insulation materials and seal seams with manufacturer’s recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.7 INSTALLATION OF MINERAL-FIBER INSULATION

A. Insulation Installation on Straight Pipes and Tubes:
 1. Secure each layer of preformed pipe insulation to pipe with wire or bands, and tighten bands without deforming insulation materials.
 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
 3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward-clinched staples at 6 inches o.c.
 4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive, as recommended by insulation material manufacturer, and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Fittings and Elbows:
 1. Install preformed sections of same material as that of straight segments of pipe insulation when available.
 2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

3.8 FIELD-APPLIED JACKET INSTALLATION

A. Where PVC jackets are indicated and for horizontal applications, install with 1-inch overlap at longitudinal seams and end joints. Seal with manufacturer's recommended adhesive.
1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.

B. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with aluminum bands 12 inches o.c. and at end joints.

3.9 FINISHES

A. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.

B. Do not field paint aluminum or stainless-steel jackets.

3.10 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections: Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of welded fittings for each pipe service defined in the "Piping Insulation Schedule, General" Article.

C. All insulation applications will be considered defective if they do not pass tests and inspections.

D. Prepare test and inspection reports.

3.11 PIPING INSULATION SCHEDULE, GENERAL

A. Insulation conductivity and thickness per pipe size shall comply with schedules in this Section or with requirements of authorities having jurisdiction, whichever is more stringent.

B. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

C. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 1. Underground piping.
 2. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.12 INDOOR PIPING INSULATION SCHEDULE

A. Condensate and Equipment Drain Water below 60 Deg F:

 1. All Pipe Sizes: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.
B. Refrigerant Suction and Hot-Gas Piping:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Flexible Elastomeric: 1 inch thick.

C. Refrigerant Liquid Piping:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Flexible Elastomeric: 1 inch thick.

3.13 OUTDOOR, ABOVEGROUND PIPING INSULATION SCHEDULE
A. Refrigerant Suction and Hot-Gas Piping:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Flexible Elastomeric: 2 inches thick.

B. Refrigerant Liquid Piping:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Flexible Elastomeric: 2 inches thick.

3.14 INDOOR, FIELD-APPLIED JACKET SCHEDULE
A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Piping, Concealed:
 1. None.

D. Piping, Exposed:
 1. PVC: 20 mils thick.

3.15 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE
A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Piping, Exposed:
 1. Painted Aluminum, White, Stucco Embossed: 0.016 inch thick.

END OF SECTION 23 07 19
SECTION 23 09 23
DIRECT DIGITAL CONTROL (DDC) SYSTEM FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. DDC system for monitoring and controlling of HVAC systems.
 2. Delivery of selected control devices to equipment and systems manufacturers for factory installation and to HVAC systems installers for field installation.

B. Related Requirements:
 1. Section 23 09 23.12 "Control Dampers" for dampers and actuators that connect to DDC systems.
 2. Section 230923.23 "Pressure Instruments" for air pressure sensors, switches, transmitters and thermostats that connect to DDC systems.
 3. Section 230923.27 "Temperature Instruments" for air temperature sensors, switches, transmitters and thermostats that connect to DDC systems.
 4. Section 23 09 23.43 "Weather Stations" for weather stations that connect to DDC systems.
 5. Communications Cabling:
 a. Section 26 05 23 "Control-Voltage Electrical Power Cables" for balanced twisted pair communications cable.
 6. Raceways:
 a. Section 26 05 33 "Raceways and Boxes for Electrical Systems" for raceways for low-voltage control cable.
 7. Section 26 05 53 "Identification for Electrical Systems" for identification requirements for electrical components.

1.3 DEFINITIONS

A. Algorithm: A logical procedure for solving a recurrent mathematical problem. A prescribed set of well-defined rules or processes for solving a problem in a finite number of steps.
B. Analog: A continuously varying signal value, such as current, flow, pressure, or temperature.

C. BACnet Specific Definitions:

2. BACnet Interoperability Building Blocks (BIBBs): BIBB defines a small portion of BACnet functionality that is needed to perform a particular task. BIBBs are combined to build the BACnet functional requirements for a device.
3. BACnet/IP: Defines and allows using a reserved UDP socket to transmit BACnet messages over IP networks. A BACnet/IP network is a collection of one or more IP subnetworks that share the same BACnet network number.
5. PICS (Protocol Implementation Conformance Statement): Written document that identifies the particular options specified by BACnet that are implemented in a device.

D. Binary: Two-state signal where a high signal level represents "ON" or "OPEN" condition and a low signal level represents "OFF" or "CLOSED" condition. "Digital" is sometimes used interchangeably with "Binary" to indicate a two-state signal.

E. Controller: Generic term for any standalone, microprocessor-based, digital controller residing on a network, used for local or global control. Three types of controllers are indicated: Network Controller, Programmable Application Controller, and Application-Specific Controller.

F. Control System Integrator: An entity that assists in expansion of existing enterprise system and support of additional operator interfaces to I/O being added to existing enterprise system.

G. COV: Changes of value.

H. DDC System Provider: Authorized representative of, and trained by, DDC system manufacturer and responsible for execution of DDC system Work indicated.

I. Distributed Control: Processing of system data is decentralized and control decisions are made at subsystem level. System operational programs and information are provided to remote subsystems and status is reported back. On loss of communication, subsystems shall be capable of operating in a standalone mode using the last best available data.

J. DOCSIS: Data-Over Cable Service Interface Specifications.

K. E/P: Voltage to pneumatic.

L. Gateway: Bidirectional protocol translator that connects control systems that use different communication protocols.

M. HLC: Heavy load conditions.

N. I/O: System through which information is received and transmitted. I/O refers to analog input (AI), binary input (BI), analog output (AO) and binary output (BO). Analog signals are continuous and represent control influences such as flow, level, moisture, pressure, and...
temperature. Binary signals convert electronic signals to digital pulses (values) and generally represent two-position operating and alarm status. "Digital," (DI and (DO), is sometimes used interchangeably with "Binary," (BI) and (BO), respectively.

O. I/P: Current to pneumatic.

P. LAN: Local area network.

Q. LNS: LonWorks Network Services.

R. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control, signaling power-limited circuits.

S. Mobile Device: A data-enabled phone or tablet computer capable of connecting to a cellular data network and running a native control application or accessing a web interface.

T. Modbus TCP/IP: An open protocol for exchange of process data.

U. MS/TP: Master-slave/token-passing, IEE 8802-3. Datalink protocol LAN option that uses twisted-pair wire for low-speed communication.

V. MTBF: Mean time between failures.

W. Network Controller: Digital controller, which supports a family of programmable application controllers and application-specific controllers, that communicates on peer-to-peer network for transmission of global data.

X. Network Repeater: Device that receives data packet from one network and rebroadcasts it to another network. No routing information is added to protocol.

Y. Peer to Peer: Networking architecture that treats all network stations as equal partners.

Z. POT: Portable operator's terminal.

AA. PUE: Performance usage effectiveness.

BB. RAM: Random access memory.

CC. RF: Radio frequency.

DD. Router: Device connecting two or more networks at network layer.

EE. Server: Computer used to maintain system configuration, historical and programming database.

FF. TCP/IP: Transport control protocol/Internet protocol.

GG. UPS: Uninterruptible power supply.

HH. USB: Universal Serial Bus.

II. User Datagram Protocol (UDP): This protocol assumes that the IP is used as the underlying protocol.
1.4 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.5 ACTION SUBMITTALS

A. Multiple Submissions:

1. If multiple submissions are required to execute work within schedule, first submit a coordinated schedule clearly defining intent of multiple submissions. Include a proposed date of each submission with a detailed description of submittal content to be included in each submission.

2. Clearly identify each submittal requirement indicated and in which submission the information will be provided.

3. Include an updated schedule in each subsequent submission with changes highlighted to easily track the changes made to previous submitted schedule.

B. Product Data: For each type of product include the following:

1. Construction details, material descriptions, dimensions of individual components and profiles, and finishes.

2. Operating characteristics, electrical characteristics, and furnished accessories indicating process operating range, accuracy over range, control signal over range, default control signal with loss of power, calibration data specific to each unique application, electrical power requirements, and limitations of ambient operating environment, including temperature and humidity.

4. Installation, operation and maintenance instructions including factors affecting performance.

5. Bill of materials of indicating quantity, manufacturer, and extended model number for each unique product including but not limited to:

 a. Workstations.
 b. Printers.
 c. Gateways.
 d. Routers.
 e. Protocol analyzers.
 f. DDC controllers.
 g. Enclosures.
 h. Electrical power devices.
 i. UPS units.
 j. Accessories.
 k. Instruments.
I. Control dampers and actuators.

6. When manufacturer's product datasheets apply to a product series rather than a specific product model, clearly indicate and highlight only applicable information.

7. Each submitted piece of product literature shall clearly cross reference specification and drawings that submittal is to cover.

C. Software Submittal:

1. Cross-referenced listing of software to be loaded on each operator workstation, gateway, and DDC controller.

2. Description and technical data of all software provided, and cross-referenced to products in which software will be installed.

3. Operating system software, operator interface and programming software, color graphic software, DDC controller software, maintenance management software, and third-party software.

4. Include a flow diagram and an outline of each subroutine that indicates each program variable name and units of measure.

5. Listing and description of each engineering equation used with reference source.

6. Listing and description of each constant used in engineering equations and a reference source to prove origin of each constant.

7. Description of operator interface to alphanumeric and graphic programming.

8. Description of each network communication protocol.

9. Description of system database, including all data included in database, database capacity and limitations to expand database.

10. Description of each application program and device drivers to be generated, including specific information on data acquisition and control strategies showing their relationship to system timing, speed, processing burden and system throughout.

11. Controlled Systems: Instrumentation list with element name, type of device, manufacturer, model number, and product data. Include written description of sequence of operation including schematic diagram.

D. Shop Drawings:

1. General Requirements:

 a. Include cover drawing with Project name, location, Owner, Architect, Contractor and issue date with each Shop Drawings submission.

 b. Include a drawing index sheet listing each drawing number and title that matches information in each title block.

2. Include plans, elevations, sections, and mounting details where applicable.

3. Include details of product assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

4. Plan Drawings indicating the following:

 a. Screened backgrounds of walls, structural grid lines, HVAC equipment, ductwork and piping.

 b. Room names and numbers with coordinated placement to avoid interference with control products indicated.
c. Each desktop workstation, gateway, router, DDC controller, control panel instrument connecting to DDC controller, and damper connecting to DDC controller, if included in Project.
d. Exact placement of products in rooms, ducts, to reflect proposed installed condition.
e. Network communication cable and raceway routing.
f. Proposed routing of wiring, cabling, conduit, and tubing, coordinated with building services for review before installation.

5. Schematic drawings for each controlled HVAC system indicating the following:
 a. I/O points labeled with point names shown. Indicate instrument range, normal operating set points, and alarm set points. Indicate fail position of each damper, if included in Project.
 b. I/O listed in table format showing point name, type of device, manufacturer, model number, and cross-reference to product data sheet number.
 c. A graphic showing location of control I/O in proper relationship to HVAC system.
 d. Wiring diagram with each I/O point having a unique identification and indicating labels for all wiring terminals.
 e. Unique identification of each I/O that shall be consistently used between different drawings showing same point.
 f. Elementary wiring diagrams of controls for HVAC equipment motor circuits including interlocks, switches, relays and interface to DDC controllers.
 g. Narrative sequence of operation.
 h. Graphic sequence of operation, showing all inputs and output logical blocks.

6. Control panel drawings indicating the following:
 a. Panel dimensions, materials, size, and location of field cable and raceway.
 b. Interior subpanel layout, drawn to scale and showing all internal components, cabling and wiring raceways, nameplates and allocated spare space.
 c. Front, rear, and side elevations and nameplate legend.
 d. Unique drawing for each panel.

7. DDC system network riser diagram indicating the following:
 a. Each device connected to network with unique identification for each.
 b. Interconnection of each different network in DDC system.
 c. For each network, indicate communication protocol, speed and physical means of interconnecting network devices, such as copper cable type, or optical fiber cable type. Indicate raceway type and size for each.
 d. Each network port for connection of an operator workstation or other type of operator interface with unique identification for each.

8. DDC system electrical power riser diagram indicating the following:
 a. Each point of connection to field power with requirements (volts/phase/hertz/amperes/connection type) listed for each.
 b. Each control power supply including, as applicable, transformers, power-line conditioners, transient voltage suppression and high filter noise units, DC power supplies, and UPS units with unique identification for each.
c. Each product requiring power with requirements (volts/phase/hertz/amperes/connection type) listed for each.
d. Power wiring type and size, race type, and size for each.

9. Monitoring and control signal diagrams indicating the following:
 a. Control signal cable and wiring between controllers and I/O.
 b. Point-to-point schematic wiring diagrams for each product.

10. Color graphics indicating the following:
 a. Itemized list of color graphic displays to be provided.
 b. For each display screen to be provided, a true color copy showing layout of pictures, graphics and data displayed.
 c. Intended operator access between related hierarchical display screens.

E. System Description:

1. Full description of DDC system architecture, network configuration, operator interfaces and peripherals, servers, controller types and applications, gateways, routers and other network devices, and power supplies.
2. Complete listing and description of each report, log and trend for format and timing and events which initiate generation.
3. System and product operation under each potential failure condition including, but not limited to, the following:
 a. Loss of power.
 b. Loss of network communication signal.
 c. Loss of controller signals to inputs and outpoints.
 d. Operator workstation failure.
 e. Gateway failure.
 f. Network failure.
 g. Controller failure.
 h. Instrument failure.
 i. Control damper actuator failure.

4. Complete bibliography of documentation and media to be delivered to Owner.
5. Description of testing plans and procedures.
6. Description of Owner training.

F. Delegated-Design Submittal: For DDC system products and installation indicated as being delegated.

1. Supporting documentation showing DDC system design complies with performance requirements indicated, including calculations and other documentation necessary to prove compliance.
2. Schedule and design calculations for control dampers and actuators.
 a. Flow at Project design and minimum flow conditions.
 b. Face velocity at Project design and minimum airflow conditions.
 c. Pressure drop across damper at Project design and minimum airflow conditions.
d. AMCA 500-D damper installation arrangement used to calculate and schedule pressure drop, as applicable to installation.

e. Maximum close-off pressure.

f. Leakage airflow at maximum system pressure differential (fan close-off pressure).

g. Torque required at worst case condition for sizing actuator.

h. Actuator selection indicating torque provided.

i. Actuator signal to control damper (on, close or modulate).

j. Actuator position on loss of power.

k. Actuator position on loss of control signal.

1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data:

1. Systems Provider Qualification Data:

 a. Resume of project manager assigned to Project.

b. Resumes of application engineering staff assigned to Project.

c. Resumes of installation and programming technicians assigned to Project.

d. Resumes of service technicians assigned to Project.

e. Brief description of past project including physical address, floor area, number of floors, building system cooling and heating capacity and building’s primary function.

f. Description of past project DDC system, noting similarities to Project scope and complexity indicated.

g. Names of staff assigned to past project that will also be assigned to execute work of this Project.

h. Owner contact information for past project including name, phone number, and e-mail address.

i. Contractor contact information for past project including name, phone number, and e-mail address.

j. Architect contact information for past project including name, phone number, and e-mail address.

2. Manufacturer's qualification data.

3. Testing agency's qualifications data.

B. Product Certificates:

1. Data Communications Protocol Certificates: Certifying that each proposed DDC system component complies with ASHRAE 135.

C. Product Test Reports: For each product that requires testing to be performed by manufacturer.

D. Sample Warranty: For manufacturer's warranty.
1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For DDC system to include in emergency, operation and maintenance manuals.

1. In addition to items specified in Section 01 78 23 "Operation and Maintenance Data," include the following:

 a. Project Record Drawings of as-built versions of submittal Shop Drawings provided in electronic PDF format.
 b. Testing and commissioning reports and checklists of completed final versions of reports, checklists, and trend logs.
 c. As-built versions of submittal Product Data.
 d. Names, addresses, e-mail addresses and 24-hour telephone numbers of Installer and service representatives for DDC system and products.
 e. Operator's manual with procedures for operating control systems including logging on and off, handling alarms, producing point reports, trending data, overriding computer control and changing set points and variables.
 f. Programming manuals with description of programming language and syntax, of statements for algorithms and calculations used, of point database creation and modification, of program creation and modification, and of editor use.
 g. Engineering, installation, and maintenance manuals that explain how to:

 1) Design and install new points, panels, and other hardware.
 2) Perform preventive maintenance and calibration.
 3) Debug hardware problems.
 4) Repair or replace hardware.
 h. Documentation of all programs created using custom programming language including set points, tuning parameters, and object database.
 i. Backup copy of graphic files, programs, and database on electronic media such as DVDs.
 j. List of recommended spare parts with part numbers and suppliers.
 k. Complete original-issue documentation, installation, and maintenance information for furnished third-party hardware including computer equipment and sensors.
 l. Complete original-issue copies of furnished software, including operating systems, custom programming language, operator workstation software, and graphics software.
 m. Licenses, guarantees, and warranty documents.
 n. Recommended preventive maintenance procedures for system components, including schedule of tasks such as inspection, cleaning, and calibration; time between tasks; and task descriptions.
 o. Owner training materials.

1.8 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials and parts that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
B. Include product manufacturers' recommended parts lists for proper product operation over four-year period following warranty period. Parts list shall be indicated for each year.

1.9 QUALITY ASSURANCE

A. DDC System Manufacturer Qualifications:

1. Nationally recognized manufacturer of DDC systems and products.
2. DDC systems with similar requirements to those indicated for a continuous period of five years within time of bid.
3. DDC systems and products that have been successfully tested and in use on at least five past projects.
4. Having complete published catalog literature, installation, operation, and maintenance manuals for all products intended for use.
5. Having full-time in-house employees for the following:
 a. Product research and development.
 b. Product and application engineering.
 c. Product manufacturing, testing and quality control.
 d. Technical support for DDC system installation training, commissioning and troubleshooting of installations.
 e. Owner operator training.

B. DDC System Provider Qualifications:

1. Authorized representative of, and trained by, DDC system manufacturer.
2. Demonstrated past experience with installation of DDC system products being installed for period within five consecutive years before time of bid.
3. Demonstrated past experience on five projects of similar complexity, scope and value.
4. Each person assigned to Project shall have demonstrated past experience.
5. Staffing resources of competent and experienced full-time employees that are assigned to execute work according to schedule.
6. Service and maintenance staff assigned to support Project during warranty period.
7. Product parts inventory to support ongoing DDC system operation for a period of not less than 5 years after Substantial Completion.
8. DDC system manufacturer's backing to take over execution of Work if necessary to comply with requirements indicated. Include Project-specific written letter, signed by manufacturer's corporate officer, if requested.

C. Testing Agency Qualifications: Member company of NETA.

1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

1.10 WARRANTY

A. Manufacturer's Warranty: Manufacturer and Installer agree to repair or replace products that fail in materials or workmanship within specified warranty period.
1. Failures shall be adjusted, repaired, or replaced at no additional cost or reduction in service to Owner.
2. Include updates or upgrades to software and firmware if necessary to resolve deficiencies.
 a. Install updates only after receiving Owner's written authorization.
3. Warranty service shall occur during normal business hours and commence within 24 hours of Owner's warranty service request.
4. Warranty Period: Two year(s) from date of Substantial Completion.
 a. For Gateway: Two-year parts and labor warranty for each.

PART 2 - PRODUCTS

2.1 DDC SYSTEM MANUFACTURERS
A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 1. Automated Logic Corporation.
 2. Delta Controls Inc.
 3. Distech Controls.
 4. Honeywell International Inc.
 5. Invensys Building Systems.
 6. Johnson Controls, Inc.
 7. Reliable Controls Corporation.
 8. Schneider Electric USA, Inc.

2.2 DDC SYSTEM DESCRIPTION
A. Microprocessor-based monitoring and control including analog/digital conversion and program logic. A control loop or subsystem in which digital and analog information is received and processed by a microprocessor, and digital control signals are generated based on control algorithms and transmitted to field devices to achieve a set of predefined conditions.
 1. DDC system shall consist of a high-speed, peer-to-peer network of distributed DDC controllers, other network devices, operator interfaces, and software.
B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.3 WEB ACCESS
A. DDC system shall be Web compatible.
 1. Web-Compatible Access to DDC System:
a. Workstation shall perform overall system supervision and configuration, graphical user interface, management report generation, and alarm annunciation.
b. DDC system shall support Web browser access to building data. Operator using a standard Web browser shall be able to access control graphics and change adjustable set points.
c. Web access shall be password protected and support complex password character combinations and passwords greater than 12 characters in length.

2.4 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional to design DDC system to satisfy requirements indicated.

1. System Performance Objectives:
 a. DDC system shall manage HVAC systems.
 b. DDC system control shall operate HVAC systems to achieve optimum operating costs while using least possible energy and maintaining specified performance.
 c. DDC system shall respond to power failures, HVAC equipment failures, and adverse and emergency conditions encountered through connected I/O points.
 d. DDC system shall operate while unattended by an operator and through operator interaction.
 e. DDC system shall record trends and transaction of events and produce report information such as performance, energy, occupancies, and equipment operation.

B. Surface-Burning Characteristics: Products installed in ducts, equipment, and return-air paths shall comply with ASTM E84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.

1. Flame-Spread Index: 25 or less.
2. Smoke-Developed Index: 50 or less.

C. DDC System Speed:

1. Response Time of Connected I/O:
 a. AI point values connected to DDC system shall be updated at least every five seconds for use by DDC controllers. Points used globally shall also comply with this requirement.
 b. BI point values connected to DDC system shall be updated at least every five seconds for use by DDC controllers. Points used globally shall also comply with this requirement.
 c. AO points connected to DDC system shall begin to respond to controller output commands within two second(s). Global commands shall also comply with this requirement.
 d. BO point values connected to DDC system shall respond to controller output commands within two second(s). Global commands shall also comply with this requirement.

2. Display of Connected I/O:
a. Analog point COV connected to DDC system shall be updated and displayed at least every 10 seconds for use by operator.

b. Binary point COV connected to DDC system shall be updated and displayed at least every 10 seconds for use by operator.

c. Alarms of analog and digital points connected to DDC system shall be displayed within 45 seconds of activation or change of state.

d. Graphic display refresh shall update within eight seconds.

e. Point change of values and alarms displayed from workstation to workstation when multiple operators are viewing from multiple workstations shall not exceed graphic refresh rate indicated.

D. Network Bandwidth: Design each network of DDC system to include at least 20 percent available spare bandwidth with DDC system operating under normal and heavy load conditions indicated. Calculate bandwidth usage, and apply a safety factor to ensure that requirement is satisfied when subjected to testing under worst case conditions.

E. DDC System Data Storage:

1. Include capability to archive not less than 24 consecutive months of historical data for all I/O points connected to system, including alarms, event histories, transaction logs, trends and other information indicated.

2. Local Storage:

 a. Provide workstation with data storage indicated. Server(s) shall use IT industry standard database platforms and be capable of functions described in "DDC Data Access" Paragraph.

3. Cloud Storage:

 a. Provide application-based and web browser interfaces to configure, upload, download, and manage data, and service plan with storage adequate to store all data for term indicated. Cloud storage shall use IT industry standard database platforms and be capable of functions described in "DDC Data Access" Paragraph.

F. DDC Data Access:

1. When logged into the system, operator shall be able to also interact with any DDC controller connected to DDC system as required for functional operation of DDC system.

2. System(s) shall be used for application configuration; for archiving, reporting and trending of data; for operator transaction archiving and reporting; for network information management; for alarm annunciation; and for operator interface tasks and controls application management.

G. Future Expandability:

1. DDC system size shall be expandable to an ultimate capacity of at least two times total I/O points indicated.

2. Additional DDC controllers, I/O and associated wiring shall be all that is needed to achieve ultimate capacity. Initial network infrastructure shall be designed and installed to support ultimate capacity.
3. Operator interfaces installed initially shall not require hardware and software additions and revisions for ultimate capacity.

H. Input Point Displayed Accuracy: Input point displayed values shall meet following end-to-end overall system accuracy, including errors associated with meter, sensor, transmitter, lead wire or cable, and analog to digital conversion.

1. Moisture (Relative Humidity):
 a. Air: Within 2 percent RH.
 b. Outdoor: Within 2 percent RH.

2. Pressure:
 a. Air, Ducts and Equipment: 1 percent of instrument span.

3. Speed: Within 5 percent of reading.

4. Temperature, Dew Point:
 a. Air: Within 0.5 deg F.
 b. Outdoor: Within 2 deg F.

5. Temperature, Dry Bulb:
 a. Air: Within 0.5 deg F.
 b. Space: Within 0.5 deg F.
 c. Outdoor: Within 1 deg F.
 d. Energy Recovery Runaround Liquid: Within 0.5 deg F.
 e. Temperature Difference: Within 0.25 deg F.
 f. Other Temperatures Not Indicated: Within 0.5 deg F.

6. Temperature, Wet Bulb:
 a. Air: Within 0.5 deg F.
 b. Space: Within 0.5 deg F.
 c. Outdoor: Within 1 deg F.

I. Precision of I/O Reported Values: Values reported in database and displayed shall have following precision:

1. Current:
 a. Milliamperes: Nearest 1/100th of a milliampere.
 b. Amperes: Nearest 1/10th of an ampere up to 100 A; nearest ampere for 100 A and more.

2. Energy:

3. Moisture (Relative Humidity):
 a. Relative Humidity (Percentage): Nearest 1 percent.

4. Speed:
5. Position, Dampers and Valves (Percentage Open): Nearest 1 percent.

6. Pressure:
 a. Air, Ducts and Equipment: Nearest 1/10th in. w.c..
 b. Space: Nearest 1/100th in. w.c..

7. Temperature:
 a. Air, Ducts and Equipment: Nearest 1/10th of a degree.
 b. Outdoor: Nearest degree.
 c. Space: Nearest 1/10th of a degree.
 d. Heat Recovery Runaround: Nearest 1/10th of a degree.

J. Control Stability: Control variables indicated within the following limits:

1. Moisture (Relative Humidity):
 a. Air: Within 2 percent RH.
 b. Space: Within 2 percent RH.
 c. Outdoor: Within 2 percent RH.

2. Pressure:
 a. Air, Ducts and Equipment: 0.5 percent of instrument span.

3. Temperature, Dew Point:
 a. Air: Within 0.5 deg F.
 b. Space: Within 0.5 deg F.

4. Temperature, Dry Bulb:
 a. Air: Within 0.5 deg F.
 b. Space: Within 0.5 deg F.
 c. Energy Recovery Runaround Liquid: Within 0.5 deg F.
 d. .

5. Temperature, Wet Bulb:
 a. Air: Within 0.5 deg F.
 b. Space: Within 0.5 deg F.

K. Environmental Conditions for Controllers, Gateways, and Routers:

1. Products shall operate without performance degradation under ambient environmental temperature, pressure and humidity conditions encountered for installed location.
a. If product alone cannot comply with requirement, install product in a protective enclosure that is isolated and protected from conditions impacting performance. Enclosure shall be internally insulated, electrically heated, cooled and ventilated as required by product and application.

2. Products shall be protected with enclosures satisfying the following minimum requirements unless more stringent requirements are indicated. Products not available with integral enclosures complying with requirements indicated shall be housed in protective secondary enclosures. Installed location shall dictate the following NEMA 250 enclosure requirements:
 a. Outdoors, Protected: Type 3.
 b. Outdoors, Unprotected: Type 4X.
 c. Indoors, Heated with Filtered Ventilation: Type 1.
 d. Indoors, Heated with Non-Filtered Ventilation: Type 12.
 e. Indoors, Heated and Air Conditioned: Type 1.
 f. Mechanical Equipment Rooms:
 1) Air-Moving Equipment Rooms: Type 12.
 g. Within Duct Systems and Air-Moving Equipment Not Exposed to Possible Condensation: Type 3.
 h. Within Duct Systems and Air-Moving Equipment Exposed to Possible Condensation: Type 4.

L. Environmental Conditions for Instruments and Actuators:
 1. Instruments and actuators shall operate without performance degradation under the ambient environmental temperature, pressure, humidity, and vibration conditions specified and encountered for installed location.
 a. If instruments and actuators alone cannot comply with requirement, install instruments and actuators in protective enclosures that are isolated and protected from conditions impacting performance. Enclosure shall be internally insulated, electrically heated, cooled and ventilated as required by instrument and application.
 2. Instruments, actuators and accessories shall be protected with enclosures satisfying the following minimum requirements unless more stringent requirements are indicated. Instruments and actuators not available with integral enclosures complying with requirements indicated shall be housed in protective secondary enclosures. Installed location shall dictate the following NEMA 250 enclosure requirements:
 a. Outdoors, Protected: Type 3.
 b. Outdoors, Unprotected: Type 4X.
 c. Indoors, Heated with Filtered Ventilation: Type 1.
 d. Indoors, Heated with Non-Filtered Ventilation: Type 12.
 e. Indoors, Heated and Air-conditioned: Type 1.
 f. Mechanical Equipment Rooms:
 1) Air-Moving Equipment Rooms: Type 12.
 g. Within Duct Systems and Air-Moving Equipment Not Exposed to Possible Condensation: Type 12.
h. Within Duct Systems and Air-Moving Equipment Exposed to Possible Condensation: Type 4.

M. UPS:

1. DDC system products powered by UPS units shall include the following:
 a. Desktop workstations.

N. Continuity of Operation after Electric Power Interruption:

1. Equipment and associated factory-installed controls, field-installed controls, electrical equipment, and power supply connected to building normal shall automatically return equipment and associated controls to operating state occurring immediately before loss of normal power, without need for manual intervention by operator when power is restored through normal power.

2.5 PANEL-MOUNTED, MANUAL OVERRIDE SWITCHES

A. Manual Override of Control Dampers:

1. Include panel-mounted, two-position, selector switch for each automatic control damper being controlled by DDC controller.
2. Label each switch with damper designation served by switch.
3. Label switch positions to indicate either "Manual" or "Auto" control signal to damper.
4. With switch in "Auto" position signal to control damper actuator shall be control loop output signal from DDC controller.
5. With switch in "Manual" position, signal to damper actuator shall be controlled at panel with either an integral or separate switch to include local control.
 a. For Binary Control Dampers: Manual two-position switch shall have "Close" and "Open" switch positions indicated. With switch in "Close" position, damper shall close. With switch in "Open" position, damper shall open.
 b. For Analog Control Dampers: A gradual switch shall have "Close" and "Open" switch limits indicated. Operator shall be able to rotate switch knob to adjust damper to any position from close to open.
6. DDC controller shall monitor and report position of each manual override selector switch. With switch placed in "manual" position, DDC controller shall signal an override condition to alert operator that damper is under manual, not automatic, control.

2.6 SYSTEM ARCHITECTURE

A. System architecture shall consist of no more than three levels of LANs.

1. Level one LAN shall connect network controllers and operator workstations.
2. Level two LAN shall connect programmable application controllers to other programmable application controllers, and to network controllers.
3. Level three LAN shall connect application-specific controllers to programmable application controllers and network controllers.

B. Minimum Data Transfer and Communication Speed:

1. LAN Connecting Operator Workstations and Network Controllers: 100 Mbps.
2. LAN Connecting Programmable Application Controllers: 1000 kbps.
3. LAN Connecting Application-Specific Controllers: 115,000 bps.

C. DDC system shall consist of dedicated LANs that are not shared with other building systems and tenant data and communication networks.

D. System architecture shall be modular and have inherent ability to expand to not less than two times system size indicated with no impact to performance indicated.

E. System architecture shall perform modifications without having to remove and replace existing network equipment.

F. Number of LANs and associated communication shall be transparent to operator. All I/O points residing on any LAN shall be capable of global sharing between all system LANs.

G. System design shall eliminate dependence on any single device for system alarm reporting and control execution. Each controller shall operate independently by performing its' own control, alarm management and historical data collection.

2.7 DDC SYSTEM OPERATOR INTERFACES

A. Operator Means of System Access: Operator shall be able to access entire DDC system through any of multiple means, including, but not limited to, the following:

1. Desktop and portable workstation with hardwired connection through LAN port.
2. Mobile device and application with secured wireless connection through LAN router or cellular data service.
3. Remote connection through web access.

B. Access to system, regardless of operator means used, shall be transparent to operator.

C. Network Ports: For hardwired connection of desktop or portable workstation. Network port shall be easily accessible, properly protected, clearly labeled, and installed at the following locations:

1. Each mechanical equipment room.
2. Each different roof level with roof-mounted air-handling units or rooftop units.
4. Fire-alarm system command center.

D. Desktop Workstations:

1. Connect to DDC system Level one LAN through a communications port directly on LAN or through a communications port on a DDC controller.
2. Able to communicate with any device located on any DDC system LAN.

E. Portable Workstations:
 1. Connect to DDC system Level one LAN through a communications port directly on LAN or through a communications port on a DDC controller.
 2. Able to communicate with any device located on any DDC system LAN.
 3. Connect to DDC system Level two or Level three LAN through a communications port on an application-specific controller, or a room temperature sensor connected to an application-specific controller.
 4. Connect to system through a wireless router connected to Level one LAN.
 5. Connect to system through a cellular data service.
 6. Portable workstation shall be able to communicate with any device connected to any system LAN regardless of point of physical connection to system.
 7. Monitor, program, schedule, adjust set points, and report capabilities of I/O connected anywhere in system.
 8. Have dynamic graphic displays that are identical to desktop workstations.

F. Mobile Device:
 1. Able to communicate with any DDC controller connected to DDC system using a dedicated application and secure web access.

G. Critical Alarm Reporting:
 1. Operator-selected critical alarms shall be sent by DDC system to notify operator of critical alarms that require immediate attention.
 2. DDC system shall send alarm notification to multiple recipients that are assigned for each alarm.
 3. DDC system shall notify recipients by any or all means, including e-mail, text message and prerecorded phone message to mobile and landline phone numbers.

H. Simultaneous Operator Use: Capable of accommodating up to five simultaneous operators that are accessing DDC system through any one of operator interfaces indicated.

2.8 NETWORKS

A. Acceptable networks for connecting workstations, mobile devices, and network controllers include the following:
 1. IP.

B. Acceptable networks for connecting programmable application controllers include the following:
 1. IP.

C. Acceptable networks for connecting application-specific controllers include the following:
 1. IP.
2.9 NETWORK COMMUNICATION PROTOCOL

A. Network communication protocol(s) used throughout entire DDC system shall be open to Owner and available to other companies for use in making future modifications to DDC system.

B. ASHRAE 135 Protocol:
 1. ASHRAE 135 communication protocol shall be sole and native protocol used throughout entire DDC system.
 2. DDC system shall not require use of gateways except to integrate HVAC equipment and other building systems and equipment, not required to use ASHRAE 135 communication protocol.
 3. If used, gateways shall connect to DDC system using ASHRAE 135 communication protocol and Project object properties and read/write services indicated by interoperability schedule.
 4. Operator workstations, controllers and other network devices shall be tested and listed by BACnet Testing Laboratories.

2.10 DESKTOP WORKSTATIONS

A. Description: A tower or all-in-one computer designed for normal use at a single, semipermanent location.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Dell Inc.
 2. HP.

C. Performance Requirements:
 1. Performance requirements may dictate equipment exceeding minimum requirements indicated.
 2. Energy Star compliant.

D. Personal Computer:
 1. Minimum Processor Speed: 4.2 gigahertz.
 2. RAM:
 a. Capacity: 8GB.
 b. Speed and Type: 1333 MHz.
 3. Hard Drives:
 b. Number of Hard Drives: Two.
 c. Capacity: 1 terabyte.
 d. Configure the two disks in a RAID 1 (Redundant Array of Independent Disks) configuration
4. Optical Drive:
 a. Type: DVD +/-RW Drive

5. At least four expansion slots of 64 bit.

6. Video Card:
 b. RAM: 4 GB.

7. Sound Card:
 a. At least 128 voice wavetable synthesis.
 b. Capable of delivering three-dimensional sound effects.
 c. High-resolution 16-bit stereo digital audio recording and playback with user-selectable sample rates up to 48,000 Hz.

8. Network Interface Card: Include card with connection, as applicable.
 a. 10-100-1000 base TX Ethernet with RJ45 connector port.

9. Wireless Ethernet, 802.11 a/b/g/n.

10. I/O Ports:
 a. Two USB 3.0 ports on front panel, six on back panel, and three internal on motherboard.
 b. One serial port.
 c. One parallel port.
 d. Two PS/2 ports.
 e. One RJ-45.
 f. One stereo line-in and headphone/line-out on back panel.
 g. One microphone and headphone connector on front panel.
 h. One IEEE 1394 on front and back panel with PCI-e card.
 i. One ESATA port on back panel.

11. Battery: Life of at least three years to maintain system clock/calendar and ROM, as a minimum.

E. Keyboard:
 1. 101 enhanced keyboard.
 2. Full upper- and lowercase ASCII keyset, numeric keypad, dedicated cursor control keypad, and 12 programmable function keys.
 3. Wireless operation within up to 72 inches in front of workstation.

F. Pointing Device:
 1. Either a two- or three-button mouse.
 2. Wireless operation within up to 72 inches in front of workstation.

G. Flat Panel Display Monitor:
1. Display:
 a. Color display with 21 inch diagonal viewable area.
 b. Digital input signal.
 d. Antiglare display.
 e. Energy Star compliant.
 f. Resolution: 1920 by 1080 pixels at 60 Hz with pixel size of 0.277 mm or smaller.
 g. Number of Displays: Two.
 h. Monitor-compatible Stereo speaker-bar attachment with USB cable.

H. I/O Cabling: Include applicable cabling to connect I/O devices.

2.11 PRINTERS

A. Black and White Laser Printer:
 1. 1200 by 1200 dots per inch resolution.
 2. First sheet printed within 10 seconds.
 3. Complies with Energy Star requirements.

2.12 SYSTEM SOFTWARE

A. System Software Minimum Requirements:
 1. Real-time multitasking and multiuser 64-bit operating system that allows concurrent multiple operator workstations operating and concurrent execution of multiple real-time programs and custom program development.
 2. Operating system shall be capable of operating DOS and Microsoft Windows applications.
 3. Database management software shall manage all data on an integrated and non-redundant basis. Additions and deletions to database shall be without detriment to existing data. Include cross linkages so no data required by a program can be deleted by an operator until that data have been deleted from respective programs.
 4. Network communications software shall manage and control multiple network communications to provide exchange of global information and execution of global programs.
 5. Operator interface software shall include day-to-day operator transaction processing, alarm and report handling, operator privilege level and data segregation control, custom programming, and online data modification capability.
 6. Scheduling software shall schedule centrally based time and event, temporary, and exception day programs.

B. Operator Interface Software:
 1. Minimize operator training through use of English language prorating and English language point identification.
 2. Minimize use of a typewriter-style keyboard through use of a pointing device similar to a mouse.
3. Operator sign-off shall be a manual operation or, if no keyboard or mouse activity takes place, an automatic sign-off.
4. Automatic sign-off period shall be programmable from one to 60 minutes in one-minute increments on a per operator basis.
5. Security Access:
 a. Operator access to DDC system shall be under password control.
 b. An alphanumeric password shall be field assignable to each operator.
 c. Operators shall be able to access DDC system by entry of proper password.
 d. Operator password shall be same regardless of which computer or other interface means is used.
 e. Additions or changes made to passwords shall be updated automatically.
 f. Each operator shall be assigned an access level to restrict access to data and functions the operator is capable of performing.
 g. Software shall have at least five access levels.
 h. Each menu item shall be assigned an access level so that a one-for-one correspondence between operator assigned access level(s) and menu item access level(s) is required to gain access to menu item.
 i. Display menu items to operator with those capable of access highlighted. Menu and operator access level assignments shall be online programmable and under password control.
6. Data Segregation:
 a. Include data segregation for control of specific data routed to a workstation, to an operator or to a specific output device, such as a printer.
 b. Include at least 32 segregation groups.
 c. Segregation groups shall be selectable such as "fire points," "fire points on second floor," "space temperature points," "HVAC points," and so on.
 d. Points shall be assignable to multiple segregation groups. Display and output of data to printer or monitor shall occur where there is a match of operator or peripheral segregation group assignment and point segregations.
 e. Alarms shall be displayed and printed at each peripheral to which segregation allows, but only those operators assigned to peripheral and having proper authorization level will be allowed to acknowledge alarms.
 f. Operators and peripherals shall be assignable to multiple segregation groups and all assignments are to be online programmable and under password control.
7. Operators shall be able to perform commands including, but not limited to, the following:
 a. Start or stop selected equipment.
 b. Adjust set points.
 c. Add, modify, and delete time programming.
 d. Enable and disable process execution.
 e. Lock and unlock alarm reporting for each point.
 f. Enable and disable totalization for each point.
 g. Enable and disable trending for each point.
 h. Override control loop set points.
 i. Enter temporary override schedules.
 j. Define holiday schedules.
 k. Change time and date.
l. Enter and modify analog alarm limits.
m. Enter and modify analog warning limits.
n. View limits.
o. Enable and disable demand limiting.
p. Enable and disable duty cycle.
q. Display logic programming for each control sequence.

8. Reporting:
 a. Generated automatically and manually.
 b. Sent to displays, printers and disk files.
 c. Types of Reporting:
 1) General listing of points.
 2) List points currently in alarm.
 3) List of off-line points.
 4) List points currently in override status.
 5) List of disabled points.
 6) List points currently locked out.
 7) List of items defined in a "Follow-Up" file.
 8) List weekly schedules.
 9) List holiday programming.
 10) List of limits and deadbands.

9. Summaries: For specific points, for a logical point group, for an operator selected group(s), or for entire system without restriction due to hardware configuration.

C. Graphic Interface Software:
 1. Include a full interactive graphical selection means of accessing and displaying system data to operator. Include at least five levels with the penetration path operator assignable (for example, site, building, floor, air-handling unit, and supply temperature loop). Native language descriptors assigned to menu items are to be operator defined and modifiable under password control.
 2. Include a hierarchical-linked dynamic graphic operator interface for accessing and displaying system data and commanding and modifying equipment operation. Interface shall use a pointing device with pull-down or penetrating menus, color and animation to facilitate operator understanding of system.
 3. Include at least 10 levels of graphic penetration with the hierarchy operator assignable.
 4. Descriptors for graphics, points, alarms and such shall be modified through operator's workstation under password control.
 5. Graphic displays shall be online user definable and modifiable using the hardware and software provided.
 6. Data to be displayed within a graphic shall be assignable regardless of physical hardware address, communication or point type.
 7. Graphics are to be online programmable and under password control.
 8. Points may be assignable to multiple graphics where necessary to facilitate operator understanding of system operation.
 9. Graphics shall also contain software points.
 10. Penetration within a graphic hierarchy shall display each graphic name as graphics are selected to facilitate operator understanding.
11. Back-trace feature shall permit operator to move upward in the hierarchy using a pointing device. Back trace shall show all previous penetration levels. Include operator with option of showing each graphic full screen size with back trace as horizontal header or by showing a "stack" of graphics, each with a back trace.

12. Display operator accessed data on the monitor.

13. Operator shall select further penetration using pointing device to click on a site, building, floor, area, equipment, and so on. Defined and linked graphic below that selection shall then be displayed.

14. Include operator with means to directly access graphics without going through penetration path.

15. Dynamic data shall be assignable to graphics.

16. Display points (physical and software) with dynamic data provided by DDC system with appropriate text descriptors, status or value, and engineering unit.

17. Use color, rotation, or other highly visible means, to denote status and alarm states. Color shall be variable for each class of points, as chosen by operator.

18. Points shall be dynamic with operator adjustable update rates on a per point basis from one second to over a minute.

19. For operators with appropriate privilege, points shall be commanded directly from display using pointing device.

 a. For an analog command point such as set point, current conditions and limits shall be displayed and operator can position new set point using pointing device.

 b. For a digital command point such as valve position, valve shall show its current state such as open or closed and operator could select alternative position using pointing device.

 c. Keyboard equivalent shall be available for those operators with that preference.

20. Operator shall be able to split or resize viewing screen into quadrants to show one graphic on one quadrant of screen and other graphics or spreadsheet, bar chart, word processing, curve plot, and other information on other quadrants on screen. This feature shall allow real-time monitoring of one part of system while displaying other parts of system or data to better facilitate overall system operation.

21. Help Features:

 a. On-line context-sensitive help utility to facilitate operator training and understanding.

 b. Bridge to further explanation of selected keywords. Document shall contain text and graphics to clarify system operation.

 1) If help feature does not have ability to bridge on keywords for more information, a complete set of user manuals shall be provided in an indexed word-processing program, which shall run concurrently with operating system software.

 c. Available for Every Menu Item:

 1) Index items for each system menu item.

22. Graphic generation software shall allow operator to add, modify, or delete system graphic displays.
a. Include libraries of symbols depicting HVAC symbols such as fans, coils, filters, dampers, valves, pumps, and electrical symbols similar to those indicated.
b. Graphic development package shall use a pointing device in conjunction with a drawing program to allow operator to perform the following:
 1) Define background screens.
 2) Define connecting lines and curves.
 3) Locate, orient and size descriptive text.
 4) Define and display colors for all elements.
 5) Establish correlation between symbols or text and associated system points or other displays.

D. Project-Specific Graphics: Graphics documentation including, but not limited to, the following:

1. Site plan showing each building, and additional site elements, which are being controlled or monitored by DDC system.
2. Plan for each building floor, including interstitial floors, and each roof level of each building, showing the following:
 a. Room layouts with room identification and name.
 b. Locations and identification of all monitored and controlled HVAC equipment and other equipment being monitored and controlled by DDC system.
 c. Location and identification of each hardware point being controlled or monitored by DDC system.
3. Control schematic for each of the following, including a graphic system schematic representation, similar to that indicated on Drawings, with point identification, set point and dynamic value indication, sequence of operation and control logic diagram.
4. Graphic display for each piece of equipment connected to DDC system through a data communications link, including dynamic indication of all points associated with equipment.
5. DDC system network riser diagram that shows schematic layout for entire system including all networks and all controllers, gateways, operator workstations and other network devices.

E. Customizing Software:

1. Software to modify and tailor DDC system to specific and unique requirements of equipment installed, to programs implemented and to staffing and operational practices planned.
2. Online modification of DDC system configuration, program parameters, and database using menu selection and keyboard entry of data into preformatted display templates.
3. As a minimum, include the following modification capability:
 a. Operator assignment shall include designation of operator passwords, access levels, point segregation and auto sign-off.
 b. Peripheral assignment capability shall include assignment of segregation groups and operators to consoles and printers, designation of backup workstations and printers, designation of workstation header points and enabling and disabling of print-out of operator changes.
 c. System configuration and diagnostic capability shall include communications and peripheral port assignments, DDC controller assignments to network, DDC
controller enable and disable, assignment of command trace to points and application programs and initiation of diagnostics.

d. System text addition and change capability shall include English or native language descriptors for points, segregation groups and access levels and action messages for alarms, run time and trouble condition.

e. Time and schedule change capability shall include time and date set, time and occupancy schedules, exception and holiday schedules and daylight savings time schedules.

f. Point related change capability shall include the following:

1) System and point enable and disable.
2) Run-time enable and disable.
3) Assignment of points to segregation groups, calibration tables, lockout, and run time and to a fixed I/O value.
4) Assignment of alarm and warning limits.

g. Application program change capability shall include the following:

1) Enable and disable of software programs.
2) Programming changes.
3) Assignment of comfort limits, global points, time and event initiators, time and event schedules and enable and disable time and event programs.

4. Software shall allow operator to add points, or groups of points, to DDC system and to link them to energy optimization and management programs. Additions and modifications shall be online programmable using operator workstation, downloaded to other network devices and entered into their databases. After verification of point additions and associated program operation, database shall be uploaded and recorded on hard drive and disk for archived record.

5. Include high-level language programming software capability for implementation of custom DDC programs. Software shall include a compiler, linker, and up- and down-load capability.

6. Include a library of DDC algorithms, intrinsic control operators, arithmetic, logic and relational operators for implementation of control sequences. Also include, as a minimum, the following:

a. Proportional control (P).

b. Proportional plus integral (PI).

c. Proportional plus integral plus derivative (PID).

d. Adaptive and intelligent self-learning control.

1) Algorithm shall monitor loop response to output corrections and adjust loop response characteristics according to time constant changes imposed.

2) Algorithm shall operate in a continuous self-learning manner and shall retain in memory a stored record of system dynamics so that on system shut down and restart, learning process starts from where it left off.

7. Fully implemented intrinsic control operators including sequence, reversing, ratio, time delay, time of day, highest select AO, lowest select AO, analog controlled digital output, analog control AO, and digitally controlled AO.
8. Logic operators such as "And," "Or," "Not," and others that are part of a standard set available with a high-level language.
9. Arithmetic operators such as "Add," "Subtract," "Multiply," "Divide," and others that are part of a standard set available with a high-level language.
10. Relational operators such as "Equal To," "Not Equal To," "Less Than," "Greater Than," and others that are part of a standard set available with a high-level language.

F. Alarm Handling Software:

1. Include alarm handling software to report all alarm conditions monitored and transmitted through DDC controllers, gateways and other network devices.
2. Include first in, first out handling of alarms according to alarm priority ranking, with most critical alarms first, and with buffer storage in case of simultaneous and multiple alarms.
3. Alarm handling shall be active at all times to ensure that alarms are processed even if an operator is not currently signed on to DDC system.
4. Alarms display shall include the following:
 a. Indication of alarm condition such as "Abnormal Off," "Hi Alarm," and "Low Alarm."
 b. "Analog Value" or "Status" group and point identification with native language point descriptor such as "Space Temperature, Building 110, 2nd Floor, Room 212."
 c. Discrete per point alarm action message, such as "Call Maintenance Dept. Ext-5561."
 d. Include extended message capability to allow assignment and printing of extended action messages. Capability shall be operator programmable and assignable on a per point basis.
5. Alarms shall be directed to appropriate operator workstations, printers, and individual operators by privilege level and segregation assignments.
6. Send e-mail alarm messages to designated operators.
7. Send e-mail, page, text and voice messages to designated operators for critical alarms.
8. Alarms shall be categorized and processed by class.
 a. Class 1:
 1) Associated with fire, security and other extremely critical equipment monitoring functions; have alarm, trouble, return to normal, and acknowledge conditions printed and displayed.
 2) Unacknowledged alarms to be placed in unacknowledged alarm buffer.
 3) All conditions shall cause an audible sound and shall require individual acknowledgment to silence audible sound.
 b. Class 2:
 1) Critical, but not life-safety related, and processed same as Class 1 alarms, except do not require individual acknowledgment.
 2) Acknowledgement may be through a multiple alarm acknowledgment.
 c. Class 3:
1) General alarms; printed, displayed and placed in unacknowledged alarm buffer queues.
2) Each new alarm received shall cause an audible sound. Audible sound shall be silenced by "acknowledging" alarm or by pressing a "silence" key.
3) Acknowledgement of queued alarms shall be either on an individual basis or through a multiple alarm acknowledgement.
4) Alarms returning to normal condition shall be printed and not cause an audible sound or require acknowledgment.

d. Class 4:
 1) Routine maintenance or other types of warning alarms.
 2) Alarms to be printed only, with no display, no audible sound and no acknowledgment required.

9. Include an unacknowledged alarm indicator on display to alert operator that there are unacknowledged alarms in system. Operator shall be able to acknowledge alarms on an individual basis or through a multiple alarm acknowledge key, depending on alarm class.

10. To ensure that no alarm records are lost, it shall be possible to assign a backup printer to accept alarms in case of failure of primary printer.

G. Reports and Logs:
 1. Include reporting software package that allows operator to select, modify, or create reports using DDC system I/O point data available.
 2. Each report shall be definable as to data content, format, interval and date.
 3. Report data shall be sampled and stored on DDC controller, within storage limits of DDC controller, and then uploaded to archive on workstation for historical reporting.
 4. Operator shall be able to obtain real-time logs of all I/O points by type or status, such as alarm, point lockout, or normal.
 5. Reports and logs shall be stored on workstation hard drives in a format that is readily accessible by other standard software applications, including spreadsheets and word processing.
 6. Reports and logs shall be readily printed and set to be printed either on operator command or at a specific time each day.

H. Standard Reports: Standard DDC system reports shall be provided and operator shall be able to customize reports later.
 1. All I/O: With current status and values.
 2. Alarm: All current alarms, except those in alarm lockout.
 3. Disabled I/O: All I/O points that are disabled.
 4. Alarm Lockout I/O: All I/O points in alarm lockout, whether manual or automatic.
 5. Alarm Lockout I/O in Alarm: All I/O in alarm lockout that are currently in alarm.
 6. Logs:
 a. Alarm history.
 b. System messages.
 c. System events.
 d. Trends.
I. Custom Reports: Operator shall be able to easily define any system data into a daily, weekly, monthly, or annual report. Reports shall be time and date stamped and shall contain a report title.

J. Utility Reports: Prepare Project-specific reports.

1. Electric Report:
 a. Include weekly report showing daily electrical consumption and peak electrical demand with time and date stamp for each meter.
 b. Include monthly report showing the daily electrical consumption and peak electrical demand with time and date stamp for each meter.
 c. Include annual report showing the monthly electrical consumption and peak electrical demand with time and date stamp for each meter.
 d. For each weekly, monthly and annual report, include sum total of submeters combined by load type, such as lighting, receptacles and HVAC equipment showing daily electrical consumption and peak electrical demand.
 e. For each weekly, monthly and annual report, include sum total of all submeters in building showing electrical consumption and peak electrical demand.

2. Natural Gas Report:
 a. Include weekly report showing daily natural gas consumption and peak natural gas demand with time and date stamp for each meter.
 b. Include monthly report showing the daily natural gas consumption and peak natural gas demand with time and date stamp for each meter.
 c. Include annual report showing the monthly natural gas consumption and peak natural gas demand with time and date stamp for each meter.
 d. For each weekly, monthly and annual report, include sum total of submeters combined by load type, such as boilers and service water heaters showing daily natural gas consumption and peak natural gas demand.
 e. For each weekly, monthly and annual report, include sum total of all submeters in building showing natural gas consumption and peak natural gas demand.

3. Service Water Report:
 a. Include weekly report showing daily service water consumption and peak service water demand with time and date stamp for each meter.
 b. Include monthly report showing the daily service water consumption and peak service water demand with time and date stamp for each meter.
 c. Include annual report showing the monthly service water consumption and peak service water demand with time and date stamp for each meter.
 d. For each weekly, monthly and annual report, include sum total of submeters combined by load type, such as cooling tower makeup and irrigation showing daily service water consumption and peak service water demand.
 e. For each weekly, monthly and annual report, include sum total of all submeters in building showing service water consumption and peak service water demand.

K. Weather Reports:

1. Include daily report showing the following:
a. Daily minimum, maximum, and average outdoor dry-bulb temperature.
b. Daily minimum, maximum, and average outdoor wet-bulb temperature.
c. Daily minimum, maximum, and average outdoor dew point temperature.
d. Number of heating degree-days for each day calculated from a base temperature of 55 deg F.
e. Number of cooling degree-days for each day calculated from a base temperature of 65 deg F.
f. Daily minimum, maximum, and average outdoor carbon dioxide level.
g. Daily minimum, maximum, and average relative humidity.
h. Daily minimum, maximum, and average barometric pressure.
i. Daily minimum, maximum, and average wind speed and direction.

2. Include weekly report showing the following:

a. Daily minimum, maximum, and average outdoor dry-bulb temperature.
b. Daily minimum, maximum, and average outdoor wet-bulb temperature.
c. Daily minimum, maximum, and average outdoor dew point temperature.
d. Number of heating degree-days for each day calculated from a base temperature of 55 deg F.
e. Number of cooling degree-days for each day calculated from a base temperature of 65 deg F.
f. Weekly minimum, maximum, and average outdoor carbon dioxide level.
g. Daily minimum, maximum, and average relative humidity.
h. Daily minimum, maximum, and average barometric pressure.
i. Daily minimum, maximum, and average wind speed and direction.

3. Include monthly report showing the following:

a. Daily minimum, maximum, and average outdoor dry-bulb temperature.
b. Daily minimum, maximum, and average outdoor wet-bulb temperature.
c. Daily minimum, maximum, and average outdoor dew point temperature.
d. Number of heating degree-days for each day calculated from a base temperature of 55 deg F.
e. Number of cooling degree-days for each day calculated from a base temperature of 65 deg F.
f. Monthly minimum, maximum, and average outdoor carbon dioxide level.
g. Daily minimum, maximum, and average relative humidity.
h. Daily minimum, maximum, and average barometric pressure.
i. Daily minimum, maximum, and average wind speed and direction.

4. Include annual (12-month) report showing the following:

a. Monthly minimum, maximum, and average outdoor dry-bulb temperature.
b. Monthly minimum, maximum, and average outdoor wet-bulb temperature.
c. Monthly minimum, maximum, and average outdoor dew point temperature.
d. Number of heating degree-days for each month calculated from a base temperature of 55 deg F.
e. Number of cooling degree-days for each month calculated from a base temperature of 65 deg F.
f. Annual minimum, maximum, and average outdoor carbon dioxide level.
g. Monthly minimum, maximum, and average relative humidity.
h. Daily minimum, maximum, and average barometric pressure.

i. Daily minimum, maximum, and average wind speed and direction.

L. Standard Trends:

1. Trend all I/O point present values, set points, and other parameters indicated for trending.
2. Trends shall be associated into groups, and a trend report shall be set up for each group.
3. Trends shall be stored within DDC controller and uploaded to hard drives automatically on reaching 75% of DDC controller buffer limit, or by operator request, or by archiving time schedule.
4. Preset trend intervals for each I/O point after review with Owner.
5. Trend intervals shall be operator selectable from 10 seconds up to 60 minutes. Minimum number of consecutive trend values stored at one time shall be 100 per variable.
6. When drive storage memory is full, most recent data shall overwrite oldest data.
7. Archived and real-time trend data shall be available for viewing numerically and graphically by operators.

M. Custom Trends: Operator shall be able to define a custom trend log for any I/O point in DDC system.

1. Each trend shall include interval, start time, and stop time.
2. Data shall be sampled and stored on DDC controller, within storage limits of DDC controller, and then uploaded to archive on workstation hard drives.
3. Data shall be retrievable for use in spreadsheets and standard database programs.

N. Programming Software:

1. Include programming software to execute sequences of operation indicated.
2. Include programming routines in simple and easy to follow logic with detailed text comments describing what the logic does and how it corresponds to sequence of operation.
3. Programming software shall be as follows:
 a. Graphic Based: Programming shall use a library of function blocks made from preprogrammed code designed for DDC control systems.
 1) Function blocks shall be assembled with interconnection lines that represent control sequence in a flowchart.
 2) Programming tools shall be viewable in real time to show present values and logical results of each function block.
4. Include means for detecting programming errors and testing software control strategies with a simulation tool before implementing in actual control. Simulation tool may be inherent with programming software or as a separate product.

O. Database Management Software:

1. Where a separate SQL database is used for information storage, DDC system shall include database management software that separates database monitoring and managing functions by supporting multiple separate windows.
2. Database secure access shall be accomplished using standard SQL authentication including ability to access data for use outside of DDC system applications.

3. Database management function shall include summarized information on trend, alarm, event, and audit for the following database management actions:
 a. Backup.
 b. Purge.
 c. Restore.

4. Database management software shall support the following:
 a. Statistics: Display database server information and trend, alarm, event, and audit information on database.
 b. Maintenance: Include method of purging records from trend, alarm, event and audit databases by supporting separate screens for creating a backup before purging, selecting database, and allowing for retention of a selected number of day's data.
 c. Backup: Include means to create a database backup file and select a storage location.
 d. Restore: Include a restricted means of restoring a database by requiring operator to have proper security level.

5. Database management software shall include information of current database activity, including the following:
 a. Ready.
 b. Purging record from a database.
 c. Action failed.
 d. Refreshing statistics.
 e. Restoring database.
 f. Shrinking a database.
 g. Backing up a database.
 h. Resetting internet information services.
 i. Starting network device manager.
 j. Shutting down the network device manager.
 k. Action successful.

6. Database management software monitoring functions shall continuously read database information once operator has logged on.

7. Include operator notification through on-screen pop-up display and e-mail message when database value has exceeded a warning or alarm limit.

8. Monitoring settings window shall have the following sections:
 a. Allow operator to set and review scan intervals and start times.
 b. E-mail: Allow operator to create and review e-mail and phone text messages to be delivered when a warning or an alarm is generated.
 c. Warning: Allow operator to define warning limit parameters, set reminder frequency and link e-mail message.
 d. Alarm: Allow operator to define alarm limit parameters, set reminder frequency and link e-mail message.
e. Database Login: Protect system from unauthorized database manipulation by creating a read access and a write access for each of trend, alarm, event and audit databases as well as operator proper security access to restore a database.

9. Monitoring settings taskbar shall include the following informational icons:
 a. Normal: Indicates by color and size, or other easily identifiable means that all databases are within their limits.
 b. Warning: Indicates by color and size, or other easily identifiable means that one or more databases have exceeded their warning limit.
 c. Alarm: Indicates by color and size, or other easily identifiable means that one or more databases have exceeded their alarm limit.

2.13 OFFICE APPLICATION SOFTWARE

A. Include current version of office application software at time of Substantial Completion.

B. Office application software package shall include multiple separate applications and use a common platform for all applications, similar to Microsoft's "Office Professional."

 1. Database.
 2. E-mail.
 3. Presentation.
 4. Publisher.
 5. Spreadsheet.

2.14 ASHRAE 135 GATEWAYS

A. Include BACnet communication ports, whenever available as an equipment OEM standard option, for integration via a single communication cable. BACnet-controlled plant equipment includes, but is not limited to, air handling units, make-up air units, and VRF system controllers.

B. Include with each gateway an interoperability schedule showing each point or event on legacy side that BACnet "client" will read, and each parameter that BACnet network will write to. Describe this interoperability of BACnet services, or BIBBs, defined in ASHRAE 135, Annex K.

C. Gateway Minimum Requirements:

 1. Read and view all readable object properties on non-BACnet network to BACnet network and vice versa where applicable.
 2. Write to all writeable object properties on non-BACnet network from BACnet network and vice versa where applicable.
 3. Include single-pass (only one protocol to BACnet without intermediary protocols) translation from non-BACnet protocol to BACnet and vice versa.
 4. Comply with requirements of Data Sharing Read Property, Data Sharing Write Property, Device Management Dynamic Device Binding-B, and Device Management Communication Control BIBBs according to ASHRAE 135.
5. Hardware, software, software licenses, and configuration tools for operator-to-gateway communications.
6. Backup programming and parameters on CD media and the ability to modify, download, backup, and restore gateway configuration.

2.15 ASHRAE 135 PROTOCOL ANALYZER

A. Analyzer and required cables and fittings for connection to ASHRAE 135 network.
B. Analyzer shall include the following minimum capabilities:
 1. Capture and store to a file data traffic on all network levels.
 2. Measure bandwidth usage.
 3. Filtering options with ability to ignore select traffic.

2.16 DDC CONTROLLERS

A. DDC system shall consist of a combination of network controllers, programmable application controllers and application-specific controllers to satisfy performance requirements indicated.
B. DDC controllers shall perform monitoring, control, energy optimization and other requirements indicated.
C. DDC controllers shall use a multitasking, multiuser, real-time digital control microprocessor with a distributed network database and intelligence.
D. Each DDC controller shall be capable of full and complete operation as a completely independent unit and as a part of a DDC system wide distributed network.
E. Environment Requirements:
 1. Controller hardware shall be suitable for the anticipated ambient conditions.
F. Power and Noise Immunity:
 1. Controller shall operate at 90 to 110 percent of nominal voltage rating and shall perform an orderly shutdown below 80 percent of nominal voltage.
 2. Operation shall be protected against electrical noise of 5 to 120 Hz and from keyed radios with up to 5 W of power located within 36 inches of enclosure.
G. DDC Controller Spare Processing Capacity:
 1. Include spare processing memory for each controller. RAM, PROM, or EEPROM will implement requirements indicated with the following spare memory:
 a. Network Controllers: 50 percent.
 b. Programmable Application Controllers: Not less than 60 percent.
 c. Application-Specific Controllers: Not less than 70 percent.
2. Memory shall support DDC controller's operating system and database and shall include the following:
 a. Monitoring and control.
 b. Energy management, operation and optimization applications.
 c. Alarm management.
 d. Historical trend data of all connected I/O points.
 e. Maintenance applications.
 f. Operator interfaces.
 g. Monitoring of manual overrides.

H. DDC Controller Spare I/O Point Capacity: Include spare I/O point capacity for each controller as follows:

1. Network Controllers:
 a. 20 percent of each AI, AO, BI, and BO point connected to controller.
 b. Minimum Spare I/O Points per Controller:
 1) AIs: Two.
 2) AOs: Two.
 3) BIs: Three.
 4) BOs: Three.

2. Programmable Application Controllers:
 a. 20 percent of each AI, AO, BI, and BO point connected to controller.
 b. Minimum Spare I/O Points per Controller:
 1) AIs: Two.
 2) AOs: Two.
 3) BIs: Three.
 4) BOs: Three.

3. Application-Specific Controllers:
 a. 10 percent of each AI, AO, BI, and BO point connected to controller.
 b. Minimum Spare I/O Points per Controller:
 1) AIs: One.
 2) AOs: One.
 3) BIs: One.
 4) BOs: One.

I. Maintenance and Support: Include the following features to facilitate maintenance and support:

1. Mount microprocessor components on circuit cards for ease of removal and replacement.
2. Means to quickly and easily disconnect controller from network.
3. Means to quickly and easily access connect to field test equipment.
4. Visual indication that controller electric power is on, of communication fault or trouble, and that controller is receiving and sending signals to network.
J. Input and Output Point Interface:

1. Hardwired input and output points shall connect to network, programmable application and application-specific controllers.
2. Input and output points shall be protected so shorting of point to itself, to another point, or to ground will not damage controller.
3. Input and output points shall be protected from voltage up to 24 V of any duration so that contact will not damage controller.
4. AIs:
 a. AIs shall include monitoring of low-voltage (zero- to 10-V dc), current (4 to 20 mA) and resistance signals from thermistor and RTD sensors.
 b. AIs shall be compatible with, and field configurable to, sensor and transmitters installed.
 c. Controller AIs shall perform analog-to-digital (A-to-D) conversion with a minimum resolution of 8 bits or better to comply with accuracy requirements indicated.
 d. Signal conditioning including transient rejection shall be provided for each AI.
 e. Capable of being individually calibrated for zero and span.
 f. Incorporate common-mode noise rejection of at least 50 dB from zero to 100 Hz for differential inputs, and normal-mode noise rejection of at least 20 dB at 60 Hz from a source impedance of 10000 ohms.
5. AOs:
 a. Controller AOs shall perform analog-to-digital (A-to-D) conversion with a minimum resolution of 8 bits or better to comply with accuracy requirements indicated.
 b. Output signals shall have a range of 4 to 20 mA dc or zero- to 10-V dc as required to include proper control of output device.
 c. Capable of being individually calibrated for zero and span.
 d. AOs shall not exhibit a drift of greater than 0.4 percent of range per year.
6. BIs:
 a. Controller BIs shall accept contact closures and shall ignore transients of less than 5-ms duration.
 b. Isolation and protection against an applied steady-state voltage of up to 180-V ac peak.
 c. BIs shall include a wetting current of at least 12 mA to be compatible with commonly available control devices and shall be protected against effects of contact bounce and noise.
 d. BIs shall sense "dry contact" closure without external power (other than that provided by the controller) being applied.
 e. Pulse accumulation input points shall comply with all requirements of BIs and accept up to 10 pulses per second for pulse accumulation. Buffer shall be provided to totalize pulses. Pulse accumulator shall accept rates of at least 20 pulses per second. The totalized value shall be reset to zero on operator's command.
7. BOs:
a. Controller BOs shall include relay contact closures or triac outputs for momentary and maintained operation of output devices.

1) Relay contact closures shall have a minimum duration of 0.1 second. Relays shall include at least 180 V of isolation. Electromagnetic interference suppression shall be provided on all output lines to limit transients to non-damaging levels. Minimum contact rating shall be 1 A at 24-V ac.
2) Triac outputs shall include at least 180 V of isolation. Minimum contact rating shall be 1 A at 24-V ac.

b. BOs shall include for two-state operation or a pulsed low-voltage signal for pulse-width modulation control.
c. BOs shall be selectable for either normally open or normally closed operation.
d. Include tristate outputs (two coordinated BOs) for control of three-point floating-type electronic actuators without feedback.

2.17 NETWORK CONTROLLERS

A. General Network Controller Requirements:

1. Include adequate number of controllers to achieve performance indicated.
2. System shall consist of one or more independent, standalone, microprocessor-based network controllers to manage global strategies indicated.
3. Controller shall have enough memory to support its operating system, database, and programming requirements.
4. Data shall be shared between networked controllers and other network devices.
5. Operating system of controller shall manage input and output communication signals to allow distributed controllers to share real and virtual object information and allow for central monitoring and alarms.
6. Controllers that perform scheduling shall have a real-time clock.
7. Controller shall continually check status of its processor and memory circuits. If an abnormal operation is detected, controller shall assume a predetermined failure mode and generate an alarm notification.
8. Controllers shall be fully programmable.

B. Communication:

1. Network controllers shall communicate with other devices on DDC system Level one network.
2. Network controller also shall perform routing if connected to a network of programmable application and application-specific controllers.

C. Operator Interface:

1. Controller shall be equipped with a service communications port for connection to a portable operator's workstation or mobile device.
2. Local Keypad and Display:

 a. Equip controller with local keypad and digital display for interrogating and editing data.
b. Use of keypad and display shall require security password.

D. Serviceability:

1. Controller shall be equipped with diagnostic LEDs or other form of local visual indication of power, communication, and processor.
2. Wiring and cable connections shall be made to field-removable, modular terminal strips or to a termination card connected by a ribbon cable.
3. Controller shall maintain BIOS and programming information in event of a power loss for at least 72 hours.

2.18 PROGRAMMABLE APPLICATION CONTROLLERS

A. General Programmable Application Controller Requirements:

1. Include adequate number of controllers to achieve performance indicated.
2. Controller shall have enough memory to support its operating system, database, and programming requirements.
3. Data shall be shared between networked controllers and other network devices.
4. Operating system of controller shall manage input and output communication signals to allow distributed controllers to share real and virtual object information and allow for central monitoring and alarms.
5. Controllers that perform scheduling shall have a real-time clock.
6. Controller shall continually check status of its processor and memory circuits. If an abnormal operation is detected, controller shall assume a predetermined failure mode and generate an alarm notification.
7. Controllers shall be fully programmable.

B. Communication:

1. Programmable application controllers shall communicate with other devices on network.

C. Operator Interface:

1. Controller shall be equipped with a service communications port for connection to a portable operator's workstation or mobile device.
2. Local Keypad and Display:
 a. Equip controller with local keypad and digital display for interrogating and editing data.
 b. Use of keypad and display shall require security password.

D. Serviceability:

1. Controller shall be equipped with diagnostic LEDs or other form of local visual indication of power, communication, and processor.
2. Wiring and cable connections shall be made to field-removable, modular terminal strips or to a termination card connected by a ribbon cable.
3. Controller shall maintain BIOS and programming information in event of a power loss for at least 72 hours.
2.19 APPLICATION-SPECIFIC CONTROLLERS

A. Description: Microprocessor-based controllers, which through hardware or firmware design are dedicated to control a specific piece of equipment. Controllers are not fully user-programmable but are configurable and customizable for operation of equipment they are designed to control.

1. Capable of standalone operation and shall continue to include control functions without being connected to network.
2. Data shall be shared between networked controllers and other network devices.

B. Communication: Application-specific controllers shall communicate with other application-specific controller and devices on network, and to programmable application and network controllers.

C. Operator Interface: Controller shall be equipped with a service communications port for connection to a portable operator's workstation. Connection shall extend to port on space temperature sensor that is connected to controller.

D. Serviceability:

1. Controller shall be equipped with diagnostic LEDs or other form of local visual indication of power, communication, and processor.
2. Wiring and cable connections shall be made to field-removable, modular terminal strips or to a termination card connected by a ribbon cable.
3. Controller shall use nonvolatile memory and maintain all BIOS and programming information in event of power loss.

2.20 CONTROLLER SOFTWARE

A. General Controller Software Requirements:

1. Software applications shall reside and operate in controllers. Editing of applications shall occur at operator workstations.
2. I/O points shall be identified by up to 30-character point name and up to 16-character point descriptor. Same names shall be used at operator workstations.
3. Control functions shall be executed within controllers using DDC algorithms.
4. Controllers shall be configured to use stored default values to ensure fail-safe operation. Default values shall be used when there is a failure of a connected input instrument or loss of communication of a global point value.

B. Security:

1. Operator access shall be secured using individual security passwords and user names.
2. Passwords shall restrict operator to points, applications, and system functions as assigned by system manager.
3. Operator log-on and log-off attempts shall be recorded.
4. System shall protect itself from unauthorized use by automatically logging off after last keystroke. The delay time shall be operator-definable.
C. Scheduling: Include capability to schedule each point or group of points in system. Each schedule shall consist of the following:

1. Weekly Schedule:
 a. Include separate schedules for each day of week.
 b. Each schedule should include the capability for start, stop, optimal start, optimal stop, and night economizer.
 c. Each schedule may consist of up to 10 events.
 d. When a group of objects are scheduled together, include capability to adjust start and stop times for each member.

2. Exception Schedules:
 a. Include ability for operator to designate any day of the year as an exception schedule.
 b. Exception schedules may be defined up to a year in advance. Once an exception schedule is executed, it will be discarded and replaced by regular schedule for that day of week.

3. Holiday Schedules:
 a. Include capability for operator to define up to 99 special or holiday schedules.
 b. Schedules may be placed on scheduling calendar and will be repeated each year.
 c. Operator shall be able to define length of each holiday period.

D. System Coordination:

1. Include standard application for proper coordination of equipment.
2. Application shall include operator with a method of grouping together equipment based on function and location.
3. Group may then be used for scheduling and other applications.

E. Binary Alarms:

1. Each binary point shall be set to alarm based on operator-specified state.
2. Include capability to automatically and manually disable alarming.

F. Analog Alarms:

1. Each analog object shall have both high and low alarm limits.
2. Alarming shall be able to be automatically and manually disabled.

G. Alarm Reporting:

1. Operator shall be able to determine action to be taken in event of an alarm.
2. Alarms shall be routed to appropriate operator workstations based on time and other conditions.
3. Alarm shall be able to start programs, print, be logged in event log, generate custom messages, and display graphics.
H. Remote Communication:
 1. System shall have ability to dial out in the event of an alarm.

I. Sequencing: Include application software based on sequences of operation indicated to properly sequence HVAC equipment.

J. Control Loops:
 1. Support any of the following control loops, as applicable to control required:
 a. Two-position (on/off, open/close, slow/fast) control.
 b. Proportional control.
 c. Proportional plus integral (PI) control.
 d. Proportional plus integral plus derivative (PID) control.
 1) Include PID algorithms with direct or reverse action and anti-windup.
 2) Algorithm shall calculate a time-varying setting value used to position an output or stage a series of outputs.
 3) Controlled variable, set point, and PID gains shall be operator-selectable.
 e. Adaptive (automatic tuning).

K. Staggered Start: Application shall prevent all controlled equipment from simultaneously restarting after a power outage. Order which equipment (or groups of equipment) is started, along with the time delay between starts, shall be operator-selectable.

L. Energy Calculations:
 1. Include software to allow instantaneous power or flow rates to be accumulated and converted to energy usage data.
 2. Include an algorithm that calculates a sliding-window average (rolling average). Algorithm shall be flexible to allow window intervals to be operator specified (such as 15, 30, or 60 minutes).
 3. Include an algorithm that calculates a fixed-window average. A digital input signal shall define a start of window period (such as signal from utility meter) to synchronize fixed-window average with that used by utility.

M. Anti-Short Cycling:
 1. BO points shall be protected from short cycling.
 2. Feature shall allow minimum on-time and off-time to be selected.

N. On and Off Control with Differential:
 1. Include an algorithm that allows a BO to be cycled based on a controlled variable and set point.
 2. Algorithm shall be direct- or reverse-acting and incorporate an adjustable differential.

O. Run-Time Totalization:
1. Include software to totalize run-times for all BI and BO points.
2. A high run-time alarm shall be assigned, if required, by operator.

2.21 ENCLOSURES

A. General Enclosure Requirements:

1. House each controller and associated control accessories in an enclosure. Enclosure shall serve as central tie-in point for control devices such as switches, transmitters, transducers, power supplies and transformers.
2. Do not house more than one controller in a single enclosure.
3. Include enclosure door with key locking mechanism. Key locks alike for all enclosures and include one pair of keys per enclosure.
4. Equip doors of enclosures housing controllers and components with analog or digital displays with windows to allow visual observation of displays without opening enclosure door.
5. Include wall-mounted enclosures with brackets suitable for mounting enclosures to wall or freestanding support stand as indicated.
6. Supply each enclosure with a complete set of as-built schematics, and wiring diagrams and product literature located in a pocket on inside of door. For enclosures with windows, include pocket on bottom of enclosure.

B. Internal Arrangement:

1. Internal layout of enclosure shall group and protect pneumatic, electric, and electronic components associated with a controller, but not an integral part of controller.
2. Arrange layout to group similar products together.
3. Include a barrier between line-voltage and low-voltage electrical and electronic products.
4. Factory or shop install products, tubing, cabling and wiring complying with requirements and standards indicated.
5. Terminate field cable and wire using heavy-duty terminal blocks.
6. Include spare terminals, equal to not less than 20 percent of used terminals.
7. Include spade lugs for stranded cable and wire.
8. Install a maximum of two wires on each side of a terminal.
9. Include enclosure field power supply with a toggle-type switch located at entrance inside enclosure to disconnect power.
10. Mount products within enclosure on removable internal panel(s).
11. Include products mounted in enclosures with engraved, laminated phenolic nameplates (black letters on a white background). The nameplates shall have at least 1/4-inch high lettering.
12. Route tubing cable and wire located inside enclosure within a raceway with a continuous removable cover.
13. Label each end of cable, wire and tubing in enclosure following an approved identification system that extends from field I/O connection and all intermediate connections throughout length to controller connection.
14. Size enclosure internal panel to include at least 25 percent spare area on face of panel.

C. Environmental Requirements:
1. Evaluate temperature and humidity requirements of each product to be installed within each enclosure.
2. Calculate enclosure internal operating temperature considering heat dissipation of all products installed within enclosure and ambient effects (solar, conduction and wind) on enclosure.
3. Where required by application, include temperature-controlled electrical heat to maintain inside of enclosure above minimum operating temperature of product with most stringent requirement.
4. Where required by application, include temperature-controlled ventilation fans with filtered louver(s) to maintain inside of enclosure below maximum operating temperature of product with most stringent requirement.
5. Include temperature-controlled cooling within the enclosure for applications where ventilation fans cannot maintain inside temperature of enclosure below maximum operating temperature of product with most stringent requirement.
6. Where required by application, include humidity-controlled electric dehumidifier or cooling to maintain inside of enclosure below maximum relative humidity of product with most stringent requirement and to prevent surface condensation within enclosure.

D. Wall-Mounted, NEMA 250, Type 1:
 1. Enclosure shall be NRTL listed according to UL 50 or UL 50E.
 2. Finish enclosure inside and out with polyester powder coating that is electrostatically applied and then baked to bond to substrate.
 a. Exterior color shall be manufacturer's standard.
 b. Interior color shall be manufacturer's standard.
 3. Hinged door full size of front face of enclosure and supported using:
 a. Enclosures sizes less than 36 in. tall: Multiple butt hinges.
 b. Enclosures sizes 36 in. tall and larger: Continuous piano hinges.
 4. Removable internal panel with a white polyester powder coating that is electrostatically applied and then baked to bond to substrate.
 a. Size less than 24 in.: Solid or Perforated steel, 0.053 in. thick.
 b. Size 24 in. and larger: Solid aluminum, 0.10 in. or steel, 0.093 in. thick.
 5. Internal panel mounting hardware, grounding hardware and sealing washers.
 6. Grounding stud on enclosure body.
 7. Thermoplastic pocket on inside of door for record Drawings and Product Data.

E. Wall Mounted NEMA 250, Types 4 and 12:
 1. Enclosure shall be NRTL listed according to UL 508A.
 2. Seam and joints are continuously welded and ground smooth.
 3. Where recessed enclosures are indicated, include enclosures with face flange for flush mounting.
 4. Externally formed body flange around perimeter of enclosure face for continuous perimeter seamless gasket door seal.
 5. Single-door enclosure sizes up to 60 inches tall by 36 inches wide.
 6. Double-door enclosure sizes up to 36 inches tall by 60 inches wide.
7. Finish enclosure with polyester powder coating that is electrostatically applied and then baked to bond to substrate.
 a. Exterior color shall be manufacturer's standard.
 b. Interior color shall be manufacturer's standard.

8. Corner-formed door, full size of enclosure face, supported using multiple concealed hinges with easily removable hinge pins.
 a. Sizes through 24 Inches Tall: Two hinges.
 b. Sizes between 24 Inches through 48 Inches Tall: Three hinges.
 c. Sizes Larger 48 Inches Tall: Four hinges.

9. Double-door enclosures with overlapping door design to include unobstructed full-width access.
 a. Single-door enclosures 48 inches and taller, and all double-door enclosures, with three-point (top, middle and bottom) latch system.

10. Removable internal panel with a white polyester powder coating that is electrostatically applied and then baked to bond to substrate.
 a. Size Less Than 24 Inches: Solid or perforated steel, 0.053 inch thick.
 b. Size 24 Inches and Larger: Solid aluminum, 0.10 inch or steel, 0.093 inch thick.

11. Internal panel mounting studs with hardware, grounding hardware, and sealing washers.

12. Grounding stud on enclosure body.

13. Thermoplastic pocket on inside of door for record Drawings and Product Data.

F. Wall-Mounted, NEMA 250, Type 4X SS:
 1. Enclosure shall be NRTL listed according to UL 508A.
 2. Seam and joints are continuously welded and ground smooth.
 3. Externally formed body flange around perimeter of enclosure face for continuous perimeter seamless gasket door seal.
 4. Construct enclosure of Type 316L stainless steel, not less than the following:
 a. Size Less Than 24 Inches: 0.053 inch thick.
 b. Size 24 Inches and Larger: 0.067 inch thick.
 5. Outside body and door of enclosure with brushed No. 4 finish.
 6. Corner-formed door, full size of enclosure face, supported using multiple concealed hinges with easily removable hinge pins.
 a. Sizes through 24 Inches Tall: Two hinges.
 b. Sizes between 24 Inches through 48 Inches Tall: Three hinges.
 c. Sizes Larger 48 Inches Tall: Four hinges.
 7. Corner-formed door, full size of enclosure face, supported using continuous piano hinge full length of door.
 8. Doors fitted with three-point (top, middle, and bottom) latch system with single, heavy-duty, liquid-tight Type 316 stainless-steel handle with integral locking mechanism.
9. Removable internal panel shall be 0.093-inch solid steel with a white polyester powder coating that is electrostatically applied and then baked to bond to substrate.
10. Internal panel mounting studs and hardware, grounding hardware, and sealing washers.
11. Install corrosion-resistant polyester vent drain in a stainless-steel sleeve at the bottom of enclosure.
12. Include enclosure with stainless-steel mounting brackets.

G. Accessories:

1. Electric Heater:
 a. Aluminum housing with brushed finish.
 b. Thermostatic control with adjustable set point from zero to 100 deg F.
 c. Capacity: 100, 200, 400, and 800 W as required by application.
 d. Fan draws cool air from bottom of enclosure and passes air across thermostat and heating elements before being released into enclosure cavity. Heated air is discharged through the top of heater.

2. Ventilation Fans, Filtered Intake and Exhaust Grilles:
 a. Number and size of fans, filters and grilles as required by application.
 b. Compact cooling fans engineered for 50,000 hours of continuous operation without lubrication or service.
 c. Fans capable of being installed on any surface and in any position within enclosure for spot cooling or air circulation.
 d. Thermostatic control with adjustable set point from 32 to 140 deg F.
 e. Airflow Capacity at Zero Pressure:
 1) 4-Inch Fan: 120 cfm.
 2) 6-Inch Fan: 240 cfm.
 3) 10-Inch Fan: 560 cfm.
 f. Maximum operating temperature of 158 deg F.
 g. 4-inch fan thermally protected and provided with permanently lubricated ball-bearings.
 h. 6- and 10-inch fans with ball-bearing construction and split capacitor motors thermally protected to avoid premature failure.
 i. Dynamically balanced impellers molded from polycarbonate material.
 j. Fan furnished with power cord and polarized plug for power connection.
 k. Fan brackets, finger guards and mounting hardware provided with fans to complete installation.
 l. Removable Intake and Exhaust Grilles: ABS plastic or stainless steel of size to match fan size and suitable for NEMA 250, Types 1 and 12 enclosures.
 m. Filters for NEMA 250, Type 1 Enclosures: Washable foam, of a size to match intake grille.
 n. Filters for NEMA 250, Type 12 Enclosures: Disposable, of a size to match intake grille.

3. Air Conditioner:

Tetra Tech

DIRECT DIGITAL CONTROL (DDC) SYSTEM
FOR HVAC
23 09 23 - 46
a. Electric-powered, self-contained air-conditioning unit specially designed for electrical enclosures to maintain temperature inside enclosure below ambient temperature outside enclosure.
b. Thermostatic control with adjustable set point from 60 to 120 deg F.
c. Enclosure side or top mounting with unit capacity as required by application.
d. Designed for closed-loop cooling with continuous operation in ambient environments up to 125 deg F.
e. HFC refrigerant.
f. Reusable and washable air filter.
g. High-performance, industrial-grade, and high-efficiency fans.
h. Furnished with power cord and polarized plug for power connection.
i. Condensate management system with base pan side drain.
j. Mounting hardware, gaskets, mounting template and instruction manual furnished with unit.
k. Outdoor units equipped with head pressure control for low ambient operation, compressor heater, coated condenser coil and thermostat.

4. Framed Fixed Window Kit for NEMA 250, Types 4, 4X, and 12 Enclosures:
 a. 0.25-inch- thick, scratch-resistant acrylic or polycarbonate window mounted in a metal frame matching adjacent door material.
 b. Enclosure types, except NEMA 250 Type 1, shall have a continuous gasket material around perimeter of window and frame to provide watertight seal.
 c. Window kit shall be factory or shop installed before shipment to Project.

5. Frameless Fixed Window Kit for NEMA 250, Type 1 Enclosures:
 a. 0.125-inch- thick, polycarbonate window mounted in enclosure door material.
 b. Window attached to door with screw fasteners and continuous strip of high-strength double-sided tape around window perimeter.
 c. Window kit shall be factory or shop installed before shipment to Project.

2.22 RELAYS

A. General Purpose Relays:
 1. Relays shall be heavy duty and rated for at least 10 A at 250-V ac and 60 Hz.
 2. Relays shall be either double pole double throw (DPDT) or three-pole double throw, depending on the control application.
 3. Use a plug-in-style relay with an eight-pin octal plug for DPDT relays and an 11-pin octal plug for three-pole double-throw relays.
 4. Construct the contacts of either silver cadmium oxide or gold.
 5. Enclose the relay in a clear transparent polycarbonate dust-tight cover.
 6. Relays shall have LED indication and a manual reset and push-to-test button.
 7. Performance:
 a. Mechanical Life: At least 10 million cycles.
 b. Electrical Life: At least 100,000 cycles at rated load.
 c. Pickup Time: 15 ms or less.
d. Dropout Time: 10 ms or less.
e. Pull-in Voltage: 85 percent of rated voltage.
f. Dropout Voltage: 50 percent of nominal rated voltage.
g. Power Consumption: 2 VA.
h. Ambient Operating Temperatures: Minus 40 to 115 deg F.

8. Equip relays with coil transient suppression to limit transients to non-damaging levels.
9. Plug each relay into an industry-standard, 35-mm DIN rail socket. Plug all relays located in control panels into sockets that are mounted on a DIN rail.
10. Relay socket shall have screw terminals. Mold into the socket the coincident screw terminal numbers and associated octal pin numbers.

B. Multifunction Time-Delay Relays:
1. Relays shall be continuous duty and rated for at least 10 A at 240-V ac and 60 Hz.
2. Relays shall be DPDT relay with up to eight programmable functions to provide on/off delay, interval and recycle timing functions.
3. Use a plug-in-style relay with either an 8- or 11-pin octal plug.
4. Construct the contacts of either silver cadmium oxide or gold.
5. Enclose the relay in a dust-tight cover.
6. Include knob and dial scale for setting delay times.
7. Performance:
 a. Mechanical Life: At least 10 million cycles.
 b. Electrical Life: At least 100,000 cycles at rated load.
 c. Timing Ranges: Multiple ranges from 0.1 seconds to 100 minutes.
 d. Repeatability: Within 2 percent.
 e. Recycle Time: 45 ms.
 f. Minimum Pulse Width Control: 50 ms.
 g. Power Consumption: 5 VA or less at 120-V ac.
 h. Ambient Operating Temperatures: Minus 40 to 115 deg F.

8. Equip relays with coil transient suppression to limit transients to non-damaging levels.
9. Plug each relay into an industry-standard, 35-mm DIN rail socket. Plug all relays located in control panels into sockets that are mounted on a DIN rail.
10. Relay socket shall have screw terminals. Mold into the socket the coincident screw terminal numbers and associated octal pin numbers.

C. Latching Relays:
1. Relays shall be continuous duty and rated for at least 10 A at 250-V ac and 60 Hz.
2. Relays shall be either DPDT or three-pole double throw, depending on the control application.
3. Use a plug-in-style relay with a multibladed plug.
4. Construct the contacts of either silver cadmium oxide or gold.
5. Enclose the relay in a clear transparent polycarbonate dust-tight cover.
6. Performance:
 a. Mechanical Life: At least 10 million cycles.
 b. Electrical Life: At least 100,000 cycles at rated load.
 c. Pickup Time: 15 ms or less.
 d. Dropout Time: 10 ms or less.
 e. Pull-in Voltage: 85 percent of rated voltage.
f. Dropout Voltage: 50 percent of nominal rated voltage.
g. Power Consumption: 2 VA.
h. Ambient Operating Temperatures: Minus 40 to 115 deg F.

7. Equip relays with coil transient suppression to limit transients to non-damaging levels.
8. Plug each relay into an industry-standard, 35-mm DIN rail socket. Plug all relays located in control panels into sockets that are mounted on a DIN rail.
9. Relay socket shall have screw terminals. Mold into the socket the coincident screw terminal numbers and associated octal pin numbers.

D. Current Sensing Relay:
1. Monitors ac current.
2. Independent adjustable controls for pickup and dropout current.
3. Energized when supply voltage is present and current is above pickup setting.
4. De-energizes when monitored current is below dropout current.
5. Dropout current is adjustable from 50 to 95 percent of pickup current.
6. Include a current transformer, if required for application.
7. House current sensing relay and current transformer in its own enclosure. Use NEMA 250, Type 12 enclosure for indoors and NEMA 250, Type 4 for outdoors.

E. Combination On-Off Status Sensor and On-Off Relay:
1. Description:
 a. On-off control and status indication in a single device.
 b. LED status indication of activated relay and current trigger.
 c. Closed-Open-Auto override switch located on the load side of the relay.
2. Performance:
 a. Ambient Temperature: Minus 30 to 140 deg F.
3. Status Indication:
 a. Current Sensor: Integral sensing for single-phase loads up to 20 A and external solid or split sensing ring for three-phase loads up to 150 A.
 b. Current Sensor Range: As required by application.
 c. Current Set Point: Fixed or adjustable as required by application.
 d. Current Sensor Output shall be any of the following as applicable to project:
 1) Solid-state, single-pole double-throw contact rated for 30-V ac and dc and for 0.4 A.
 2) Solid-state, single-pole double-throw contact rated for 120-V ac and 1.0 A.
 3) Analog, zero- to 5- or 10-V dc.
 4) Analog, 4 to 20 mA, loop powered.
5. Enclosure: NEMA 250, Type 1 enclosure.
2.23 ELECTRICAL POWER DEVICES

A. Transformers:
 1. Transformer shall be sized for the total connected load, plus an additional 25 percent of connected load.
 2. Transformer shall be at least 40 VA.
 3. Transformer shall have both primary and secondary fuses.

B. DC Power Supply:
 1. Plug-in style suitable for mating with a standard eight-pin octal socket. Include the power supply with a mating mounting socket.
 2. Enclose circuitry in a housing.
 3. Include both line and load regulation to ensure a stable output. To protect both the power supply and the load, power supply shall have an automatic current-limiting circuit.
 4. Performance:
 a. Output voltage nominally 25-V dc within 5 percent.
 b. Output current up to 100 mA.
 c. Input voltage nominally 120-V ac, 60 Hz.
 d. Load regulation within 0.5 percent from zero to 100-mA load.
 e. Line regulation within 0.5 percent at a 100-mA load for a 10 percent line change.
 f. Stability within 0.1 percent of rated volts for 24 hours after a 20-minute warmup.

2.24 UNINTERRUPTABLE POWER SUPPLY (UPS) UNITS FOR WORKSTATIONS

A. 250 through 1000 VA:
 1. UPS units shall provide continuous, regulated output power without using their batteries during brown-out, surge, and spike conditions.
 2. Load served shall not exceed 75 percent of UPS rated capacity, including power factor of connected loads.
 a. Larger-capacity units shall be provided for systems with larger connected loads.
 b. UPS shall provide 15 minutes of battery power.
 3. Performance:
 a. Input Voltage: Single phase, 120- or 230-V ac, compatible with field power source.
 b. Load Power Factor Range (Crest Factor): 0.65 to 1.0.
 c. Output Voltage: 101- to 132-V ac, while input voltage varies between 89 and 152-V ac.
 d. On Battery Output Voltage: Sine wave.
 e. Inverter overload capacity shall be minimum 150 percent for 30 seconds.
 f. Recharge time shall be a maximum of six hours to 90 percent capacity after full discharge to cutoff.
 g. Transfer Time: 6 ms.
 h. Surge Voltage Withstand Capacity: IEEE C62.41, Categories A and B; 6 kV/200 and 500 A; 100-kHz ringwave.
4. UPS shall be automatic during fault or overload conditions.
5. Unit with integral line-interactive, power condition topology to eliminate all power contaminants.
6. Include front panel with power switch and visual indication of power, battery, fault and temperature.
7. Unit shall include an audible alarm of faults and front panel silence feature.
8. Unit with four NEMA WD 1, NEMA WD 6 Configuration 5-15R receptacles.
9. UPS shall include dry contacts (digital output points) for low battery condition and battery-on (primary utility power failure) and connect the points to the DDC system.
10. Batteries shall be sealed lead-acid type and be maintenance free. Battery replacement shall be front accessible by user without dropping load.
11. Include tower models installed in ventilated cabinets to the particular installation location.

B. 1000 through 3000 VA:
1. UPS units shall provide continuous, regulated output power without using their batteries during brown-out, surge, and spike conditions.
2. Load served shall not exceed 75 percent of UPS rated capacity, including power factor of connected loads.
 a. Larger-capacity units, or multiple units shall be provided for systems with larger connected loads.
 b. UPS shall provide 15 minutes of battery power.
3. Performance:
 a. Input Voltage: Single phase, 120-V ac, plus 20 to minus 30 percent.
 b. Power Factor: Minimum 0.97 at full load.
 c. Output Voltage: Single phase, 120-V ac, within 3 percent, steady state with rated output current of 10.0 A, 30.0-A peak.
 d. Inverter overload capacity shall be minimum 150 percent for 30 seconds.
 e. Recharge time shall be a maximum of eight hours to 90 percent capacity.
4. UPS bypass shall be automatic during fault or overload conditions.
5. UPS shall include dry contacts (digital output points) for low battery condition and battery-on (primary utility power failure) and connect the points to the DDC system.
6. Batteries shall be sealed lead-acid type and be maintenance free.
7. Include tower models installed in ventilated cabinets or rack models installed on matching racks, as applicable to the particular installation location and space availability/configuration.

2.25 CONTROL WIRE AND CABLE

A. Wire: Single conductor control wiring above 24 V.
1. Wire size shall be at least No. 14 AWG.
2. Conductor shall be 7/24 soft annealed copper strand with 2- to 2.5-inch lay.
3. Conductor insulation shall be 600 V, Type THWN or Type THHN, and 90 deg C according to UL 83.
4. Conductor colors shall be black (hot), white (neutral), and green (ground).
5. Furnish wire on spools.

B. Single Twisted Shielded Instrumentation Cable above 24 V:
 1. Wire size shall be a minimum No. 18 AWG.
 2. Conductors shall be a twisted, 7/24 soft annealed copper strand with a 2- to 2.5-inch lay.
 3. Conductor insulation shall have a Type THHN/THWN or Type TFN rating.
 4. Shielding shall be 100 percent type, 0.35/0.5-mil aluminum/Mylar tape, helically applied with 25 percent overlap, and aluminum side in with tinned copper drain wire.
 5. Outer jacket insulation shall have a 600-V, 90-deg C rating and shall be Type TC cable.
 6. For twisted pair, conductor colors shall be black and white. For twisted triad, conductor colors shall be black, red and white.
 7. Furnish wire on spools.

C. Single Twisted Shielded Instrumentation Cable 24 V and Less:
 1. Wire size shall be a minimum No. 18 AWG.
 2. Conductors shall be a twisted, 7/24 soft annealed copper stranding with a 2- to 2.5-inch lay.
 3. Conductor insulation shall have a nominal 15-mil thickness, constructed from flame-retardant PVC.
 4. Shielding shall be 100 percent type, 1.35-mil aluminum/polymer tape, helically applied with 25 percent overlap, and aluminum side in with tinned copper drain wire.
 5. Outer jacket insulation shall have a 300-V, 105-deg C rating and shall be Type PLTC cable.
 6. For twisted pair, conductor colors shall be black and white. For twisted triad, conductor colors shall be black, red and white.
 7. Furnish wire on spools.

D. LAN and Communication Cable: Comply with DDC system manufacturer requirements for network being installed.
 1. Cable shall be balanced twisted pair.
 2. Comply with the following requirements and for balanced twisted pair cable described in Section 260.523 "Control-Voltage Electrical Power Cables."
 a. Cable shall be plenum rated.
 b. Cable shall have a unique color that is different from other cables used on Project.

2.26 FACEWAYS
 A. Comply with requirements in Section 26 05 33 "Raceways and Boxes for Electrical Systems" for electrical power raceways and boxes.

2.27 ACCESSORIES
 A. Damper Blade Limit Switches:
 1. Sense positive open and/or closed position of the damper blades.
2. NEMA 250, Type 13, oil-tight construction.
3. Arrange for the mounting application.
4. Additional waterproof enclosure when required by its environment.
5. Arrange to prevent "over-center" operation.

2.28 IDENTIFICATION

A. Control Equipment, Instruments, and Control Devices:
 1. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

B. Raceway and Boxes:
 1. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

C. Equipment Warning Labels:
 1. Self-adhesive label with pressure-sensitive adhesive back and peel-off protective jacket.
 2. Lettering size shall be at least 14-point type with white lettering on red background.
 3. Warning label shall read "CAUTION: Equipment operated under remote automatic control and may start or stop at any time without warning. Switch electric power disconnecting means to OFF position before servicing."
 4. Lettering shall be enclosed in a white line border. Edge of label shall extend at least 0.25 inch beyond white border.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
 1. Verify compatibility with and suitability of substrates.

B. Examine roughing-in for products to verify actual locations of connections before installation.
 1. Examine roughing-in for instruments installed in piping to verify actual locations of connections before installation.
 2. Examine roughing-in for instruments installed in duct systems to verify actual locations of connections before installation.

C. Examine walls, floors, roofs, and ceilings for suitable conditions where product will be installed.

D. Prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.
E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 DDC SYSTEM INTERFACE WITH OTHER SYSTEMS AND EQUIPMENT

A. Communication Interface to Equipment with Integral Controls:
 1. DDC system shall have communication interface with equipment having integral controls and having a communication interface for remote monitoring or control.
 2. Equipment to Be Connected:
 b. Dedicated outdoor-air units specified in Section 23 74 33 "Dedicated Outdoor-Air Units."
 c. Condensing units specified in Section 238219 "Variable Refrigerant Flow-HVAC Systems’
 d. Fan-coil units specified in Section 23 82 19 "Variable Refrigerant Flow-HVAC Systems’.

B. Communication Interface to Other Building Systems:
 1. DDC system shall have a communication interface with systems having a communication interface.

3.3 CONTROL DEVICES FOR INSTALLATION BY INSTALLERS

A. Deliver selected control devices, specified in indicated HVAC instrumentation and control device Sections, to identified equipment and systems manufacturers for factory installation and to identified installers for field installation.

B. Deliver the following to duct fabricator and Installer for installation in ductwork. Include installation instructions to Installer and supervise installation for compliance with requirements.
 1. DDC control dampers, which are specified in Section 23 09 23.12 "DDC Control Dampers."
 2. Pressure sensors, which are specified in Section 23 09 23.23 "Pressure Instruments."

3.4 CONTROL DEVICES FOR EQUIPMENT MANUFACTURER FACTORY INSTALLATION

A. Deliver the following to air-handling unit manufacturer for factory installation. Include installation instructions to air-handling unit manufacturer.
 1. Unit-mounted pressure sensors, switches and transmitters, which are specified in Section 23 09 23.23 "Pressure Instruments."
 2. Unit-mounted temperature sensors, switches and transmitters. Air-temperature sensors, switches, and transmitters are specified in Section 23 09 23.27 "Temperature Instruments."
 3. Relays.
3.5 GENERAL INSTALLATION REQUIREMENTS

A. Install products to satisfy more stringent of all requirements indicated.

B. Default administrative and user passwords for equipment, devices, appliances, and software applications shall be changed to complex unique passwords for each device and/or application. Passwords shall be documented separately from the O&M manual.

C. Install products level, plumb, parallel, and perpendicular with building construction.

D. Support products, wiring and raceways.

E. If codes and referenced standards are more stringent than requirements indicated, comply with requirements in codes and referenced standards.

F. Fabricate openings and install sleeves in ceilings, floors, roof, and walls required by installation of products. Before proceeding with drilling, punching, and cutting, check for concealed work to avoid damage. Patch, flash, grout, seal, and refinish openings to match adjacent condition.

G. Firestop Penetrations Made in Fire-Rated Assemblies. Comply with requirements in Section 07 84 13 "Penetration Firestopping."

H. Seal penetrations made in acoustically rated assemblies. Comply with requirements in Section 07 92 00 "Joint Sealants."

I. Welding Requirements:
 1. Restrict welding and burning to supports and bracing.
 2. No equipment shall be cut or welded without approval. Welding or cutting will not be approved if there is risk of damage to adjacent Work.
 3. Welding, where approved, shall be by inert-gas electric arc process and shall be performed by qualified welders according to applicable welding codes.
 4. If requested on site, show satisfactory evidence of welder certificates indicating ability to perform welding work intended.

J. Fastening Hardware:
 1. Stillson wrenches, pliers, and other tools that damage surfaces of rods, nuts, and other parts are prohibited for work of assembling and tightening fasteners.
 2. Tighten bolts and nuts firmly and uniformly. Do not overstress threads by excessive force or by oversized wrenches.
 3. Lubricate threads of bolts, nuts and screws with graphite and oil before assembly.

K. If product locations are not indicated, install products in locations that are accessible and that will permit service and maintenance from floor, equipment platforms, or catwalks without removal of permanently installed furniture and equipment.

3.6 WORKSTATION INSTALLATION

A. Desktop Workstations Installation:
1. Install workstation(s) at location(s) directed by Owner.
2. Install multiple-receptacle power strip with cord for use in connecting multiple workstation components to a single duplex electrical power receptacle.
3. Install software on workstation(s) and verify software functions properly.
4. Develop Project-specific graphics, trends, reports, logs and historical database.
5. Powerworkstation through a UPS unit. Locate UPS adjacent to workstation.

B. Color Graphics Application:
1. Use system schematics indicated as starting point to create graphics.
2. Develop Project-specific library of symbols for representing system equipment and products.
3. Incorporate digital images of Project-completed installation into graphics where beneficial to enhance effect.
4. Submit sketch of graphic layout with description of all text for each graphic for Owner's and Architect's review before creating graphic using graphics software.
5. Seek Owner input in graphics development once using graphics software.
6. Final editing shall be done on-site with Owner's and Architect's review and feedback.
7. Refine graphics as necessary for Owner acceptance.
8. On receiving Owner acceptance, print a hard copy for inclusion in operation and maintenance manual. Prepare a scanned copy PDF file of each graphic and include with softcopy of DDC system operation and maintenance manual.

3.7 PRINTER INSTALLATION
A. Provide the following printer(s) at location(s) directed by Owner:
 1. Black and White Laser: Quantity, one.
B. Install printer software on workstations and verify that software functions properly.

3.8 GATEWAY INSTALLATION
A. Install gateway if required for DDC system communication interface requirements indicated.
B. Test gateway to verify that communication interface functions properly.

3.9 ROUTER INSTALLATION
A. Install routers if required for DDC system communication interface requirements indicated.
B. Test router to verify that communication interface functions properly.

3.10 CONTROLLER INSTALLATION
A. Install controllers in enclosures to comply with indicated requirements.
B. Connect controllers to field power supply.

C. Install controller with latest version of applicable software and configure to execute requirements indicated.

D. Test and adjust controllers to verify operation of connected I/O to achieve performance indicated requirements while executing sequences of operation.

E. Installation of Network Controllers:

1. Quantity and location of network controllers shall be determined by DDC system manufacturer to satisfy requirements indicated.
2. Install controllers in a protected location that is easily accessible by operators.
3. Top of controller shall be within 72 inches of finished floor.

F. Installation of Programmable Application Controllers:

1. Quantity and location of programmable application controllers shall be determined by DDC system manufacturer to satisfy requirements indicated.
2. Install controllers in a protected location that is easily accessible by operators.
3. Top of controller shall be within 72 inches of finished floor.

G. Application-Specific Controllers:

1. Quantity and location of application-specific controllers shall be determined by DDC system manufacturer to satisfy requirements indicated.
2. For controllers not mounted directly on equipment being controlled, install controllers in a protected location that is easily accessible by operators.

3.11 ENCLOSURES INSTALLATION

A. Install the following items in enclosures, to comply with indicated requirements:

1. Gateways.
2. Routers.
3. Controllers.
4. Electrical power devices.
5. Relays.
6. Accessories.
7. Instruments.
8. Actuators

B. Attach wall-mounted enclosures to wall using the following types of steel struts:

1. For NEMA 250, Type 1 Enclosures: Use galvanized-steel strut and hardware.
2. For NEMA 250, Type 4 or Type 4X Enclosures and Enclosures Located Outdoors: Use stainless-steel strut and hardware.
3. Install plastic caps on exposed cut edges of strut.

C. Align top or bottom of adjacent enclosures of like size.
D. Install continuous and fully accessible wireways to connect conduit, wire, and cable to multiple adjacent enclosures. Wireway used for application shall have protection equal to NEMA 250 rating of connected enclosures.

3.12 ELECTRIC POWER CONNECTIONS

A. Connect electrical power to DDC system products requiring electrical power connections.

B. Design of electrical power to products not indicated with electric power is delegated to DDC system provider and installing trade. Work shall comply with NFPA 70 and other requirements indicated.

C. Comply with requirements in Section 26 28 16 "Enclosed Switches and Circuit Breakers" for electrical power circuit breakers.

D. Comply with requirements in Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables" for electrical power conductors and cables.

E. Comply with requirements in Section 26 05 33 "Raceways and Boxes for Electrical Systems" for electrical power raceways and boxes.

3.13 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements in Section 26 05 53 "Identification for Electrical Systems" for identification products and installation.

B. Install unique instrument identification on face of each instrument connected to a DDC controller.

C. Install unique identification on face of each control damper actuator connected to a DDC controller.

D. Where product is installed above accessible tile ceiling, also install matching identification on face of ceiling grid located directly below.

E. Where product is installed above an inaccessible ceiling, also install identification on face of access door directly below.

F. Warning Labels and Signs:

1. Shall be permanently attached to equipment that can be automatically started by DDC control system.
2. Shall be located in highly visible location near power service entry points.

3.14 NETWORK INSTALLATION

A. Install balanced twisted pair cable when connecting between the following network devices:
1. Operator workstations and network controllers.
2. Network controllers.

B. Install balanced twisted pair or copper cable (as required by equipment) when connecting between the following:
 1. Gateways.
 2. Gateways and network controllers or programmable application controllers.
 3. Routers.
 4. Routers and network controllers or programmable application controllers.
 5. Network controllers and programmable application controllers.
 6. Programmable application controllers.
 7. Programmable application controllers and application-specific controllers.

C. Install cable in continuous raceway.
 1. Where indicated on Drawings, cable trays may be used for copper cable in lieu of conduit.

3.15 NETWORK NAMING AND NUMBERING

A. ASHRAE 135 Networks:
 1. MAC Address:
 a. Every network device shall have an assigned and documented MAC address unique to its network.
 b. Ethernet Networks: Document MAC address assigned at its creation.
 c. ARCNET or MS/TP networks: Assign from 00 to 64.

 2. Network Numbering:
 a. Assign unique numbers to each new network.
 b. Provide ability for changing network number through device switches or operator interface.
 c. DDC system, with all possible connected LANs, can contain up to 65,534 unique networks.

 3. Device Object Identifier Property Number:
 a. Assign unique device object identifier property numbers or device instances for each device network.
 b. Provide for future modification of device instance number by device switches or operator interface.
 c. LAN shall support up to 4,194,302 unique devices.

 4. Device Object Name Property Text:
 a. Device object name property field shall support 32 minimum printable characters.
b. Assign unique device "Object Name" property names with plain-English descriptive names for each device.

1) Example 1: Device object name for device controlling boiler plant at Building 1000 would be "HW System B1000."
2) Example 2: Device object name for a VAV terminal unit controller could be "VAV unit 102".

5. Object Name Property Text for Other Than Device Objects:

a. Object name property field shall support 32 minimum printable characters.
b. Assign object name properties with plain-English names descriptive of application.

1) Example 1: "Zone 1 Temperature."
2) Example 2 "Fan Start and Stop."

6. Object Identifier Property Number for Other Than Device Objects:

a. Assign object identifier property numbers according to Drawings indicated.
b. If not indicated, object identifier property numbers may be assigned at Installer's discretion but must be approved by Owner in advance, be documented and be unique for like object types within device.

3.16 CONTROL WIRE, CABLE AND RACEWAYS INSTALLATION

A. Comply with NECA 1.

B. Wire and Cable Installation:

1. Comply with installation requirements in Section 26 05 23 "Control-Voltage Electrical Power Cables."
2. Install cables with protective sheathing that is waterproof and capable of withstanding continuous temperatures of 90 deg C with no measurable effect on physical and electrical properties of cable.
 a. Provide shielding to prevent interference and distortion from adjacent cables and equipment.
3. Terminate wiring in a junction box.
 a. Clamp cable over jacket in junction box.
 b. Individual conductors in the stripped section of the cable shall be slack between the clamping point and terminal block.
4. Terminate field wiring and cable not directly connected to instruments and control devices having integral wiring terminals using terminal blocks.
5. Install signal transmission components according to IEEE C2, REA Form 511a, NFPA 70, and as indicated.
6. Use shielded cable to transmitters.
7. Use shielded cable to temperature sensors.
8. Perform continuity and meager testing on wire and cable after installation.

C. Conduit Installation:

1. Comply with Section "260533 "Raceways and Boxes for Electrical Systems" for control-voltage conductors.

3.17 FIELD QUALITY CONTROL

A. Testing Agency: [Owner will engage] [Engage] a qualified testing agency to perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and installations, including connections.

C. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

D. Testing:

1. Perform preinstallation, in-progress, and final tests, supplemented by additional tests, as necessary.
2. Preinstallation Cable Verification: Verify integrity and serviceability for new cable lengths before installation. This assurance may be provided by using vendor verification documents, testing, or other methods. As a minimum, furnish evidence of verification for cable attenuation and bandwidth parameters.
3. In-Progress Testing: Perform standard tests for correct pair identification and termination during installation to ensure proper installation and cable placement. Perform tests in addition to those specified if there is any reason to question condition of material furnished and installed. Testing accomplished is to be documented by agency conducting tests. Submit test results for Project record.
4. Final Testing: Perform final test of installed system to demonstrate acceptability as installed. Testing shall be performed according to a test plan supplied by DDC system manufacturer. Defective Work or material shall be corrected and retested. As a minimum, final testing for cable system, including spare cable, shall verify conformance of attenuation, length, and bandwidth parameters with performance indicated.
5. Test Results: Record test results and submit copy of test results for Project record.

3.18 DDC SYSTEM I/O CHECKOUT PROCEDURES

A. Check installed products before continuity tests and calibration.

B. Check instruments for proper location and accessibility.
C. Check instruments for proper installation on direction of flow, elevation, orientation, insertion depth, or other applicable considerations that will impact performance.

D. Control Damper Checkout:
 1. Verify that control dampers are installed correctly for flow direction.
 2. Verify that proper blade alignment, either parallel or opposed, has been provided.
 3. Verify that damper frame attachment is properly secured and sealed.
 4. Verify that damper actuator and linkage attachment is secure.
 5. Verify that actuator wiring is complete, enclosed and connected to correct power source.
 6. Verify that damper blade travel is unobstructed.

E. Instrument Checkout:
 1. Verify that instrument is correctly installed for location, orientation, direction and operating clearances.
 2. Verify that attachment is properly secured and sealed.
 3. Verify that conduit connections are properly secured and sealed.
 4. Verify that wiring is properly labeled with unique identification, correct type and size and is securely attached to proper terminals.
 5. Inspect instrument tag against approved submittal.
 6. For temperature instruments:
 a. Verify sensing element type and proper material.
 b. Verify length and insertion.

3.19 DDC SYSTEM I/O ADJUSTMENT, CALIBRATION AND TESTING:

A. Calibrate each instrument installed that is not factory calibrated and provided with calibration documentation.

B. Provide a written description of proposed field procedures and equipment for calibrating each type of instrument. Submit procedures before calibration and adjustment.

C. For each analog instrument, make a three-point test of calibration for both linearity and accuracy.

D. Equipment and procedures used for calibration shall comply with instrument manufacturer's written instructions.

E. Provide diagnostic and test equipment for calibration and adjustment.

F. Field instruments and equipment used to test and calibrate installed instruments shall have accuracy at least twice the instrument accuracy being calibrated. An installed instrument with an accuracy of 1 percent shall be checked by an instrument with an accuracy of 0.5 percent.

G. Calibrate each instrument according to instrument instruction manual supplied by manufacturer.

H. If after calibration indicated performance cannot be achieved, replace out-of-tolerance instruments.
I. Comply with field testing requirements and procedures indicated by ASHRAE’s Guideline 11, “Field Testing of HVAC Control Components,” in the absence of specific requirements, and to supplement requirements indicated.

J. Analog Signals:
 1. Check analog voltage signals using a precision voltage meter at zero, 50, and 100 percent.
 2. Check analog current signals using a precision current meter at zero, 50, and 100 percent.
 3. Check resistance signals for temperature sensors at zero, 50, and 100 percent of operating span using a precision-resistant source.

K. Digital Signals:
 1. Check digital signals using a jumper wire.
 2. Check digital signals using an ohmmeter to test for contact making or breaking.

L. Control Dampers:
 1. Stroke and adjust control dampers following manufacturer's recommended procedure, from 100 percent open to 100 percent closed and back to 100 percent open.
 2. Stroke control dampers with pilot positioners. Adjust damper and positioner following manufacturer's recommended procedure, so damper is 100 percent closed, 50 percent closed and 100 percent open at proper air pressure.
 3. Check and document open and close cycle times for applications with a cycle time less than 30 seconds.
 4. For control dampers equipped with positive position indication, check feedback signal at multiple positions to confirm proper position indication.

M. Sensors: Check sensors at zero, 50, and 100 percent of Project design values.

N. Switches: Calibrate switches to make or break contact at set points indicated.

O. Transmitters:
 1. Check and calibrate transmitters at zero, 50, and 100 percent of Project design values.
 2. Calibrate resistance temperature transmitters at zero, 50, and 100 percent of span using a precision-resistant source.

3.20 DDC SYSTEM CONTROLLER CHECKOUT

A. Verify power supply.
 1. Verify voltage, phase and hertz.
 2. Verify that protection from power surges is installed and functioning.
 3. Verify that ground fault protection is installed.

B. Verify that wire and cabling is properly secured to terminals and labeled with unique identification.
C. Verify that spare I/O capacity is provided.

3.21 DDC CONTROLLER I/O CONTROL LOOP TESTS

A. Testing:

1. Test every I/O point connected to DDC controller to verify that safety and operating control set points are as indicated and as required to operate controlled system safely and at optimum performance.
2. Test every I/O point throughout its full operating range.
3. Test every control loop to verify operation is stable and accurate.
4. Adjust control loop proportional, integral and derivative settings to achieve optimum performance while complying with performance requirements indicated. Document testing of each control loop’s precision and stability via trend logs.
5. Test and adjust every control loop for proper operation according to sequence of operation.
6. Test software and hardware interlocks for proper operation, correct deficiencies.
7. Operate each analog point at the following:
 a. Upper quarter of range.
 b. Lower quarter of range.
 c. At midpoint of range.
8. Exercise each binary point.
9. For every I/O point in DDC system, read and record each value at operator workstation, at DDC controller and at field instrument simultaneously. Value displayed at operator workstation, at DDC controller and at field instrument shall match.
10. Prepare and submit a report documenting results for each I/O point in DDC system and include in each I/O point a description of corrective measures and adjustments made to achieve desire results.

3.22 DDC SYSTEM VALIDATION TESTS

A. Perform validation tests before requesting final review of system. Before beginning testing, first submit Pretest Checklist and Test Plan.

B. After approval of Test Plan, execute all tests and procedures indicated in plan.

C. After testing is complete, submit completed test checklist.

D. Pretest Checklist: Submit the following list with items checked off once verified:

1. Detailed explanation for any items that are not completed or verified.
2. Required mechanical installation work is successfully completed and HVAC equipment is working correctly.
3. HVAC equipment motors operate below full-load amperage ratings.
4. Required DDC system components, wiring, and accessories are installed.
5. Installed DDC system architecture matches approved Drawings.
6. Control electric power circuits operate at proper voltage and are free from faults.
7. Required surge protection is installed.
8. DDC system network communications function properly, including uploading and downloading programming changes.
9. Using BACnet protocol analyzer, verify that communications are error free.
10. Each controller's programming is backed up.
11. Equipment, products, wiring cable and conduits are properly labeled.
12. All I/O points are programmed into controllers.
13. Testing, adjusting and balancing work affecting controls is complete.
14. Dampers and actuators zero and span adjustments are set properly.
15. Each control damper and actuator goes to failed position on loss of power.
16. Meter, sensor and transmitter readings are accurate and calibrated.
17. Control loops are tuned for smooth and stable operation.
18. View trend data where applicable.
19. Each controller works properly in standalone mode.
20. Safety controls and devices function properly.
21. Interfaces with fire-alarm system function properly.
22. Electrical interlocks function properly.
23. Operator workstations and other interfaces are delivered, all system and database software is installed, and graphics are created.
24. Record Drawings are completed.

E. Test Plan:

1. Prepare and submit a validation test plan including test procedures for performance validation tests.
2. Test plan shall address all specified functions of DDC system and sequences of operation.
3. Explain detailed actions and expected results to demonstrate compliance with requirements indicated.
4. Explain method for simulating necessary conditions of operation used to demonstrate performance.
5. Include a test checklist to be used to check and initial that each test has been successfully completed.
6. Submit test plan documentation 20 business days before start of tests.

F. Validation Test:

1. Verify operating performance of each I/O point in DDC system.
 a. Verify analog I/O points at operating value.
 b. Make adjustments to out-of-tolerance I/O points.
 1) Identify I/O points for future reference.
 2) Simulate abnormal conditions to demonstrate proper function of safety devices.
 3) Replace instruments and controllers that cannot maintain performance indicated after adjustments.

2. Simulate conditions to demonstrate proper sequence of control.
3. Readjust settings to design values and observe ability of DDC system to establish desired conditions.
4. After 24 Hours following Initial Validation Test:
a. Re-check I/O points that required corrections during initial test.
b. Identify I/O points that still require additional correction and make corrections necessary to achieve desired results.

5. After 24 Hours of Second Validation Test:
 a. Re-check I/O points that required corrections during second test.
 b. Continue validation testing until I/O point is normal on two consecutive tests.

6. Completely check out, calibrate, and test all connected hardware and software to ensure that DDC system performs according to requirements indicated.

7. After validation testing is complete, prepare and submit a report indicating all I/O points that required correction and how many validation re-tests it took to pass. Identify adjustments made for each test and indicate instruments that were replaced.

G. DDC System Response Time Test:
 1. Simulate HLC.
 a. Heavy load shall be an occurrence of 50 percent of total connected binary COV, one-half of which represent an "alarm" condition, and 50 percent of total connected analog COV, one-half of which represent an "alarm" condition, that are initiated simultaneously on a one-time basis.
 2. Initiate 10 successive occurrences of HLC and measure response time to typical alarms and status changes.
 3. Measure with a timer having at least 0.1-second resolution and 0.01 percent accuracy.
 4. Purpose of test is to demonstrate DDC system, as follows:
 a. Reaction to COV and alarm conditions during HLC.
 b. Ability to update DDC system database during HLC.
 5. Passing test is contingent on the following:
 a. Alarm reporting at printer beginning no more than two seconds after the initiation (time zero) of HLC.
 b. All alarms, both binary and analog, are reported and printed; none are lost.
 c. Compliance with response times specified.
 6. Prepare and submit a report documenting HLC tested and results of test including time stamp and print out of all alarms.

H. DDC System Network Bandwidth Test:
 1. Test network bandwidth usage on all DDC system networks to demonstrate bandwidth usage under DDC system normal operating conditions and under simulated HLC.
 2. To pass, none of DDC system networks shall use more than 70 percent of available bandwidth under normal and HLC operation.
3.23 FINAL REVIEW

A. Submit written request to Architect and Construction Manager when DDC system is ready for final review. Written request shall state the following:

1. DDC system has been thoroughly inspected for compliance with contract documents and found to be in full compliance.
2. DDC system has been calibrated, adjusted and tested and found to comply with requirements of operational stability, accuracy, speed and other performance requirements indicated.
3. DDC system monitoring and control of HVAC systems results in operation according to sequences of operation indicated.
4. DDC system is complete and ready for final review.

B. Review by Architect and Construction Manager shall be made after receipt of written request. A field report shall be issued to document observations and deficiencies.

C. Take prompt action to remedy deficiencies indicated in field report and submit a second written request when all deficiencies have been corrected. Repeat process until no deficiencies are reported.

D. Should more than two reviews be required, DDC system manufacturer and Installer shall compensate entity performing review for total costs, labor and expenses, associated with third and subsequent reviews. Estimated cost of each review shall be submitted and approved by DDC system manufacturer and Installer before making the review.

E. Prepare and submit closeout submittals when no deficiencies are reported.

F. A part of DDC system final review shall include a demonstration to parties participating in final review.

1. Provide staff familiar with DDC system installed to demonstrate operation of DDC system during final review.
2. Provide testing equipment to demonstrate accuracy and other performance requirements of DDC system that is requested by reviewers during final review.
3. Demonstration shall include, but not be limited to, the following:
 a. Accuracy and calibration of 20 I/O points randomly selected by reviewers. If review finds that some I/O points are not properly calibrated and not satisfying performance requirements indicated, additional I/O points may be selected by reviewers until total I/O points being reviewed that satisfy requirements equals quantity indicated.
 b. HVAC equipment and system hardwired and software safeties and life-safety functions are operating according to sequence of operation. Up to 10 I/O points shall be randomly selected by reviewers. Additional I/O points may be selected by reviewers to discover problems with operation.
 c. Correct sequence of operation after electrical power interruption and resumption after electrical power is restored for randomly selected HVAC systems.
 d. Operation of randomly selected dampers and valves in normal-on, normal-off and failed positions.
e. Reporting of alarm conditions for randomly selected alarms, including different classes of alarms, to ensure that alarms are properly received by operators and operator workstations.

f. Trends, summaries, logs and reports set-up for Project.

g. For up to three HVAC systems randomly selected by reviewers, use graph trends to show that sequence of operation is executed in correct manner and that HVAC systems operate properly through complete sequence of operation including different modes of operations indicated. Show that control loops are stable and operating at set points and respond to changes in set point of 20 percent or more.

h. Software's ability to communicate with controllers, operator workstations, uploading and downloading of control programs.

i. Software's ability to edit control programs off-line.

j. Data entry to show Project-specific customizing capability including parameter changes.

k. Step through penetration tree, display all graphics, demonstrate dynamic update, and direct access to graphics.

l. Execution of digital and analog commands in graphic mode.

m. Spreadsheet and curve plot software and its integration with database.

n. Online user guide and help functions.

o. Multitasking by showing different operations occurring simultaneously on four quadrants of split screen.

p. System speed of response compared to requirements indicated.

q. For Each Network and Programmable Application Controller:

1) Memory: Programmed data, parameters, trend and alarm history collected during normal operation is not lost during power failure.

2) Operator Interface: Ability to connect directly to each type of digital controller with a portable workstation and mobile device. Show that maintenance personnel interface tools perform as indicated in manufacturer's technical literature.

3) Standalone Ability: Demonstrate that controllers provide stable and reliable standalone operation using default values or other method for values normally read over network.

4) Electric Power: Ability to disconnect any controller safely from its power source.

5) Wiring Labels: Match control drawings.

6) Network Communication: Ability to locate a controller's location on network and communication architecture matches Shop Drawings.

7) Nameplates and Tags: Accurate and permanently attached to control panel doors, instrument, actuators and devices.

r. For Each Operator Workstation:

1) I/O points lists agree with naming conventions.

2) Graphics are complete.

3) UPS unit, if applicable, operates.

s. Communications and Interoperability: Demonstrate proper interoperability of data sharing, alarm and event management, trending, scheduling, and device and network management. Use ASHRAE 135 protocol analyzer to help identify
devices, view network traffic, and verify interoperability. Requirements must be met even if only one manufacturer's equipment is installed.

1) Data Presentation: On each operator workstation, demonstrate graphic display capabilities.
2) Reading of Any Property: Demonstrate ability to read and display any used readable object property of any device on network.
3) Set Point and Parameter Modifications: Show ability to modify set points and tuning parameters indicated. Modifications are made with messages and write services initiated by an operator using workstation graphics, or by completing a field in a menu with instructional text.
4) Peer-to-Peer Data Exchange: Network devices are installed and configured to perform without need for operator intervention to implement Project sequence of operation and to share global data.
5) Alarm and Event Management: Alarms and events are installed and prioritized according to Owner. Demonstrate that time delays and other logic are set up to avoid nuisance tripping. Show that operators with sufficient privileges are permitted.
6) Schedule Lists: Schedules are configured for start and stop, mode change, occupant overrides, and night setback as defined in sequence of operations.
7) Schedule Display and Modification: Ability to display any schedule with start and stop times for calendar year. Show that all calendar entries and schedules are modifiable from any connected operator workstation by an operator with sufficient privileges.
8) Archival Storage of Data: Data archiving is handled by operator workstation and server and local trend archiving and display is accomplished.
9) Modification of Trend Log Object Parameters: Operator with sufficient privilege can change logged data points, sampling rate, and trend duration.
10) Device and Network Management:
 a) Display of network device status.
 b) Display of BACnet Object Information.
 c) Silencing devices transmitting erroneous data.
 d) Time synchronization.
 e) Remote device re-initialization.
 f) Backup and restore network device programming and master database(s).
 g) Configuration management of routers.

3.24 ADJUSTING

A. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.25 MAINTENANCE SERVICE

A. Maintenance Service: Beginning at Substantial Completion, maintenance service shall include 12 months' full maintenance by DDC system manufacturer's authorized service representative.
Include quarterly preventive maintenance, repair or replacement of worn or defective components, cleaning, calibration and adjusting as required for proper operation. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.

3.26 SOFTWARE SERVICE AGREEMENT

A. Technical Support: Beginning at Substantial Completion, service agreement shall include software support for two year(s).

B. Upgrade Service: At Substantial Completion, update software to latest version. Install and program software upgrades that become available within two year(s) from date of Substantial Completion. Upgrading software shall include operating system and new or revised licenses for using software.

1. Upgrade Notice: At least 30 days to allow Owner to schedule and access system and to upgrade computer equipment if necessary.

3.27 DEMONSTRATION

A. Engage a factory-authorized service representative with complete knowledge of Project-specific system installed to train Owner's maintenance personnel to adjust, operate, and maintain DDC system.

B. Extent of Training:

1. Base extent of training on scope and complexity of DDC system indicated and training requirements indicated. Provide extent of training required to satisfy requirements indicated even if more than minimum training requirements are indicated.

2. Inform Owner of anticipated training requirements if more than minimum training requirements are indicated.

3. Minimum Training Requirements:

 a. Provide not less than five days of training total.
 b. Stagger training over multiple training classes to accommodate Owner's requirements. All training shall occur before end of warranty period.
 c. Total days of training shall be broken into not more than four separate training classes.
 d. Each training class shall be not less than one consecutive day(s).

C. Training Schedule:

1. Schedule training with Owner 20 business days before expected Substantial Completion.

2. Schedule training to provide Owner with at least 20 business days of notice in advance of training.

3. Training shall occur within normal business hours at a mutually agreed on time. Unless otherwise agreed to, training shall occur Monday through Friday, except on U.S. Federal holidays, with two morning sessions and two afternoon sessions. Each morning session and afternoon session shall be split in half with 15-minute break between sessions.
Morning and afternoon sessions shall be separated by 30-minute lunch period. Training, including breaks and excluding lunch period, shall not exceed eight hours per day.

4. Provide staggered training schedule as requested by Owner.

D. Training Attendee List and Sign-in Sheet:

1. Request from Owner in advance of training a proposed attendee list with name, phone number and e-mail address.
2. Provide a preprinted sign-in sheet for each training session with proposed attendees listed and no fewer than six blank spaces to add additional attendees.
3. Preprinted sign-in sheet shall include training session number, date and time, instructor name, phone number and e-mail address, and brief description of content to be covered during session. List attendees with columns for name, phone number, e-mail address and a column for attendee signature or initials.
4. Circulate sign-in sheet at beginning of each session and solicit attendees to sign or initial in applicable location.
5. At end of each training day, send Owner an e-mail with an attachment of scanned copy (PDF) of circulated sign-in sheet for each session.

E. Training Attendee Headcount:

1. Plan in advance of training for five attendees.
2. Make allowance for Owner to add up to two attendee(s) at time of training.
3. Headcount may vary depending on training content covered in session. Attendee access may be restricted to some training content for purposes of maintaining system security.

F. Training Attendee Prior Knowledge: For guidance in planning required training and instruction, assume attendees have the following:

1. High school and technical school education and degree.
2. Intermediate user knowledge of computers and office applications.
3. Intermediate knowledge of HVAC systems.
4. Basic knowledge of DDC systems.
5. Basic knowledge of DDC system and products installed.

G. Attendee Training Manuals:

1. Provide each attendee with a color hard copy of all training materials and visual presentations.
2. Hard-copy materials shall be organized in a three-ring binder with table of contents and individual divider tabs marked for each logical grouping of subject matter. Organize material to provide space for attendees to take handwritten notes within training manuals.
3. In addition to hard-copy materials included in training manual, provide each binder with a sleeve or pocket that includes a DVD or flash drive with PDF copy of all hard-copy materials.

H. Instructor Requirements:

1. One or multiple qualified instructors, as required, to provide training.
2. Instructors shall have not less than five Insert number years of providing instructional training on not less than five past projects with similar DDC system scope and complexity to DDC system installed.

I. Organization of Training Sessions:

1. Organize training sessions into logical groupings of technical content and to reflect different levels of operators having access to system. Plan training sessions to accommodate the following three levels of operators:

 a. Daily operators.
 b. Advanced operators.
 c. System managers and administrators.

2. Plan and organize training sessions to group training content to protect DDC system security. Some attendees may be restricted to some training sessions that cover restricted content for purposes of maintaining DDC system security.

J. Training Outline:

1. Submit training outline for Owner review at least 10 business day before scheduling training.
2. Outline shall include a detailed agenda for each training day that is broken down into each of four training sessions that day, training objectives for each training session and synopses for each lesson planned.

K. On-Site Training:

1. Owner will provide conditioned classroom or workspace with ample desks or tables, chairs, power and data connectivity for instructor and each attendee.
2. Instructor shall provide training materials, projector and other audiovisual equipment used in training.
3. Provide as much of training located on-site as deemed feasible and practical by Owner.
4. On-site training shall include regular walk-through tours, as required, to observe each unique product type installed with hands-on review of operation, calibration and service requirements.
5. Operator workstation provided with DDC system shall be used in training. If operator workstation is not indicated, provide a temporary workstation to convey training content.

L. Training Content for Daily Operators:

1. Basic operation of system.
2. Understanding DDC system architecture and configuration.
3. Understanding each unique product type installed including performance and service requirements for each.
4. Understanding operation of each system and equipment controlled by DDC system including sequences of operation, each unique control algorithm and each unique optimization routine.
5. Operating operator workstations, printers and other peripherals.
6. Logging on and off system.
7. Accessing graphics, reports and alarms.
8. Adjusting and changing set points and time schedules.
9. Recognizing DDC system malfunctions.
10. Understanding content of operation and maintenance manuals including control drawings.
11. Understanding physical location and placement of DDC controllers and I/O hardware.
12. Accessing data from DDC controllers.
14. Review of DDC testing results to establish basic understanding of DDC system operating performance and HVAC system limitations as of Substantial Completion.
15. Running each specified report and log.
16. Displaying and demonstrating each data entry to show Project-specific customizing capability. Demonstrating parameter changes.
17. Stepping through graphics penetration tree, displaying all graphics, demonstrating dynamic updating, and direct access to graphics.
18. Executing digital and analog commands in graphic mode.
19. Demonstrating control loop precision and stability via trend logs of I/O for not less than 10 percent of I/O installed.
20. Demonstrating DDC system performance through trend logs and command tracing.
22. Demonstrating spreadsheet and curve plot software and its integration with database.
23. Demonstrating on-line user guide, and help function and mail facility.
24. Demonstrating multitasking by showing dynamic curve plot, and graphic construction operating simultaneously via split screen.
25. Demonstrating the following for HVAC systems and equipment controlled by DDC system:
 a. Operation of HVAC equipment in normal-off, -on and failed conditions while observing individual equipment, dampers and valves for correct position under each condition.
 b. For HVAC equipment with factory-installed software, show that integration into DDC system is able to communicate with DDC controllers or gateways, as applicable.
 c. Using graphed trends, show that sequence of operation is executed in correct manner, and HVAC systems operate properly through complete sequence of operation including seasonal change, occupied and unoccupied modes, warm-up and cool-down cycles and other modes of operation indicated.
 d. Hardware interlocks and safeties function properly and DDC system performs correct sequence of operation after electrical power interruption and resumption after power is restored.
 e. Reporting of alarm conditions for each alarm, and confirm that alarms are received at assigned locations, including operator workstations.
 f. Each control loop responds to set point adjustment and stabilizes within time period indicated.
 g. Sharing of previously graphed trends of all control loops to demonstrate that each control loop is stable and set points are being maintained.

M. Training Content for Advanced Operators:

1. Making and changing workstation graphics.
2. Creating, deleting and modifying alarms including annunciation and routing.
3. Creating, deleting and modifying point trend logs including graphing and printing on an ad-hoc basis and operator-defined time intervals.
4. Creating, deleting and modifying reports.
5. Creating, deleting and modifying points.
6. Creating, deleting and modifying programming including ability to edit control programs off-line.
7. Creating, deleting and modifying system graphics and other types of displays.
8. Adding DDC controllers and other network communication devices such as gateways and routers.
10. Performing DDC system checkout and diagnostic procedures.
11. Performing DDC controllers operation and maintenance procedures.
12. Performing operator workstation operation and maintenance procedures.
13. Configuring DDC system hardware including controllers, workstations, communication devices and I/O points.
14. Maintaining, calibrating, troubleshooting, diagnosing and repairing hardware.
15. Adjusting, calibrating and replacing DDC system components.

N. Training Content for System Managers and Administrators:
1. DDC system software maintenance and backups.
2. Uploading, downloading and off-line archiving of all DDC system software and databases.
3. Interface with Project-specific, third-party operator software.
4. Understanding password and security procedures.
5. Adding new operators and making modifications to existing operators.
6. Operator password assignments and modification.
7. Operator authority assignments and modification.
8. Workstation data segregation and modification.

O. Video of Training Sessions:
1. Provide a digital video and audio recording of each training session. Create a separate recording file for each session.
2. Stamp each recording file with training session number, session name and date.
3. Provide Owner with two copies of digital files on DVDs or flash drives for later reference and for use in future training.
4. Owner retains right to make additional copies for intended training purposes without having to pay royalties.

END OF SECTION 23 09 23
SECTION 23 09 23.12

CONTROL DAMPERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes the following types of control dampers and actuators for DDC systems:

1. Rectangular control dampers.
2. General control-damper actuator requirements.
3. Electric and electronic actuators.

B. Related Requirements:

1. Section 23 09 23 "Direct-Digital Control System for HVAC" for control equipment and software, relays, electrical power devices, uninterruptible power supply units, wire, and cable.

1.3 DEFINITIONS

A. DDC: Direct-digital control.

B. RMS: Root-mean-square value of alternating voltage, which is the square root of the mean value of the square of the voltage values during a complete cycle.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product, including the following:

1. Construction details, material descriptions, dimensions of individual components and profiles, and finishes.
2. Operating characteristics, electrical characteristics, and furnished accessories indicating process operating range, accuracy over range, control signal over range, default control signal with loss of power, calibration data specific to each unique application, electrical power requirements, and limitations of ambient operating environment, including temperature and humidity.
4. Installation instructions, including factors affecting performance.
B. Shop Drawings:
 1. Include plans, elevations, sections, and mounting details.
 2. Include details of product assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Include diagrams for power, signal, and control wiring.

C. Delegated-Design Submittal:
 1. Schedule and design calculations for control dampers and actuators, including the following.
 a. Flow at project design and minimum flow conditions.
 b. Face velocity at project design and minimum airflow conditions.
 c. Pressure drop across damper at project design and minimum airflow conditions.
 d. AMCA 500D damper installation arrangement used to calculate and schedule pressure drop, as applicable to installation.
 e. Maximum close-off pressure.
 f. Leakage airflow at maximum system pressure differential (fan close-off pressure).
 g. Torque required at worst case condition for sizing actuator.
 h. Actuator selection indicating torque provided.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For control dampers to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. ASME Compliance: Fabricate and label products to comply with ASME Boiler and Pressure Vessel Code where required by authorities having jurisdiction.

C. Delegated Design: Engage a qualified professional, as defined in Section 01 40 00 "Quality Requirements," to size products where indicated as delegated design.

D. Ground Fault: Products shall not fail due to ground fault condition when suitably grounded.

E. Environmental Conditions:
 1. Provide electric control-damper actuators, with protective enclosures satisfying the following minimum requirements unless more stringent requirements are indicated.
Electric control-damper actuators not available with integral enclosures, complying with requirements indicated, shall be housed in protective secondary enclosures.

F. Selection Criteria:

1. Fail positions unless otherwise indicated:
 a. Supply Air: Open.
 b. Return Air: Open.
 c. Outdoor Air: Close.
 d. Mixed Air: Last position.
 e. Exhaust Air: Close.

2. Dampers shall have stable operation throughout full range of operation, from design to minimum airflow over varying pressures and temperatures encountered.

3. Select modulating dampers for a pressure drop of 2 percent of fan total static pressure unless otherwise indicated.

4. Two-position dampers shall be full size of duct or equipment connection unless otherwise indicated.

2.2 RECTANGULAR CONTROL DAMPERS

A. General Requirements:

1. Unless otherwise indicated, use parallel blade configuration for two-position control, equipment isolation service, and when mixing two airstreams. For other applications, use opposed blade configuration.

2. Factory assemble multiple damper sections to provide a single damper assembly of size required by the application.

3. Damper actuator shall be factory installed by damper manufacturer as integral part of damper assembly. Coordinate actuator location and mounting requirements with damper manufacturer.

B. Rectangular Dampers with Aluminum Airfoil Blades:

1. Performance:
 a. Leakage: AMCA 511, Class 1A. Leakage shall not exceed 3 cfm/sq. ft. against 1-in. wg differential static pressure.
 b. Pressure Drop: 0.05-in. wg at 1500 fpm across a 24-by-24-inch damper when tested according to AMCA 500-D, figure 5.3.
 c. Velocity: Up to 6000 fpm.
 d. Temperature: Minus 40 to plus 185 deg F.
 e. Pressure Rating: Damper close-off pressure equal to fan shutoff pressure with a maximum blade deflection of 1/200 of blade length.
 f. Damper shall have AMCA seal for both air leakage and air performance.

2. Construction:
 a. Frame:
1) Material: ASTM B211, Alloy 6063 T5 extruded-aluminum profiles, 0.07 inch thick.
2) Hat-shaped channel with integral flange(s). Mating face shall be a minimum of 1 inch.
3) Width not less than 5 inches.

b. Blades:
1) Hollow, airfoil, extruded aluminum.
2) Parallel or opposed blade configuration as required by application.
3) Material: ASTM B211, Alloy 6063 T5 aluminum, 0.07 inch thick
4) Width not to exceed 6 inches.
5) Length as required by close-off pressure, not to exceed 48 inches.

c. Seals:
1) Blades: Replaceable, mechanically attached extruded silicone, vinyl, or plastic composite.
2) Jambs: Stainless steel, compression type.

d. Axles: 0.5-inch diameter plated or stainless steel, mechanically attached to blades.

e. Bearings:
1) Molded synthetic or stainless-steel sleeve mounted in frame.
2) Where blade axles are installed in vertical position, provide thrust bearings.

f. Linkage:
1) Concealed in frame.
2) Constructed of aluminum and plated or stainless steel.
3) Hardware: Stainless steel.

g. Transition:
1) For round and flat oval duct applications, provide damper assembly with integral transitions to mate to adjoining field connection.
2) Factory mount damper in a sleeve with a close transition to mate to field connection.
3) Damper size and sleeve shall be connection size plus 2 inches.
4) Sleeve length shall be not less than 12 inches for dampers without jackshafts and shall be not less than 16 inches for dampers with jackshafts.
5) Sleeve material shall match adjacent duct.

h. Additional Corrosion Protection for Corrosive Environments:
1) Provide anodized finish for aluminum surfaces in contact with airstream. Anodized finish shall be a minimum of 0.0007 inch thick.
2) Axles, damper linkage, and hardware shall be constructed of Type 316L stainless steel.
2.3 GENERAL CONTROL-DAMPER ACTUATORS REQUIREMENTS

A. Actuators shall operate related damper(s) with sufficient reserve power to provide smooth modulating action or two-position action and proper speed of response at velocity and pressure conditions to which the damper is subjected.

B. Actuators shall produce sufficient power and torque to close off against the maximum system pressures encountered. Actuators shall be sized to close off against the fan shutoff pressure as a minimum requirement.

C. The total damper area operated by an actuator shall not exceed 80 percent of manufacturer's maximum area rating.

D. Provide one actuator for each damper assembly where possible. Multiple actuators required to drive a single damper assembly shall operate in unison.

E. Avoid the use of excessively oversized actuators which could overdrive and cause linkage failure when the damper blade has reached either its full open or closed position.

F. Use jackshafts and shaft couplings in lieu of blade-to-blade linkages when driving axially aligned damper sections.

G. Provide mounting hardware and linkages for connecting actuator to damper.

H. Select actuators to fail in desired position in the event of a power failure.

I. Actuator Fail Positions: As indicated below:

 1. Exhaust Air: Close.
 2. Outdoor Air: Close.
 4. Return Air: Open.

2.4 ELECTRIC AND ELECTRONIC ACTUATORS

A. Type: Motor operated, with or without gears, electric and electronic.

B. Voltage:

 Voltage selection is delegated to professional designing control system.

 1. Actuator shall deliver torque required for continuous uniform movement of controlled device from limit to limit when operated at rated voltage.
 2. Actuator shall function properly within a range of 85 to 120 percent of nameplate voltage.

C. Construction:

 1. Less Than 100 W: Fiber or reinforced nylon gears with steel shaft, copper alloy or nylon bearings, and pressed steel enclosures.
2. 100 up to 400 W: Gears ground steel, oil immersed, shaft-hardened steel running in bronze, copper alloy, or ball bearings. Operator and gear trains shall be totally enclosed in dustproof cast-iron, cast-steel, or cast-aluminum housing.

D. Field Adjustment:

1. Spring return actuators shall be easily switchable from fail open to fail closed in the field without replacement.

2. Provide gear-type actuators with an external manual adjustment mechanism to allow manual positioning of the damper when the actuator is not powered.

E. Two-Position Actuators: Single direction, spring return or reversing type.

F. Modulating Actuators:

1. Capable of stopping at all points across full range, and starting in either direction from any point in range.

2. Control Input Signal:

 a. Proportional: Actuator drives proportional to input signal and modulates throughout its angle of rotation. Suitable for zero- to 10- or 2- to 10-V dc and 4- to 20-mA signals.

G. Position Feedback:

1. Where indicated, equip two-position actuators with limits switches or other positive means of a position indication signal for remote monitoring of open and close position.

2. Provide a position indicator and graduated scale on each actuator indicating open and closed travel limits.

H. Fail-Safe:

1. Where indicated, provide actuator to fail to an end position.

2. Internal spring return mechanism to drive controlled device to an end position (open or close) on loss of power.

3. Batteries, capacitors, and other non-mechanical forms of fail-safe operation are acceptable only where uniquely indicated.

I. Integral Overload Protection:

1. Provide against overload throughout the entire operating range in both directions.

2. Electronic overload, digital rotation sensing circuitry, mechanical end switches, or magnetic clutches are acceptable methods of protection.

J. Damper Attachment:

1. Unless otherwise required for damper interface, provide actuator designed to be directly coupled to damper shaft without need for connecting linkages.
2. Attach actuator to damper drive shaft in a way that ensures maximum transfer of power and torque without slippage.
3. Bolt and set screw method of attachment is acceptable only if provided with at least two points of attachment.

K. Temperature and Humidity:
1. Temperature: Suitable for operating temperature range encountered by application with minimum operating temperature range of minus 20 to plus 120 deg F.
2. Humidity: Suitable for humidity range encountered by application; minimum operating range shall be from 5 to 95 percent relative humidity, non-condensing.

L. Enclosure:
1. Suitable for ambient conditions encountered by application.
2. NEMA 250, Type 2 for indoor and protected applications.
3. NEMA 250, Type 4 or Type 4X for outdoor and unprotected applications.
4. Provide actuator enclosure with a heater and controller where required by application.

M. Stroke Time:
1. Operate damper from fully closed to fully open within 15 seconds.
2. Operate damper from fully open to fully closed within 15 seconds.
3. Move damper to failed position within 5 seconds.
4. Select operating speed to be compatible with equipment and system operation.
5. Actuators operating in smoke control systems comply with governing code and NFPA requirements.

N. Sound:
1. Spring Return: 62 dBA.
2. Non-Spring Return: 45 dBA.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for dampers and instruments installed in duct systems to verify actual locations of connections before installation.

C. Prepare written report, endorsed by Installer, listing conditions detrimental to performance.

D. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 INSTALLATION, GENERAL

A. Furnish and install products required to satisfy most stringent requirements indicated.

B. Properly support dampers and actuators, wiring, and conduit to comply with requirements indicated.

C. Provide ceiling, floor, roof, and wall openings and sleeves required by installation. Before proceeding with drilling, punching, or cutting, check location first for concealed products that could potentially be damaged. Patch, flash, grout, seal, and refinish openings to match adjacent condition.

D. Seal penetrations made in fire-rated and acoustically rated assemblies.

E. Fastening Hardware:
 1. Stillson wrenches, pliers, or other tools that will cause injury to or mar surfaces of rods, nuts, and other parts are prohibited for assembling and tightening nuts.
 2. Tighten bolts and nuts firmly and uniformly. Do not overstress threads by excessive force or by oversized wrenches.
 3. Lubricate threads of bolts, nuts, and screws with graphite and oil before assembly.

F. Install products in locations that are accessible and that will permit calibration and maintenance from floor, equipment platforms, or catwalks. Where ladders are required for Owner's access, confirm unrestricted ladder placement is possible under occupied condition.

G. Corrosive Environments:
 1. Use products that are suitable for environment to which they will be subjected.
 2. When conduit is in contact with a corrosive environment, use Type 316 stainless-steel conduit and fittings or conduit and fittings that are coated with a corrosive-resistant coating that is suitable for environment.
 3. Where actuators are located in a corrosive environment (outdoors in coastal region) and are not corrosive resistant from manufacturer, field install products in a NEMA 250, Type 4X enclosure constructed of Type 316L stainless steel.

3.3 ELECTRIC POWER

A. Furnish and install electrical power to products requiring electrical connections.

B. Furnish and install circuit breakers. Comply with requirements in Section 26 28 16 "Enclosed Switches and Circuit Breakers."

C. Furnish and install power wiring. Comply with requirements in Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."

D. Furnish and install raceways. Comply with requirements in Section 26 05 33 "Raceways and Boxes for Electrical Systems."
3.4 CONTROL DAMPERS
 A. Install smooth transitions, not exceeding 30 degrees, to dampers smaller than adjacent duct. Install transitions as close to damper as possible but at distance to avoid interference and impact to performance. Consult manufacturer for recommended clearance.
 B. Clearance:
 1. Locate dampers for easy access and provide separate support of dampers that cannot be handled by service personnel without hoisting mechanism.
 2. Install dampers with at least 24 inches of clear space on sides of dampers requiring service access.
 C. Service Access:
 1. Dampers and actuators shall be accessible for visual inspection and service.
 2. Install access door(s) in duct or equipment located upstream of damper to allow service personnel to hand clean any portion of damper, linkage, and actuator. Comply with requirements in Section 23 33 00 "Air Duct Accessories."
 D. Install dampers straight and true, level in all planes, and square in all dimensions. Install supplementary structural steel reinforcement for large multiple-section dampers if factory support alone cannot handle loading.
 E. Attach actuator(s) to damper drive shaft.
 F. For duct-mounted and equipment-mounted dampers installed outside of equipment, install a visible and accessible indication of damper position from outside.

3.5 CONNECTIONS
 A. Connect electrical devices and components to electrical grounding system. Comply with requirements in Section 26 05 26 "Grounding and Bonding for Electrical Systems."

3.6 IDENTIFICATION
 A. Identify system components, wiring, cabling, and terminals. Each piece of wire, cable, and tubing shall have the same designation at each end for operators to determine continuity at points of connection. Comply with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."

3.7 CHECKOUT PROCEDURES
 A. Control-Damper Checkout:
 1. Check installed products before continuity tests, leak tests, and calibration.
 2. Check dampers for proper location and accessibility.
 3. Verify that control dampers are installed correctly for flow direction.
4. Verify that proper blade alignment, either parallel or opposed, has been provided.
5. Verify that damper frame attachment is properly secured and sealed.
6. Verify that damper actuator and linkage attachment are secure.
7. Verify that actuator wiring is complete, enclosed, and connected to correct power source.
8. Verify that damper blade travel is unobstructed.

3.8 ADJUSTMENT, CALIBRATION, AND TESTING:

A. Stroke and adjust control dampers following manufacturer's recommended procedure, from 100 percent open to 100 percent closed back to 100 percent open.

B. Stroke control dampers with pilot positioners. Adjust damper and positioner following manufacturer's recommended procedure, so damper is 100 percent closed, 50 percent closed, and 100 percent open at proper air pressure.

C. Check and document open and close cycle times for applications with a cycle time of less than 30 seconds.

D. For control dampers equipped with positive position indication, check feedback signal at multiple positions to confirm proper position indication.

END OF SECTION 23 09 23.12

NOT FOR BIDDING PURPOSES
SECTION 23 09 23.19

MOISTURE INSTRUMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes moisture sensors, and transmitters.
 B. Related Requirements:
 1. Section 23 09 23 "Direct-Digital Control System for HVAC" for control equipment and software, relays, electrical power devices, uninterruptible power supply units, wire, and cable.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product, including the following:
 1. Operating characteristics, electrical characteristics, and furnished accessories indicating process operating range, accuracy over range, control signal over range, default control signal with loss of power, calibration data specific to each unique application, electrical power requirements, and limitations of ambient operating environment, including temperature and humidity.
 B. Shop Drawings:
 Include details of product assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Include diagrams for power, signal, and control wiring.
 3. Include number-coded identification system for unique identification of wiring, cable, and tubing ends.

1.4 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: To include in operation and maintenance manuals.
PART 2 - PRODUCTS

2.1 MOISTURE SENSORS AND TRANSMITTERS

A. Combination Humidity and Temperature Sensor and Transmitter with Display:

1. Description:

 a. Factory package consisting of humidity and temperature sensor, digital display, keypad user interface, installation hardware, interconnecting sensor cabling, installation instructions, and operating manual.

 b. Each transmitter shall be individually calibrated and provided with NIST traceable calibration certifications.

 c. Provide a service cable for connecting to a notebook computer and Microsoft Windows compatible software.

2. Display:

 a. Alphanumeric display of the following on the face of the enclosure:

 1) Percent relative humidity.
 2) Absolute humidity.
 3) Mixing ratio.
 4) Dry-bulb temperature.
 5) Wet-bulb temperature.
 6) Dew point temperature.
 7) Enthalpy.

 b. Visual display of measurement trends, and minimum and maximum values over a one-year period.

3. Electronics Enclosure:

 a. Integral to sensors for wall-(room-)mounted applications and remote from temperature and humidity sensors for duct and equipment applications.

 b. NEMA 250, Type 4 or 4X.

 c. Labeled terminal strip for field wiring connections.

4. Programming:

 a. Transmitter parameters shall be field programmable through keypad on the face of the enclosure.

 b. Programmed parameters shall be stored in nonvolatile EEPROM.

5. Output Signals:

 a. Three Analog Outputs: 4 to 20 mA or zero to 10-V dc for each output. Option to use a serial communication interface.

6. Temperature Sensor:
a. Temperature range matched to application, but not less than minus 40 to 140 deg F.
b. Within 0.5 deg F accuracy over the temperature range of 50 to 100 deg F and
 within 1 deg F over the remainder of the range.
c. Provide duct installation kit for duct applications.

7. Humidity Sensor:
 a. Relative Humidity Measurement Range: Zero to 100 percent.
 b. Response time in still air within 40 seconds.
 c. Accuracy including non-linearity, hysteresis, and repeatability:
 1) For Temperature Between 59 and 77 Deg F and Relative Humidity between
 Zero and 90 Percent: Within 1 percent.
 2) For Temperature between 59 and 77 Deg F and Relative Humidity between
 90 and 100 Percent: Within 1.7 percent.
 3) For Temperature between Minus 4 and 104 Deg F: Within 1 percent plus
 0.008 times relative humidity reading.
 4) For Temperature between Minus 40 and 356 Deg F: Within 1.5 percent plus
 0.015 times the relative humidity reading.
 d. Sintered, stainless-steel filter, protecting sensor.
e. Provide duct installation kit for duct applications.

8. Power Supply:
 a. Field Power: 120-V ac, 60 Hz unless otherwise required by the application.
 b. Internal Power: As required by transmitter.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine substrates and conditions for compliance with requirements for installation tolerances
 and other conditions affecting performance of the Work.
 B. Examine roughing-in for instruments installed in duct systems to verify actual locations of
 connections before installation.
 C. Prepare written report, endorsed by Installer, listing conditions detrimental to performance.
 D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION, GENERAL
 A. Install products level, plumb, parallel, and perpendicular with building construction.
B. Properly support instruments, wiring, and conduit to comply with requirements indicated.

B. Fastening Hardware:
 1. Stillson wrenches, pliers, and other tools that cause injury to or mar surfaces of rods, nuts, and other parts are prohibited for work of assembling and tightening nuts.
 2. Tighten bolts and nuts firmly and uniformly. Do not overstress threads by excessive force or by oversized wrenches.
 3. Lubricate threads of bolts, nuts, and screws with graphite and oil before assembly.

C. Install products in locations that are accessible and that permit calibration and maintenance from floor, equipment platforms, or catwalks. Where ladders are required for Owner's access, confirm unrestricted ladder placement is possible under occupied condition.

D. Corrosive Environments (outdoors in coastal regions):
 1. Use products that are suitable for environment to which they are subjected.
 2. If possible, avoid or limit use of materials in corrosive environments.
 3. When conduit is in contact with a corrosive environment, use Type 316 stainless-steel conduit and fittings or conduit and fittings that are coated with a corrosive-resistant coating that is suitable for environment.
 4. Where instruments are located in a corrosive environment and are not corrosive resistant from manufacturer, field install products in a NEMA 250, Type 4X enclosure constructed of Type 316L stainless steel.

3.3 ELECTRIC POWER

A. Furnish and install electrical power to products requiring electrical connections.

B. Furnish and install circuit breakers. Comply with requirements in Section 26 28 16 "Enclosed Switches and Circuit Breakers."

C. Furnish and install power wiring. Comply with requirements in Section 26 05 19 "Low-Voltage Electrical Power Connectors and Cables."

D. Furnish and install raceways. Comply with requirements in Section 26 05 33 "Raceways and Boxes for Electrical Systems."

3.4 MOISTURE INSTRUMENTS INSTALLATION

A. Mounting Location: Rough-in instrument-mounting locations before setting instruments and routing, cable, wiring, tubing, and conduit to final location.

B. Mounting Height:
 1. Mount switches and transmitters located in mechanical equipment rooms and other similar space not subject to code, state, and Federal accessibility requirements within a range of 42 to 72 inches above the adjacent floor, grade, or service catwalk or platform.
 a. Make every effort to mount at 60 inches.
3.5 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Each piece of wire, cable, and tubing shall have the same designation at each end for operators to determine continuity at points of connection. Comply with requirements for identification specified in Section "Identification for Electrical Systems."

3.6 CHECKOUT PROCEDURES

A. Check installed products before continuity tests and calibration.

B. Check instruments for proper location and accessibility.

C. Check instruments for proper installation on direction of flow, elevation, orientation, insertion depth, or other applicable considerations that impact performance.

3.7 ADJUSTMENT, CALIBRATION, AND TESTING

A. Description:

1. Calibrate each instrument installed that is not factory calibrated and provided with calibration documentation.

2. Provide a written description of proposed field procedures and equipment for calibrating each type of instrument. Submit procedures before calibration and adjustment.

3. For each analog instrument, make a three-point test of calibration for both linearity and accuracy.

4. Equipment and procedures used for calibration shall meet instrument manufacturer's written instructions.

5. Provide diagnostic and test equipment for calibration and adjustment.

6. Field instruments and equipment used to test and calibrate installed instruments shall have accuracy at least twice the instrument accuracy being calibrated. For example, an installed instrument with an accuracy of 1 percent shall be checked by an instrument with an accuracy of 0.5 percent.

7. Calibrate each instrument according to instrument instruction manual supplied by manufacturer.

8. If after calibration indicated performance cannot be achieved, replace out-of-tolerance instruments.

9. Comply with field-testing requirements and procedures indicated by ASHRAE Guideline 11, "Field Testing of HVAC Control Components," in the absence of specific requirements, and to supplement requirements indicated.

B. Analog Signals:

1. Check analog voltage signals using a precision voltage meter at zero, 50, and 100 percent.

2. Check analog current signals using a precision current meter at zero, 50, and 100 percent.

3. Check resistance signals for temperature sensors at zero, 50, and 100 percent of operating span using a precision-resistance source.
C. Digital Signals:
 1. Check digital signals using a jumper wire.
 2. Check digital signals using an ohmmeter to test for contact.

D. Sensors: Check sensors at zero, 50, and 100 percent of Project design values.

E. Switches: Calibrate switches to make or break contact at set points indicated.

F. Transmitters:
 1. Check and calibrate transmitters at zero, 50, and 100 percent of Project design values.
 2. Calibrate resistance temperature transmitters at zero, 50, and 100 percent of span using a precision-resistance source.

3.8 MAINTENANCE SERVICE

A. Maintenance Service: Beginning at Substantial Completion, maintenance service shall include 12 months' full maintenance by manufacturer's authorized service representative. Include quarterly preventive maintenance, repair or replacement of worn or defective components, lubrication, cleaning, and adjusting as required for proper operation. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.

3.9 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain instrumentation and control devices.

B. Coordinate video with operation and maintenance manuals and classroom instruction for use by Owner in operating, maintaining, and troubleshooting.

C. Record videos on DVD disks.

D. Owner shall have right to make additional copies of video for internal use without paying royalties.

END OF SECTION 23 09 23.19
SECTION 23 09 23.23
PRESSURE INSTRUMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Air-pressure switches.

B. Related Requirements:
 1. Section 23 09 23 "Direct-Digital Control System for HVAC" for control equipment and software, relays, electrical power devices, uninterruptible power supply units, wire, and cable.

1.3 DEFINITIONS

A. HART: Highway addressable remote transducer protocol is the global standard for sending and receiving digital information across analog wires between smart devices and control or monitoring systems through bi-directional communication that provides data access between intelligent field instruments and host systems. A host can be any software application from technician's handheld device or laptop to a control, asset management, safety, or other system using any control platform.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product, including the following:

 1. Construction details, material descriptions, dimensions of individual components and profiles, and finishes.
 2. Operating characteristics; electrical characteristics; and furnished accessories indicating process operating range, accuracy over range, control signal over range, default control signal with loss of power, calibration data specific to each unique application, electrical power requirements, and limitations of ambient operating environment, including temperature and humidity.
 4. Installation instructions, including factors affecting performance.
B. Shop Drawings:
 1. Include plans, elevations, sections, and mounting details.
 2. Include details of product assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Number-coded identification system for unique identification of wiring, cable, and tubing ends.

1.5 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For instruments to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
 A. Environmental Conditions:
 1. Instruments shall operate without performance degradation under the ambient environmental temperature, pressure, humidity, and vibration conditions specified and encountered for installed location.
 a. If instrument alone cannot comply with requirement, install instrument in a protective enclosure that is isolated and protected from conditions impacting performance. Enclosure shall be internally insulated, electrically heated and cooled, filtered, and ventilated as required by instrument and application.
 2. Instruments and accessories shall be protected with enclosures satisfying the following minimum requirements unless more stringent requirements are indicated. Instruments not available with integral enclosures complying with requirements indicated shall be housed in protective secondary enclosures. Instrument-installed location shall dictate following NEMA 250 enclosure requirements:
 a. Outdoors, Protected: Type 3.
 b. Outdoors, Unprotected: Type 4.
 c. Indoors, Heated with Filtered Ventilation: Type 1.
 d. Indoors, Heated with Nonfiltered Ventilation: Type 2.
 e. Indoors, Heated and Air-Conditioned: Type 1.
 f. Mechanical Equipment Rooms:
 1) Air-Moving Equipment Rooms: Type 12.
 g. Within Duct Systems and Air-Moving Equipment Not Exposed to Possible Condensation: Type 2.
 h. Within Duct Systems and Air-Moving Equipment Exposed to Possible Condensation: Type 4.
2.2 AIR-PRESSURE TRANSMITTERS

A. Air-Pressure Differential Indicating Transmitter with Field-Selectable Features:

1. Field-Selectable Features:
 a. Field configurable for pressure and velocity applications through user interface.
 b. Field selectable from one of three pressure ranges both in SI (metric) and inch-pound (IP) units of measure.
 c. Select range based on application. Range shall be approximately 2 times set point.

2. Performance:
 a. Accuracy Including Hysteresis and Repeatability:
 1) Within 2 percent for 0.10 in. wg, 1.0 in. wg and all bi-directional ranges.
 2) Within 1 percent for other ranges.
 b. Stability: Within 1 percent of full scale per year.
 c. Response Time: Adjustable 0.5- to 15-second time constant with 95 percent response within 1.5 to 45 seconds.
 d. Overpressure: 1 psig maximum operating; 10 psig burst pressure.
 e. Temperature Limits: Zero to 150 deg F.

3. Display: Four-digit digital display with minimum 0.4-inch high numeric characters.

4. Operator Interface:
 a. Selectable pressure ranges, where indicated.
 b. Zero and span adjustments.
 c. Selectable air velocity mode with square root function.
 d. Adjustable signal dampening

5. Analog Output Current Signal:
 a. Two-wire, 4- to 20-mA dc current source.
 b. Signal capable of operating into a 1200-ohm load.

6. Analog Output Voltage Signal:
 a. Three wire, zero to 10 V.

7. Construction:
 a. Plastic casing with removable clear plastic cover.
 b. NPS 3/16 nominal ID plastic tubing connections on side of instrument case for high- and low-pressure connections.
 c. NPS 1/2 NPS threaded connection for conduit.
 d. Terminal block for wire connections.
 e. Vertical plane mounting.
 f. NEMA 250, Type 4X.
g. Nominal 4-inch diameter face.
h. Mounting Bracket: Appropriate for installation.

2.3 SOURCE QUALITY CONTROL

A. Factory Tests: Test and inspect assembled pressure instruments, as indicated by instrument requirements. Affix standards organization's certification and label.

B. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for instruments installed in piping to verify actual locations of connections before installation.

C. Examine roughing-in for instruments installed in duct systems to verify actual locations of connections before installation.

D. Prepare written report, endorsed by Installer, listing conditions detrimental to performance.

E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PRESSURE INSTRUMENT APPLICATIONS

A. Air-Pressure Differential Transmitters:
 a. Provide air-pressure differential transmitters for each filter rack and energy wheel (if applicable) for each Dedicated Outside Air System AHU, Make-up Air Unit, Rooftop Unit etc.
 b. Transmitter shall monitor pressure across filters and energy wheels
 c. Controls contractor shall coordinate with equipment manufacturer to program alarms for dirty filters and dirty energy wheel media based on manufacturer’s listed dirty pressure drop.

3.3 INSTALLATION, GENERAL

A. Install products level, plumb, parallel, and perpendicular with building construction.

B. Properly support instruments, tubing, piping wiring, and conduit to comply with requirements indicated.
C. Fastening Hardware:
 1. Stillson wrenches, pliers, and other tools that cause injury to or mar surfaces of rods, nuts, and other parts are prohibited for work of assembling and tightening nuts.
 2. Tighten bolts and nuts firmly and uniformly. Do not to overstress threads by using excessive force or oversized wrenches.
 3. Lubricate threads of bolts, nuts, and screws with graphite and oil before assembly.

D. Corrosive Environments (outdoors in coastal regions):
 1. Use products that are suitable for environment to which they are subjected.
 2. If possible, avoid or limit use of materials in corrosive environments.
 3. When conduit is in contact with a corrosive environment, use Type 316 stainless-steel conduit and fittings or conduit and fittings that are coated with a corrosive-resistant coating that is suitable for environment.
 4. Where instruments are located in a corrosive environment and are not corrosive resistant from the manufacturer, field install products in a NEMA 250, Type 4X enclosure constructed of Type 316L stainless steel.

3.4 ELECTRICAL POWER
 A. Furnish and install electrical power to products requiring electrical connections.
 B. Furnish and install circuit breakers. Comply with requirements in Section 26 28 16 "Enclosed Switches and Circuit Breakers."
 C. Furnish and install power wiring. Comply with requirements in Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."
 D. Furnish and install raceways. Comply with requirements in Section 26 05 33 "Raceways and Boxes for Electrical Systems."

3.5 PRESSURE INSTRUMENT INSTALLATION
 A. Mounting Location:
 1. Rough-in: Outline instrument-mounting locations before setting instruments and routing, cable, wiring, tubing, and conduit to final location.
 2. Install transmitters for air pressure associated with individual air-handling units near air-handlings units co-located in air-handling unit system control panel, to provide service personnel a single and convenient location for inspection and service.
 3. Install air-pressure transmitters for indoor applications in mechanical equipment rooms. Do not locate in user-occupied space unless indicated specifically on Drawings.
 B. Seal penetrations to ductwork, plenums, and air-moving equipment to comply with duct static pressure class and leakage and seal classes indicated using neoprene gaskets or grommets.
3.6 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Each piece of wire, cable, and tubing shall have the same designation at each end for operators to determine continuity at points of connection. Comply with requirements for identification specified in Section 26.05.53 "Identification for Electrical Systems."

3.7 CHECKOUT PROCEDURES

A. Check out installed products before continuity tests, leak tests, and calibration.

B. Check instruments for proper location and accessibility.

C. Check instruments for proper installation with respect to direction of flow, elevation, orientation, insertion depth, or other applicable considerations that impact performance.

3.8 ADJUSTMENT, CALIBRATION, AND TESTING

A. Description:

1. Calibrate each instrument installed that is not factory calibrated and provided with calibration documentation.

2. Provide a written description of proposed field procedures and equipment for calibrating each type of instrument. Submit procedures before calibration and adjustment.

3. For each analog instrument, perform a three-point calibration test for both linearity and accuracy.

4. Equipment and procedures used for calibration shall comply with instrument manufacturer’s recommendations.

5. Provide diagnostic and test equipment for calibration and adjustment.

6. Field instruments and equipment used to test and calibrate installed instruments shall have accuracy at least twice the instrument accuracy being calibrated. For example, an installed instrument with an accuracy of 1 percent shall be checked by an instrument with an accuracy of 0.5 percent.

7. Calibrate each instrument according to instrument instruction manual supplied by manufacturer.

8. If, after calibration, indicated performance cannot be achieved, replace out-of-tolerance instruments.

9. Comply with field-testing requirements and procedures indicated by ASHRAE Guideline 11, "Field Testing of HVAC Control Components," in the absence of specific requirements, and to supplement requirements indicated.

B. Analog Signals:

1. Check analog voltage signals using a precision voltage meter at zero, 50, and 100 percent.

2. Check analog current signals using a precision current meter at zero, 50, and 100 percent.

C. Digital Signals:
1. Check digital signals using a jumper wire.
2. Check digital signals using an ohmmeter to test for contact.

D. Sensors: Check sensors at zero, 50, and 100 percent of project design values.

E. Switches: Calibrate switches to make or break contact at set points indicated.

F. Transmitters:
 1. Check and calibrate transmitters at zero, 50, and 100 percent of project design values.

3.9 ADJUSTING

A. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.10 MAINTENANCE SERVICE

A. Maintenance Service: Beginning at Substantial Completion, maintenance service shall include 12 months' full maintenance by skilled employees of systems and equipment Installer. Include quarterly preventive maintenance, repair or replacement of worn or defective components, cleaning, and adjusting as required for proper operation. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.

3.11 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain instrumentation and control devices.

B. Coordinate pressure instrument demonstration video with operation and maintenance manuals and classroom instruction for use by Owner in operating, maintaining, and troubleshooting.

C. Record videos on DVD disks.

D. Owner shall have right to make additional copies of video for internal use without paying royalties.

END OF SECTION 23 09 23.23
SECTION 23 09 23.27
TEMPERATURE INSTRUMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Air temperature sensors.
 2. Air temperature RTD transmitters.

B. Related Requirements:
 1. Section 23 09 23 "Direct-Digital Control System for HVAC" for control equipment and software, relays, electrical power devices, uninterruptible power supply units, wire, and cable.
 2. Section 23 09 93 "Sequence of Operations for HVAC Controls" for requirements that relate to Section 23 09 23.27.

1.3 DEFINITIONS

A. HART (Highway Addressable Remote Transducer) Protocol: The global standard for sending and receiving digital information across analog wires between smart devices and control or monitoring systems through bidirectional communication that provides data access between intelligent field instruments and host systems. A host can be any software application from a technician's hand-held device or laptop to a plant's process control, asset management, safety, or other system using any control platform.

B. RTD: Resistance temperature detector.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product, including the following:
 1. Construction details, material descriptions, dimensions of individual components and profiles, and finishes.
 2. Operating characteristics, electrical characteristics, and furnished accessories indicating process operating range, accuracy over range, control signal over range, default control signal with loss of power, calibration data specific to each unique application, electrical
power requirements, and limitations of ambient operating environment, including temperature and humidity.

4. Installation operation and maintenance instructions, including factors affecting performance.

B. Shop Drawings:

1. Include plans, elevations, sections, and mounting details.

2. Include details of product assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

3. Include diagrams for power, signal, and control wiring.

4. Include number-coded identification system for unique identification of wiring and cable.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Environmental Conditions:

1. Instruments shall operate without performance degradation under the ambient environmental temperature, pressure, humidity, and vibration conditions specified and encountered for installed location.

 a. If instrument alone cannot meet requirement, install instrument in a protective enclosure that is isolated and protected from conditions impacting performance. Enclosure shall be internally insulated, electrically heated and cooled, filtered, and ventilated as required by instrument and application.

2. Instruments and accessories shall be protected with enclosures satisfying the following minimum requirements unless more stringent requirements are indicated. Instruments not available with integral enclosures complying with requirements indicated shall be housed in protective secondary enclosures. Instrument's installed location shall dictate following NEMA 250 enclosure requirements:

 a. Outdoors, Protected: Type 3.
 b. Outdoors, Unprotected: Type 4X.
 c. Indoors, Heated with Filtered Ventilation: Type 1.
 d. Indoors, Heated with Non-Filtered Ventilation: Type 12.
 e. Indoors, Heated and Air Conditioned: Type 1.
 f. Mechanical Equipment Rooms:

 1) Air-Moving Equipment Rooms: Type 2.
 g. Within Duct Systems and Air-Moving Equipment Not Exposed to Possible Condensation: Type 2.
 h. Within Duct Systems and Air-Moving Equipment Exposed to Possible Condensation: Type 4.
2.2 AIR TEMPERATURE SENSORS

A. Platinum RTDs: Common Requirements:
 1. 1000 ohms at zero deg C and a temperature coefficient of 0.00385 ohm/ohm/deg C.
 2. Two-wire, PTFE-insulated, 22-gage stranded copper leads.
 3. Performance Characteristics:
 a. Range: Minus 50 to 275 deg F.
 b. Interchangeable Accuracy: At 32 deg F within 0.5 deg F.
 c. Repeatability: Within 0.5 deg F.
 4. Transmitter Requirements:
 a. Transmitter optional for 1000-ohm RTD, contingent on compliance with end-to-end control accuracy.

B. Platinum RTD, Single-Point Air Temperature Duct Sensors:
 1. 1000 ohms.
 2. Temperature Range: Minus 50 to 275 deg F
 4. Length: As required by application to achieve tip at midpoint of air tunnel, up to 18 inches.
 5. Enclosure: Junction box with removable cover; NEMA 250, Type 1 for indoor applications and Type 4 for outdoor applications.
 6. Gasket for attachment to duct or equipment to seal penetration airtight.
 7. Conduit Connection: 1/2-inch

C. Platinum RTD, Air Temperature Averaging Sensors:
 1. 1000 ohms.
 2. Temperature Range: Minus 50 to 275 deg F
 3. Multiple sensors to provide average temperature across entire length of sensor.
 4. Flexible probe of aluminum, brass, copper, or stainless-steel sheath and formable to a 4-inch radius.
 5. Length: As required by application to cover entire cross section of air tunnel.
 6. Enclosure: Junction box with removable cover; NEMA 250, Type 1 for indoor applications and Type 4 for outdoor applications.
 7. Gasket for attachment to duct or equipment to seal penetration airtight.
 8. Conduit Connection: 1/2-inch

D. Space Air Temperature Sensors for Use with DDC Controllers Controlling Terminal Units:
 1. 1000-ohm platinum RTD.
 2. Temperature Transmitter Requirements:
 a. Mating transmitter required with each 100-ohm RTD.
 b. Mating transmitters optional for 1000-ohm RTD and thermistor, contingent on compliance with end-to-end control accuracy.
3. Provide digital display of sensed temperature.
4. Provide sensor with local control.
 a. Local override to turn HVAC on.
 b. Local adjustment of temperature set point.
 c. Both features shall be capable of manual override through control system operator.

2.3 AIR TEMPERATURE RTD TRANSMITTERS

A. Source Limitations: Obtain temperature-measuring sensors and transmitters and airflow from single manufacturer.

B. House electronics in NEMA 250 enclosure.
 1. Duct: Type 2.
 2. Outdoor: Type 4X.
 3. Space: Type 1.

C. Conduit Connection: 1/2-inch

D. Functional Characteristics:
 1. Input:
 a. 1000-ohm platinum RTD temperature coefficient of 0.00385 ohm/ohm/deg C, two-wire sensors.

 2. Span (Adjustable):
 a. Space: 40 to 90 deg F.
 b. Supply Air: Cooling and Heating: 40 to 120 deg F.
 c. Supply Air: Cooling Only: 40 to 90 deg F.
 d. Supply Air: Heating Only: 40 to 120 deg F.
 e. Exhaust Air: 50 to 100 deg F.
 f. Return Air: 50 to 100 deg F.
 g. Mixed Air: Minus 40 to 140 deg F.
 h. Outdoor: Minus 40 to 140 deg F.

 3. Output: 4- to 20-mA dc, linear with temperature; RFI insensitive; minimum drive load of 600 ohms at 24-V dc.
 4. Zero and span field adjustments, plus or minus 5 percent of span. Minimum span of 50 deg F.
 5. Match sensor with temperature transmitter and factory calibrate together.

E. Performance Characteristics:
 1. Calibration Accuracy: Within 0.1 percent of the span.
 2. Stability: Within 0.2 percent of the span for at least 6 months.
 3. Combined Accuracy: Within 0.5 percent.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for instruments installed in piping to verify actual locations of connections before installation.

C. Examine roughing-in for instruments installed in duct systems to verify actual locations of connections before installation.

D. Prepare written report, endorsed by Installer, listing conditions detrimental to performance.

E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 TEMPERATURE INSTRUMENT APPLICATIONS

A. Air Temperature Sensors:
 1. Duct.: 1000-ohm platinum RTD.
 2. Outdoor.: 1000-ohm platinum RTD.
 3. Space.: 1000-ohm platinum RTD.

B. Air Temperature Transmitters:
 1. Duct.: Air temperature RTD transmitter.
 2. Outdoor.: Air temperature RTD transmitter.
 3. Space.: Air temperature RTD transmitter.

3.3 INSTALLATION, GENERAL

A. Install products level, plumb, parallel, and perpendicular with building construction.

B. Properly support instruments, wiring, and conduit to comply with requirements indicated.

C. Fastening Hardware:
 1. Stillson wrenches, pliers, and other tools that cause injury to or mar surfaces of rods, nuts, and other parts are prohibited for work of assembling and tightening nuts.
 2. Tighten bolts and nuts firmly and uniformly. Do not overstress threads by excessive force or by oversized wrenches.
 3. Lubricate threads of bolts, nuts, and screws with graphite and oil before assembly.

D. Corrosive Environments (outdoors in coastal regions):
 1. Use products that are suitable for environment to which they are subjected.
 2. If possible, avoid or limit use of materials in corrosive environments.
When conduit is in contact with a corrosive environment, use Type 316 stainless-steel conduit and fittings or conduit and fittings that are coated with a corrosive-resistant coating that is suitable for environment.

Where instruments are located in a corrosive environment and are not corrosive resistant from manufacturer, field install products in a NEMA 250, Type 4X enclosure constructed of Type 316L stainless steel.

3.4 ELECTRIC POWER
A. Furnish and install electrical power to products requiring electrical connections.
B. Furnish and install circuit breakers. Comply with requirements in Section 26 08 16 "Enclosed Switches and Circuit Breakers."
C. Furnish and install power wiring. Comply with requirements in Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."
D. Furnish and install raceways. Comply with requirements in Section 26 05 33 "Raceways and Boxes for Electrical Systems."

3.5 TEMPERATURE INSTRUMENT INSTALLATIONS
A. Mounting Location:
 1. Roughing In:
 a. Outline instrument mounting locations before setting instruments and routing cable, wiring, and conduit to final location.
 b. Provide independent inspection to confirm that proposed mounting locations comply with requirements indicated and approved submittals.
 1) Indicate dimensioned locations with mounting height for all surface-mounted products on Shop Drawings.
 2) Do not begin installation without submittal approval of mounting location.
 3) Complete installation rough-in only after confirmation by independent inspection is complete and approval of location is documented for review by Owner and Architect on request.
 2. Install transmitters for air temperature associated with individual air-handling units and associated connected ductwork near air-handling units co-located in air-handling unit system control panel to provide service personnel a single and convenient location for inspection and service.
 3. Install air temperature transmitters for indoor applications in mechanical equipment rooms. Do not locate in user-occupied space unless indicated specifically on Drawings.

B. Special Mounting Requirements:
C. Mounting Height:

1. Mount temperature instruments in user-occupied space to match mounting height of light switches unless otherwise indicated on Drawings. Mounting height shall comply with codes and accessibility requirements.
2. Mount transmitters located in mechanical equipment rooms and other similar space not subject to code or state and Federal accessibility requirements within a range of 42 to 72 inches above the adjacent floor, grade, or service catwalk or platform.
 a. Make every effort to mount at 60 inches.

D. Seal penetrations to ductwork, plenums, and air-moving equipment to comply with duct static-pressure class and leakage and seal classes indicated using neoprene gaskets or grommets.

E. Space Temperature Sensor Installation:

1. Conceal assembly in an electrical box of sufficient size to house sensor and transmitter, if provided.
2. Install electrical box with a faceplate to match sensor cover if sensor cover does not completely cover electrical box.
3. In finished areas, recess electrical box within wall.
4. In unfinished areas, electrical box may be surface mounted if electrical light switches are surface mounted. Use a cast-aluminum electric box for surface-mounted installations.
5. Align electrical box with other electrical devices such as visual alarms and light switches located in the vicinity to provide a neat and well-thought-out arrangement. Where possible, align in both horizontal and vertical axis.

F. Outdoor Air Temperature Sensor Installation:

1. Mount sensor in a discrete location facing north.
2. Protect installed sensor from solar radiation and other influences that could impact performance.
3. If required to have a transmitter, mount transmitter remote from sensor in an accessible and serviceable location indoors.

G. Single-Point Duct Temperature Sensor Installation:

1. Install single-point-type, duct-mounted, supply- and return-air temperature sensors. Install sensors in ducts with sensitive portion of the element installed in center of duct cross section and located to sense near average temperature. Do not exceed 24 inches in sensor length.
2. Install return-air sensor in location that senses return-air temperature without influence from outdoor or mixed air.
3. Rigidly support sensor to duct and seal penetration airtight.
4. If required to have transmitter, mount transmitter remote from sensor at accessible and serviceable location.

H. Averaging Duct Temperature Sensor Installation:

1. Install averaging-type air temperature sensor for temperature sensors located within air-handling units, similar equipment, and large ducts with air tunnel cross-sectional area of 20 sq. ft. and larger.
2. Install sensor length to maintain coverage over entire cross-sectional area. Install multiple sensors where required to maintain the minimum coverage.
3. Fasten and support sensor with manufacturer-furnished clips to keep sensor taut throughout entire length.
4. If required to have transmitter, mount transmitter in an accessible and serviceable location.

3.6 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Each piece of wire, cable, and tubing shall have the same designation at each end for operators to determine continuity at points of connection. Comply with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."

3.7 CLEANING

A. Remove grease, mastic, adhesives, dust, dirt, stains, fingerprints, labels, and other foreign materials from exposed interior and exterior surfaces.
B. Wash and shine glazing.
C. Polish glossy surfaces to a clean shine.

3.8 CHECK-OUT PROCEDURES

A. Check installed products before continuity tests, leak tests, and calibration.
B. Check temperature instruments for proper location and accessibility.
C. Verify sensing element type and proper material.
D. Verify location and length.
E. Verify that wiring is correct and secure.

3.9 ADJUSTMENT, CALIBRATION, AND TESTING

A. Description:
1. Calibrate each instrument installed that is not factory calibrated and provided with calibration documentation.
2. Provide a written description of proposed field procedures and equipment for calibrating each type of instrument. Submit procedures before calibration and adjustment.
3. For each analog instrument, make a three-point test of calibration for both linearity and accuracy.
4. Equipment and procedures used for calibration shall meet instrument manufacturer's written instructions.
5. Provide diagnostic and test equipment for calibration and adjustment.
6. Field instruments and equipment used to test and calibrate installed instruments shall have accuracy at least twice the instrument accuracy being calibrated. For example, an installed instrument with an accuracy of 1 percent shall be checked by an instrument with an accuracy of 0.5 percent.
7. Calibrate each instrument according to instrument instruction manual supplied by manufacturer.
8. If after calibration indicated performance cannot be achieved, replace out-of-tolerance instruments.
9. Comply with field-testing requirements and procedures indicated by ASHRAE Guideline 11, "Field Testing of HVAC Control Components," in the absence of specific requirements and to supplement requirements indicated.

B. Analog Signals:
 1. Check analog voltage signals using a precision voltage meter at zero, 50, and 100 percent.
 2. Check analog current signals using a precision current meter at zero, 50, and 100 percent.
 3. Check resistance signals for temperature sensors at zero, 50, and 100 percent of operating span using a precision-resistance source.

C. Digital Signals:
 1. Check digital signals using a jumper wire.
 2. Check digital signals using an ohmmeter to test for contact.

D. Sensors: Check sensors at zero, 50, and 100 percent of Project design values.

E. Transmitters:
 1. Check and calibrate transmitters at zero, 50, and 100 percent of Project design values.
 2. Calibrate resistance temperature transmitters at zero, 50, and 100 percent of span using a precision-resistance source.

3.10 FIELD QUALITY CONTROL

A. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 1. Perform according to manufacturer's written instruction.
 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
B. Prepare test and inspection reports.

3.11 ADJUSTING

A. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.12 MAINTENANCE SERVICE

A. Maintenance Service: Beginning at Substantial Completion, maintenance service shall include 12 months' full maintenance by skilled employees of systems and equipment installer. Include quarterly preventive maintenance, repair or replacement of worn or defective components, cleaning and adjusting as required for proper operation. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.

3.13 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate and maintain temperature instruments.

B. Provide a complete set of instructional videos covering each product specified and installed and showing the following:

1. Software programming.
2. Calibration and test procedures.
3. Operation and maintenance requirements and procedures.
4. Troubleshooting procedures.

C. Coordinate video with operation and maintenance manuals and classroom instruction for use by Owner in operating, maintaining, and troubleshooting.

D. Record videos on DVD disks.

E. Owner shall have right to make additional copies of video for internal use without paying royalties.

END OF SECTION 23 09 23.27
SECTION 23 09 23.43

WEATHER STATIONS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes weather stations connected to direct-digital controls for HVAC.

B. Related Requirements:

1. Section 23 09 23 "Direct-Digital Control System for HVAC" for control equipment and software, relays, electrical power devices, uninterruptible power supply units, wire, and cable.

1.3 DEFINITIONS

A. I/O: Input/output.

C. RS-485: A TIA standard for multipoint communications using two twisted pairs.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product, including the following:

1. Construction details, material descriptions, dimensions of individual components and profiles, and finishes.

2. Operating characteristics, electrical characteristics, and furnished accessories indicating control signal over range, electrical power requirements, and limitations of ambient operating environment including temperature and humidity.

4. Installation operation and maintenance instructions including factors affecting performance.

B. Shop Drawings:
1. Include plans, elevations, sections, and mounting details.
2. Include details of product assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
3. Include diagrams for power, signal, and control wiring.
4. Include number-coded identification system for unique identification of wiring, cable, and tubing ends.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For weather stations to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 WEATHER STATION

A. Description:

1. Weather station shall measure and record wind speed and direction, air temperature and relative humidity, barometric pressure, solar radiation, and rain.
2. Design weather station for applications with minimal visual impact, high reliability, and a long interval between routine servicing.
3. Weather station shall use solid-state sensors with no moving parts.
4. Weather station shall not be impaired by heavy snowfall or freezing conditions that produce rime ice. Provide a thermostatically controlled heater element in the sensor head that keeps the wind sensor elements and the precipitation sensor surface free of snow and ice to minus 62 deg F.
5. Weather station shall directly connect to host device, or wirelessly connect to a host device through a fully integrated, industrial-grade, 916-MHz spread spectrum radio-frequency communications technology. Where required by application, replace 916-MHz radio-frequency components with 922-MHz and 2.4-GHz radio-frequency components to comply with local, regional, and national radio-frequency licensing requirements.
6. RS-232 serial data I/O shall be located on the bottom of the weather station and used as a second serial communications port, for programming and testing the system, or for direct data downloads using a personal computer or personal digital assistant.
7. Weather station shall be provided with a mounting system supplied by weather station manufacturer that is suitable for the installation.

B. Sensor Technology:

1. Wind speed and direction shall use acoustic techniques. Sensor shall consist of three equally spaced ultrasonic transducers in a horizontal plane. Values of any two array paths shall enable computation of both wind speed and direction, and a signal processing technique shall enable the measurement to be calculated using the two array paths of the best quality.
2. Rain shall be measured using a stainless-steel piezometric impact surface that counts the raindrops and measures their acoustic signature, integrating that information to provide a near-real-time value for rainfall amount and rate.

3. Barometric pressure, relative humidity, air temperature, and solar radiation measurements shall be made by scientific grade sensors.

4. Air-temperature and relative-humidity sensors shall be combined in an integrated, user-replaceable unit that requires no calibration.
 a. Relative humidity sensor shall be a thin-polymer, capacitive sensor.
 b. Air-temperature sensor shall be a capacitive ceramic sensor.

5. Barometric pressure shall be measured with a capacitive silicon, temperature corrected, strain gage.

6. Solar radiation shall be measured by a silicon pyranometer with a cut filter limiting the spectral exposure to the 300- to 1100-nm wavelength.

C. Performance:

1. Air Temperature:
 a. Range: Minus 60 to 140 deg F.
 b. Accuracy: Within 0.9 deg F.
 c. Resolution: 0.1 deg F.

2. Relative Humidity:
 a. Range: Zero to 100 percent.
 b. Accuracy: Within 3 percent over the range of zero to 90 percent and within 5 percent between 90 to 100 percent.
 c. Resolution: 0.1 percent.

3. Barometric Pressure:
 a. Range: 17.72- to 32.48-in. Hg.
 b. Accuracy: 0.015-in. Hg between 32 to 86 deg F.
 c. Resolution: 0.03-in. Hg between minus 60 to 140 deg F.

4. Solar Radiation:
 a. Spectral Range: 300 to 1100 nm.
 b. Reproducibility: Within 2 percent.
 c. Output: 0.2 mV per watts per square meters.
 d. Range: Zero to 1000 W per square meters.
 e. Temperature Range: Minus 40 to 130 deg F.

5. Rain:
 a. Collecting Area: 9.3 sq. in..
 b. Range: Zero to 7.87 inches per hour.
 c. Accuracy: Within 5 percent.
 d. Resolution: 0.001 inch.
6. Wind Direction:
 a. Azimuth: Zero to 360 degrees.
 b. Response Time: 250 ms.
 c. Accuracy: Within 2 degrees.
 d. Resolution: 1 degree.

7. Wind Speed:
 a. Range: Zero to 134 mph.
 b. Response Time: 0.25 second.
 c. Accuracy: Greater of 0.67 mph or 2 percent.
 d. Resolution: 0.22 mph.

8. Data Storage: 60 days of hourly data.

D. Output Signals:
 1. RS-232 or RS-485 serial interface directly from weather station to host.
 2. In applications that cannot accept a serial signal, provide a serial-to-analog converter.
 3. Serial-to-Analog Converter:
 a. Serial converter designed to add analog outputs for measuring instruments that have only serial output.
 b. Configure to give analog outputs from all measuring sensors and calculated parameters.
 c. Each converter shall have four analog outputs with a 4- to 20-mA signal.
 d. Provide multiple converters for applications requiring more points.
 e. Converter requires a 24-V dc power supply.

E. Communication Interface:
 1. Weatherproof serial cables shall be used to connect the RS-232 I/O on the weather station. Cables shall use nickel-plated brass DB-9 connectors for corrosion resistance and include a Sanoprene jacket suitable for both high-ultraviolet and direct-burial environments.
 2. An RF4xx spread spectrum radio-frequency transceiver shall be provided with every wireless weather station.

F. Unit shall be provided with a 120-V ac, 60-Hz power supply, a serial cable, and an antenna.

G. Software:
 1. Data Transfer Protocols, Software, and Data Interface Hardware: Weather stations that communicate using a proprietary protocol shall be provided with a software development kit to enable a qualified software developer in development of software drivers for third-party devices or software.
 2. Manufacturer shall submit description and pricing information of software application offerings for weather station management, data acquisition and logging, report generation, and data display for review and consideration.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Prepare written report, endorsed by Installer, listing conditions detrimental to performance.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install products level, plumb, parallel, and perpendicular with building construction.

B. Properly support weather station, wiring, and conduit to comply with requirements indicated. Brace all products to prevent lateral movement and sway or a break in attachment when subjected to forces that are consistent with building code structural design requirements.

C. Fastening Hardware:

1. Stillson wrenches, pliers, and other tools that cause injury to or mar surfaces of rods, nuts, and other parts are prohibited for work of assembling and tightening nuts.
2. Tighten bolts and nuts firmly and uniformly. Do not overstress threads by excessive force or by oversized wrenches.
3. Lubricate threads of bolts, nuts, and screws with graphite and oil before assembly.

D. Corrosive Environments (outdoors in coastal regions):

1. Use products that are suitable for environment to which they are subjected.
2. If possible, avoid or limit use of materials in corrosive environments.
3. When conduit is in contact with a corrosive environment, use Type 316 stainless-steel conduit and fittings or conduit and fittings that are coated with a corrosive-resistant coating that is suitable for environment.
4. Where components are located in a corrosive environment and are not corrosive resistant from manufacturer, field install products in a NEMA 250, Type 4X enclosure constructed of Type 316L stainless steel.

3.3 ELECTRIC POWER

A. Furnish and install electrical power to products requiring electrical connections.

B. Furnish and install circuit breakers. Comply with requirements in Section 26 28 16 "Enclosed Switches and Circuit Breakers."

C. Furnish and install power wiring. Comply with requirements in Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."
D. Furnish and install raceways. Comply with requirements in Section 26.05.33 "Raceways and Boxes for Electrical Systems."

3.4 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Each piece of wire, cable, and tubing shall have the same designation at each end for operators to determine continuity at points of connection. Comply with requirements for identification specified in Section 26.05.53 "Identification for Electrical Systems."

3.5 ADJUSTMENT, CALIBRATION, AND TESTING

A. Description:

1. Calibrate each weather station installed that is not factory calibrated and provided with calibration documentation.
2. Provide a written description of proposed field procedures and equipment used for calibrating. Submit procedures before calibration and adjustment.
3. For each analog signal, make a three-point test of calibration for both linearity and accuracy.
4. Equipment and procedures used for calibration shall comply with instrument manufacturer's written instructions.
5. Provide diagnostic and test equipment for calibration and adjustment.
6. Field instruments and equipment used to test and calibrate installed weather stations shall have accuracy at least twice the instrument accuracy being calibrated. For example, an installed weather station with a signal accuracy of 1 percent shall be checked by an instrument with an accuracy of 0.5 percent.
7. Calibrate each weather station according to instrument instruction manual supplied by manufacturer.
8. If after calibration indicated performance cannot be achieved, replace out-of-tolerance instruments.
9. Comply with field-testing requirements and procedures indicated by ASHRAE Guideline 11, "Field Testing of HVAC Control Components," in the absence of specific requirements and to supplement requirements indicated.

B. Analog Signals:

1. Check analog voltage signals using a precision voltage meter at zero, 50, and 100 percent.
2. Check analog current signals using a precision current meter at zero, 50, and 100 percent.
3. Check resistance signals for temperature sensors at zero, 50, and 100 percent of operating span using a precision-resistance source.

C. Digital Signals:

1. Check digital signals using a jumper wire.
2. Check digital signals using an ohmmeter to test for contact.
3.6 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

B. Prepare test and inspection reports.

3.7 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.

3.8 MAINTENANCE SERVICE

A. Maintenance Service: Beginning at Substantial Completion, maintenance service shall include 12 months' full maintenance by skilled employees of systems and equipment Installer. Include quarterly preventive maintenance, repair or replacement of worn or defective components, lubrication, cleaning, and adjusting as required for proper operation. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.

3.9 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain weather stations.

B. Provide a complete set of instructional videos covering each product specified and installed and showing the following:

1. Software programming.
2. Calibration and test procedures.
3. Operation and maintenance requirements and procedures.
4. Troubleshooting procedures.

C. Coordinate video with operation and maintenance manuals and classroom instruction for use by Owner in operating, maintaining, and troubleshooting.

D. Record videos on DVD disks.

E. Owner shall have right to make additional copies of video for internal use without paying royalties.

END OF SECTION 23 09 23.43
SECTION 23 21 13
HYDRONIC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes pipe and fitting materials and joining methods for the following:

1. Copper tube and fittings.
2. Joining materials.
3. Transition fittings.
4. Dielectric fittings.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of the following:

1. Pipe.
2. Fittings.

B. Delegated-Design Submittal:

1. Design calculations and detailed fabrication and assembly of pipe anchors and alignment guides, hangers and supports for multiple pipes, and attachments of the same to the building structure.
2. Locations of and details for penetrations, including sleeves and sleeve seals for exterior walls, floors, basement, and foundation walls.
3. Locations of and details for penetration and firestopping for fire- and smoke-rated wall and floor and ceiling assemblies.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Piping layout, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Suspended ceiling components.
2. Other building services.
3. Structural members.
B. Qualification Data: For Installer.
C. Welding certificates.

1.5 QUALITY ASSURANCE

A. Installer Qualifications:
1. Installers of Pressure-Sealed Joints: Installers shall be certified by pressure-seal joint manufacturer as having been trained and qualified to join piping with pressure-seal pipe couplings and fittings.

B. Steel Support Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

C. Pipe Welding: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code: Section IX.
2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Hydronic piping components and installation shall be capable of withstanding the following minimum working pressure and temperature unless otherwise indicated:
1. Condensate-Drain Piping: 150 deg F.

2.2 COPPER TUBE AND FITTINGS

A. DWV Copper Tubing: ASTM B 306, Type DWV.
B. Copper, Mechanically Formed Tee Option: For forming T-branch on copper water tube.
C. Wrought-Copper Unions: ASME B16.22.

2.3 JOINING MATERIALS

A. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
2.4 TRANSITION FITTINGS

A. Plastic-to-Metal Transition Fittings:
 1. One-piece fitting with one threaded brass or copper insert and one solvent-cement-joint end of material and wall thickness to match plastic pipe material.

B. Plastic-to-Metal Transition Unions:
 1. Brass or copper end, solvent-cement-joint end of material and wall thickness to match plastic pipe material, rubber gasket, and threaded union.

2.5 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

B. Dielectric Unions:
 1. Description:
 b. Pressure Rating: 125 psig minimum at 180 deg F.
 c. End Connections: Solder-joint copper alloy and threaded ferrous.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

A. Condensate-Drain Piping: Type DWV, drawn-temper copper tubing, wrought-copper fittings, and soldered joints.

3.2 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Install piping as indicated unless deviations to layout are approved on Coordination Drawing.

B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

E. Install piping at indicated slopes.

F. Install piping free of sags and bends.
G. Install fittings for changes in direction and branch connections.

H. Install piping to allow application of insulation.

I. Select system components with pressure rating equal to or greater than system operating pressure.

J. Install groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves.

K. Reduce pipe sizes using eccentric reducer fitting installed with level side down.

L. Install branch connections to mains using mechanically formed wye fittings in main pipe, with the branch connected to the bottom of the main pipe. For up-feed risers, connect the branch to the top of the main pipe.

M. Install unions in piping, NPS 2 and smaller, at final connections of equipment, and elsewhere as indicated.

N. Comply with requirements in Section 23 05 53 "Identiﬁcation for HVAC Piping and Equipment" for identifying piping.

O. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves speciﬁed in Section 23 05 17 "Sleeves and Sleeve Seals for HVAC Piping."

P. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals speciﬁed in Section 23 05 17 "Sleeves and Sleeve Seals for HVAC Piping."

Q. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons speciﬁed in Section 23 05 18 "Escutcheons for HVAC Piping."

3.3 DIELECTRIC FITTING INSTALLATION

A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.

B. Dielectric Fittings for NPS 2 and Smaller: Use dielectric unions.

3.4 INSTALLATION OF HANGERS AND SUPPORTS

A. Comply with requirements in Section 23 05 29 "Hangers and Supports for HVAC Piping and Equipment" for hangers, supports, and anchor devices.

B. Install the following pipe attachments:
 1. Adjustable steel clevis hangers for individual horizontal piping less than 20 feet long.

C. Install hangers for copper tubing, with maximum horizontal spacing and minimum rod diameters, to comply with MSS-58, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.
D. Support horizontal piping within 12 inches of each fitting and coupling.

E. Support vertical runs of copper tubing to comply with MSS-58, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.

3.5 PIPE JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.

D. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

3.6 TERMINAL EQUIPMENT CONNECTIONS

A. Sizes for supply and return piping connections shall be the same as or larger than equipment connections.

3.7 FIELD QUALITY CONTROL

A. Prepare hydronic piping according to ASME B31.9 and as follows:
 1. Leave joints, including welds, uninsulated and exposed for examination during test.
 2. Provide temporary restraints for expansion joints that cannot sustain reactions due to test pressure. If temporary restraints are impractical, isolate expansion joints from testing.
 3. Flush hydronic piping systems with clean water; then remove and clean or replace strainer screens.
 4. Isolate equipment from piping. If a valve is used to isolate equipment, its closure shall be capable of sealing against test pressure without damage to valve. Install blinds in flanged joints to isolate equipment.
 5. Install safety valve, set at a pressure no more than one-third higher than test pressure, to protect against damage by expanding liquid or other source of overpressure during test.

B. Perform the following tests on hydronic piping:
1. Use ambient temperature water as a testing medium unless there is risk of damage due to freezing. Another liquid that is safe for workers and compatible with piping may be used.

2. While filling system, use vents installed at high points of system to release air. Use drains installed at low points for complete draining of test liquid.

3. Subject piping system to hydrostatic test pressure that is not less than 1.5 times the system's working pressure. Test pressure shall not exceed maximum pressure for any component in system under test. Verify that stress due to pressure at bottom of vertical runs does not exceed 90 percent of specified minimum yield strength or 1.7 times the "SE" value in Appendix A in ASME B31.9, "Building Services Piping."

4. After hydrostatic test pressure has been applied for at least 10 minutes, examine piping, joints, and connections for leakage. Eliminate leaks by tightening, repairing, or replacing components, and repeat hydrostatic test until there are no leaks.

5. Prepare written report of testing.

END OF SECTION 23 21 13
SECTION 23 23 00
REFRIGERANT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Refrigerant pipes and fittings.
 2. Refrigerant piping valves and specialties.
 3. Refrigerants.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of valve, refrigerant piping, and piping specialty.
B. Shop Drawings:
 1. Show layout of refrigerant piping and specialties, including pipe, tube, and fitting sizes; flow capacities; valve arrangements and locations; slopes of horizontal runs; oil traps; double risers; wall and floor penetrations; and equipment connection details.
 2. Show piping size and piping layout, including oil traps, double risers, specialties, and pipe and tube sizes to accommodate, as a minimum, equipment provided, elevation difference between compressor and evaporator, and length of piping to ensure proper operation and compliance with warranties of connected equipment.
 3. Show interface and spatial relationships between piping and equipment.
 4. Shop Drawing Scale: 1/4 inch equals 1 foot.

1.4 INFORMATIONAL SUBMITTALS
A. Welding certificates.
B. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For refrigerant valves and piping specialties to include in maintenance manuals.
1.6 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to 2010 ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."

C. Comply with ASME B31.5, "Refrigeration Piping and Heat Transfer Components."

1.7 PRODUCT STORAGE AND HANDLING

A. Store piping with end caps in place to ensure that piping interior and exterior are clean when installed.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Line Test Pressure for Refrigerant R-410A:

2.2 COPPER TUBE AND FITTINGS

A. Copper Tube: ASTM B 88, Type K or L] or ASTM B 280, Type ACR.

B. Wrought-Copper Fittings: ASME B16.22.

C. Wrought-Copper Unions: ASME B16.22.

D. Brazing Filler Metals: AWS A5.8/A5.8M.

2.3 REFRIGERANTS

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS FOR REFRIGERANT R-410A

A. Suction Lines NPS 1-1/2 and Smaller for Conventional Air-Conditioning Applications: Copper, Type ACR, annealed-temper tubing and wrought-copper fittings with brazed joints.
B. Hot-Gas and Liquid Lines, and Suction Lines for Heat-Pump Applications: Copper, Type K, annealed- or drawn-temper tubing and wrought-copper fittings with brazed joints.

3.2 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems; indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Shop Drawings.

B. Install refrigerant piping according to ASHRAE 15.

C. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

F. Install piping adjacent to machines to allow service and maintenance.

G. Install piping free of sags and bends.

H. Install fittings for changes in direction and branch connections.

I. Select system components with pressure rating equal to or greater than system operating pressure.

J. Install piping as short and direct as possible, with a minimum number of joints, elbows, and fittings.

K. Arrange piping to allow inspection and service of refrigeration equipment.

L. Install refrigerant piping in rigid or flexible conduit in locations where exposed to mechanical injury.

M. Slope refrigerant piping as follows:
 1. Install horizontal hot-gas discharge piping with a uniform slope downward away from compressor.
 2. Install horizontal suction lines with a uniform slope downward to compressor.
 3. Install traps and double risers to entrain oil in vertical runs.
 4. Liquid lines may be installed level.

N. When brazing, remove solenoid-valve coils and sight glasses; also remove valve stems, seats, and packing, and accessible internal parts of refrigerant specialties. Do not apply heat near expansion-valve bulb.
O. Install piping with adequate clearance between pipe and adjacent walls and hangers or between pipes for insulation installation.

P. Identify refrigerant piping and valves according to Section 23 05 53 "Identification for HVAC Piping and Equipment."

Q. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 23 05 17 "Sleeves and Sleeve Seals for HVAC Piping."

R. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 23 05 17 "Sleeves and Sleeve Seals for HVAC Piping."

S. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 23 05 18 "Escutcheons for HVAC Piping."

3.3 PIPE JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Fill pipe and fittings with an inert gas (nitrogen or carbon dioxide), during brazing or welding, to prevent scale formation.

D. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," Chapter "Pipe and Tube."

1. Use Type BCuP (copper-phosphorus) alloy for joining copper socket fittings with copper pipe.

3.4 INSTALLATION OF HANGERS AND SUPPORTS

A. Comply with Section 23 05 29 "Hangers and Supports for HVAC Piping and Equipment" for hangers, supports, and anchor devices.

B. Install the following pipe attachments:

1. Adjustable steel clevis hangers for individual horizontal runs less than 20 feet long.

C. Install hangers for copper tubing, with maximum horizontal spacing and minimum rod diameters, to comply with MSS-58, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.

D. Support horizontal piping within 12 inches of each fitting.

E. Support vertical runs of copper tubing to comply with MSS-58, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.
3.5 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Comply with ASME B31.5, Chapter VI.
2. Test refrigerant piping, specialties, and receivers. Isolate compressor, condenser, evaporator, and safety devices from test pressure if they are not rated above the test pressure.
3. Test high- and low-pressure side piping of each system separately at not less than the pressures indicated in "Performance Requirements" Article.
 a. Fill system with nitrogen to the required test pressure.
 b. System shall maintain test pressure at the manifold gage throughout duration of test.
 c. Test joints and fittings with electronic leak detector or by brushing a small amount of soap and glycerin solution over joints.
 d. Remake leaking joints using new materials, and retest until satisfactory results are achieved.

B. Prepare test and inspection reports.

3.6 SYSTEM CHARGING

A. Charge system using the following procedures:

1. Install core in filter dryers after leak test but before evacuation.
2. Evacuate entire refrigerant system with a vacuum pump to 500 micrometers. If vacuum holds for 12 hours, system is ready for charging.
3. Break vacuum with refrigerant gas, allowing pressure to build up to 2 psig.
4. Charge system with a new filter-dryer core in charging line.

3.7 ADJUSTING

A. Adjust thermostatic expansion valve to obtain proper evaporator superheat.

B. Adjust high- and low-pressure switch settings to avoid short cycling in response to fluctuating suction pressure.

C. Adjust set-point temperature of air-conditioning controllers to the system design temperature.

D. Perform the following adjustments before operating the refrigeration system, according to manufacturer's written instructions:

1. Verify that compressor oil level is correct.
2. Open compressor suction and discharge valves.
3. Open refrigerant valves except bypass valves that are used for other purposes.
4. Check open compressor-motor alignment and verify lubrication for motors and bearings.
E. Replace core of replaceable filter dryer after system has been adjusted and after design flow rates and pressures are established.

END OF SECTION 23 23 00
SECTION 23 31 13
METAL DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Single-wall rectangular ducts and fittings.
2. Double-wall rectangular ducts and fittings.
4. Double-wall round and flat-oval ducts and fittings.
5. Sheet metal materials.
6. Duct liner.
7. Sealants and gaskets.
8. Hangers and supports.

B. Related Sections:

1. Section 23 05 93 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing requirements for metal ducts.
2. Section 23 33 00 "Air Duct Accessories" for dampers, sound-control devices, duct-mounting access doors and panels, turning vanes, and flexible ducts.
3. Section 23 35 33 “Listed Kitchen Ventilation System Exhaust Ducts” for requirements for listed Type 1 commercial kitchen grease hood exhaust ductwork

1.3 ACTION SUBMITTALS

A. Product Data: For each type of the following products:

1. Liners and adhesives.
2. Sealants and gaskets.

B. Shop Drawings:

1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
2. Factory- and shop-fabricated ducts and fittings.
3. Duct layout indicating sizes, configuration, liner material, and static-pressure classes.
4. Elevation of top and bottom of ducts.
5. Dimensions of all duct runs from building grid lines.
6. Fittings.
7. Reinforcement and spacing.
8. Seam and joint construction.
9. Penetrations through fire-rated and other partitions.
10. Equipment installation based on equipment being used on Project.
11. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.
12. Hangers and supports, including methods for duct and building attachment, and vibration isolation.

C. Delegated-Design Submittal:
 1. Sheet metal thicknesses.
 2. Joint and seam construction and sealing.
 3. Reinforcement details and spacing.
 4. Materials, fabrication, assembly, and spacing of hangers and supports.
 5. Design Calculations: Calculations, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation for selecting hangers and supports.

1.4 INFORMATIONAL SUBMITTALS
A. Coordination Drawings: A single set of plans or BIM model, drawn to scale, showing the items described in this Section, and coordinated with all building trades.
B. Welding certificates.
C. Field quality-control reports.

1.5 QUALITY ASSURANCE
A. Welding Qualifications: Qualify procedures and personnel in accordance with the following:

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC
Duct Construction Standards - Metal and Flexible" and with performance requirements and design criteria indicated in "Duct Schedule" Article.

B. Structural Performance: Duct hangers and supports shall withstand the effects of gravity loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" and ASCE/SEI 7.

C. Airstream Surfaces: Surfaces in contact with airstream shall comply with requirements in ASHRAE 62.1.

D. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment," and Section 7 - "Construction and System Startup."

E. ASHRAE/IES Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6.4.4 - "HVAC System Construction and Insulation."

F. Duct Dimensions: Unless otherwise indicated, all duct dimensions indicated on Drawings are inside clear dimensions and do not include insulation or duct wall thickness.

2.2 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.

1. Construct ducts of galvanized sheet steel unless otherwise indicated.
2. For ducts exposed to weather, construct of Type 304 stainless steel indicated by manufacturer to be suitable for outdoor installation.

B. Transverse Joints: Fabricate joints in accordance with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

1. For ducts with longest side less than 36 inches, select joint types in accordance with Figure 2-1.
2. For ducts with longest side 36 inches or greater, use flange joint connector Type T-22, T-24, T-24A, T-25a, or T-25b. Factory-fabricated flanged duct connection system may be used if submitted and approved by engineer of record.

C. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate in accordance with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Ch. 4, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
2.3 DOUBLE-WALL RECTANGULAR DUCTS AND FITTINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. McGill AirFlow LLC.
2. MKT Metal Manufacturing.
3. Set Duct Manufacturing.

B. Rectangular Ducts: Fabricate ducts with indicated dimensions for clear internal dimensions of the inner duct.

C. Outer Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.

1. Construct ducts of galvanized sheet steel unless otherwise indicated.
2. For ducts exposed to weather, construct outer duct of Type 304 stainless steel indicated by manufacturer to be suitable for outdoor installation.

D. Transverse Joints: Select joint types and fabricate in accordance with SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible."

1. For ducts with longest side less than 36 inches, select joint types in accordance with Figure 2-1.
2. For ducts with longest side 36 inches or greater, use flange joint connector Type T-22, T-24, T-24A, T-25a, or T-25b. Factory-fabricated flanged duct connection system may be used if submitted and approved by engineer of record.

E. Longitudinal Seams: Select seam types and fabricate in accordance with SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible."

F. Interstitial Insulation: Fibrous-glass liner complying with ASTM C1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."

1. Maximum Thermal Conductivity: 0.27 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.
2. Install spacers that position the inner duct at uniform distance from outer duct without compressing insulation.
3. Cover insulation with polyester film complying with UL 181, Class 1.

G. Inner Duct: Minimum 24-gauge solid galvanized sheet steel.
2.4 SINGLE-WALL ROUND DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Ch. 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.

1. Construct ducts of galvanized sheet steel unless otherwise indicated.
2. For ducts exposed to weather, construct of Type 304 stainless steel indicated by manufacturer to be suitable for outdoor installation.

B. Transverse Joints: Select joint types and fabricate in accordance with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

1. Transverse Joints in Ducts Larger Than 60 Inches in Diameter: Flanged.

C. Longitudinal Seams: Select seam types and fabricate in accordance with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

D. Tees and Laterals: Select types and fabricate in accordance with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.5 DOUBLE-WALL ROUND[AND FLAT-OVAL] DUCTS AND FITTINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. McGill AirFlow LLC.
2. MKT Metal Manufacturing.
3. Set Duct Manufacturing.

B. Flat-Oval Ducts: Indicated dimensions are the duct width (major dimension) and diameter of the round sides connecting the flat portions of the duct (minor dimension) of the inner duct.

C. Outer Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Ch. 3, "Round, Oval, and Flexible Duct," based on static-pressure class unless otherwise indicated.

1. Construct ducts of galvanized sheet steel unless otherwise indicated.
2. For ducts exposed to weather, construct outer duct of Type 304 stainless steel indicated by manufacturer to be suitable for outdoor installation.
D. Transverse Joints: Select joint types and fabricate in accordance with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

E. Longitudinal Seams: Select seam types and fabricate in accordance with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

F. Tees and Laterals: Select types and fabricate in accordance with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

G. Inner Duct: Minimum 24-gauge solid galvanized sheet steel.

H. Interstitial Insulation: Fibrous-glass liner complying with ASTM C1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."

1. Maximum Thermal Conductivity: 0.27 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.
2. Install spacers that position the inner duct at uniform distance from outer duct without compressing insulation.
3. Coat insulation with antimicrobial coating.
4. Cover insulation with polyester film complying with UL 181, Class 1.

2.6 SHEET METAL MATERIALS

A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

B. Galvanized Sheet Steel: Comply with ASTM A653/A653M.

2. Finishes for Surfaces Exposed to View: Mill phosphatized.

C. Stainless-Steel Sheets: Comply with ASTM A480/A480M, Type 304 or 316, as indicated in "Duct Schedule" Article; cold rolled, annealed, sheet. Exposed surface finish shall be No. 2B, No. 2D, No. 3, or No. 4 as indicated in "Duct Schedule" Article.

D. Aluminum Sheets: Comply with ASTM B209 Alloy 3003, H14 temper; with mill finish for concealed ducts, and standard, one-side bright finish for duct surfaces exposed to view.
E. Reinforcement Shapes and Plates: ASTM A36/A36M, steel plates, shapes, and bars; black and galvanized.

1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.

F. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.7 DUCT LINER

A. Flexible Elastomeric Duct Liner: Preformed, cellular, closed-cell, sheet materials complying with ASTM C534/C534M, Type II, Grade 1; and with NFPA 90A or NFPA 90B.

1. Surface-Burning Characteristics: Maximum flame-spread index of 25 and maximum smoke-developed index of 50 when tested in accordance with UL 723; certified by an NRTL.

2. Liner Adhesive: As recommended by insulation manufacturer and complying with NFPA 90A or NFPA 90B.

 a. Adhesive shall have a VOC content of 80 g/L or less.

2.8 SEALANT AND GASKETS

A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested in accordance with UL 723; certified by an NRTL.

B. Water-Based Joint and Seam Sealant:

 1. Application Method: Brush on.
 2. Solids Content: Minimum 65 percent.
 5. Mold and mildew resistant.
 6. VOC: Maximum 75 g/L (less water).
 7. Maximum Static-Pressure Class: 10 inch wg, positive and negative.
 8. Service: Indoor or outdoor.
 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.

C. Flanged Joint Sealant: Comply with ASTM C920.

 2. Type: S.
 3. Grade: NS.
 5. Use: O.
 6. Sealant shall have a VOC content of 420 g/L or less.
7. Sealant shall comply with the testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

D. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.

E. Round Duct Joint O-Ring Seals:
 1. Seal shall provide maximum leakage class of 3 cfm/100 sq. ft. at 1-inch wg and shall be rated for 10-inch wg static-pressure class, positive or negative.

2.9 HANGERS AND SUPPORTS

A. Hanger Rods for Noncorrosive Environments: Galvanized-steel rods and nuts.

B. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct."

C. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A603.

D. Steel Cable End Connections: Galvanized-steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.

E. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.

F. Trapeze and Riser Supports:
 3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and coordination drawings.

B. Install ducts in accordance with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" unless otherwise indicated.

C. Install ducts in maximum practical lengths with fewest possible joints.
D. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.

E. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.

F. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.

G. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness.

H. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.

I. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.

J. Install fire, combination fire/smoke, and smoke dampers where indicated on Drawings and as required by code, and by local authorities having jurisdiction. Comply with requirements in Section 23 33 00 "Air Duct Accessories" for fire and smoke dampers and specific installation requirements of the damper UL listing.

K. Install dampers, and all other duct-mounted accessories in air ducts where indicated on Drawings.

L. Protect duct interiors from moisture, construction debris and dust, and other foreign materials both before and after installation.

M. Elbows: Use long-radius elbows wherever they fit.
 1. Fabricate 90-degree rectangular mitered elbows to include turning vanes.
 2. Fabricate 90-degree round elbows with a minimum of three segments for 12 inches and smaller and a minimum of five segments for 14 inches and larger.

N. Branch Connections: Use lateral or conical branch connections.

3.2 INSTALLATION OF EXPOSED DUCTWORK

A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.

B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.

C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.
D. Maintain consistency, symmetry, and uniformity in arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.
E. Repair or replace damaged sections and finished work that does not comply with these requirements.

3.3 ADDITIONAL INSTALLATION REQUIREMENTS FOR TYPE 1 COMMERCIAL KITCHEN GREASE HOOD EXHAUST DUCT

A. Refer to Section 233533 “Listed Kitchen Ventilation System Exhaust Ducts” for requirements for listed Type 1 commercial kitchen grease hood exhaust ductwork

3.4 ADDITIONAL INSTALLATION REQUIREMENTS FOR EXHAUST DUCTS SERVING COMMERCIAL DISHWASHERS AND OTHER HIGH-HUMIDITY LOCATIONS

A. Install dishwasher exhaust ducts and other exhaust ducts from wet, high-humidity locations without dips and traps that may hold water. Slope ducts a minimum of 2 percent back to dishwasher or toward drain.
B. Provide a drain pocket at each low point and at the base of each riser with a 1-inch trapped copper drain from each drain pocket to open site floor drain.
C. Minimize number of transverse seams.
D. Do not locate longitudinal seams on bottom of duct.

3.5 DUCTWORK EXPOSED TO WEATHER

A. All external joints are to have secure watertight mechanical connections. Seal all openings to provide weatherproof construction.
B. Construct ductwork to resist external loads of wind, snow, ice, and other effects of weather. Provide necessary supporting structures.
C. Single Wall:
 1. Ductwork shall be Type 304 stainless steel.
 2. Where ducts have external insulation, provide weatherproof aluminum jacket. See Section 23 07 13 "Duct Insulation."

3.6 DUCT SEALING

A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article in accordance with SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible."
3.7 HANGER AND SUPPORT INSTALLATION

A. Comply with SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible," Chapter 5, "Hangers and Supports."

B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 1. Where practical, install concrete inserts before placing concrete.
 2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
 3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches thick.
 4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick.

C. Hanger Spacing: Comply with SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.

D. Hangers Exposed to View: Threaded rod and angle or channel supports or steel cables.
 1. If cables are used the contractor shall provide additional cabling or other rigid steel framing/threaded rod/angles/channel to prevent duct sway from system start/stop and diffuser airflow thrust.

E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet.

F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.8 CONNECTIONS

A. Make connections to equipment with flexible connectors complying with Section 23 33 00 "Air Duct Accessories."

B. Comply with SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.9 STARTUP

A. Air Balance: Comply with requirements in Section 23 05 93 "Testing, Adjusting, and Balancing for HVAC."

3.10 DUCT SCHEDULE

A. Fabricate ducts with galvanized sheet steel except as otherwise indicated and as follows:
1. Fabricate all ducts to achieve SMACNA pressure class, seal class, and leakage class as indicated below.

B. Supply Ducts:

1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 a. Pressure Class: Positive 2-inch wg.
 b. Minimum SMACNA Seal Class: C.

2. Ducts Connected to Air-Handling Units:
 a. Pressure Class: Positive 3-inch wg.
 b. Minimum SMACNA Seal Class: B.

C. Return Ducts:

1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 a. Pressure Class: Positive or negative 1-inch wg.
 b. Minimum SMACNA Seal Class: C.

2. Ducts Connected to Air-Handling Units:
 a. Pressure Class: Positive or negative 2-inch wg.
 b. Minimum SMACNA Seal Class: C.

D. Exhaust Ducts:

1. Ducts Connected to Fans Exhausting (ASHRAE 62.1, Class 1 and 2) Air:
 a. Pressure Class: Negative 2-inch wg.
 b. Minimum SMACNA Seal Class: C if negative pressure, and A if positive pressure.

2. Ducts Connected to Air-Handling Units:
 a. Pressure Class: Positive or negative 2-inch wg.
 b. Minimum SMACNA Seal Class: C if negative pressure, and A if positive pressure.

3. Ducts Connected to Dishwashers, Dishwasher Hoods, and Other High-Humidity Locations:
 a. Type 316, stainless-steel sheet.
 b. Exposed to View: No. 3 finish.
 c. Concealed: No. 2D finish.
 d. Welded longitudinal seams; welded or flanged transverse joints with watertight EPDM gaskets.
 e. Pressure Class: Positive or negative 3-inch wg.
 f. Airtight/watertight.

E. Outdoor-Air (Not Filtered, Heated, or Cooled) Ducts:
1. Ducts Connected to Air-Handling Units:
 a. Pressure Class: Positive or negative 2-inch wg.
 b. Minimum SMACNA Seal Class: B.

2. Ducts Connected to Equipment Not Listed Above:
 a. Pressure Class: Positive or negative 2-inch wg.
 b. Minimum SMACNA Seal Class: B.

F. Intermediate Reinforcement:

2. Stainless-Steel Ducts:
 a. Exposed to Airstream: Match duct material.
 b. Not Exposed to Airstream: Match duct material.

3. Aluminum Ducts: Aluminum.

G. Double-Wall Duct Interstitial Insulation:

2. Return-Air Ducts: 1 inches thick.
3. Exhaust-Air Ducts: 1 inches thick (where indicated).

H. Elbow Configuration:

1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 b. Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 c. Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."

2. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-4, "Round Duct Elbows."
 a. Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.
 1) Radius-to-Diameter Ratio: 1.5.
 b. Round Elbows, 12 Inches and Smaller in Diameter: Stamped or pleated.
 c. Round Elbows, 14 Inches and Larger in Diameter: Standing seam.

I. Branch Configuration:
1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-6, "Branch Connection."
 a. Rectangular Main to Rectangular Branch: 45-degree entry.
 b. Rectangular Main to Round Branch: Conical spin in.

2. Round and Flat Oval: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees." Saddle taps are permitted in existing duct.
 a. Velocity 1000 fpm or Lower: 90-degree tap.
 b. Velocity 1000 to 1500 fpm: Conical tap.
 c. Velocity 1500 fpm or Higher: 45-degree lateral.

END OF SECTION 23 31 13
SECTION 23 33 00
AIR DUCT ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Backdraft and pressure relief dampers.
2. Barometric relief dampers.
4. Fire dampers.
5. Smoke dampers.
6. Constant Air Regulators
7. Dryer Vent Cap
8. Dryer Vent Wall Box
10. Turning vanes.
11. Remote damper operators.
12. Duct-mounted access doors.
13. Flexible connectors.
14. Duct accessory hardware.

B. Related Requirements:

1. Section 23 33 46 "Flexible Ducts" for insulated and non-insulated flexible ducts.
2. Section 23 09 23 “Control Dampers” for control dampers and actuators.
3. Section 28 07 21 "Fire Alarm and Detection Systems" for duct-mounted fire and smoke detectors.

1.3 ACTION SUBMITTALS

A. Shop Drawings: For duct accessories. Include plans, elevations, sections, details and attachments to other work.

1. Detail duct accessories fabrication and installation in ducts and other construction. Include dimensions, weights, loads, and required clearances; and method of field assembly into duct systems and other construction. Include the following:
a. Special fittings.
c. Control-damper installations.
d. Fire-damper, smoke-damper, combination fire- and smoke-damper, ceiling, and corridor damper installations, including sleeves; and duct-mounted access doors and remote damper operators.
e. Wiring Diagrams: For power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which ceiling-mounted access panels and access doors required for access to duct accessories are shown and coordinated with each other, using input from Installers of the items involved.

B. Source quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For air duct accessories to include in operation and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Fusible Links: Furnish quantity equal to 10 percent of amount installed.

PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTION

B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

2.2 MATERIALS

A. Galvanized Sheet Steel: Comply with ASTM A653/A653M.

2. Exposed-Surface Finish: Mill phosphatized.
B. Stainless-Steel Sheets: Comply with ASTM A480/A480M, Type 304, and having a No. 2 finish for concealed ducts and No. 3 finish for exposed ducts.

C. Aluminum Sheets: Comply with ASTM B209, Alloy 3003, Temper H14; with mill finish for concealed ducts and standard, 1-side bright finish for exposed ducts.

D. Extruded Aluminum: Comply with ASTM B221, Alloy 6063, Temper T6.

E. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.

F. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less, 3/8-inch minimum diameter for lengths longer than 36 inches.

2.3 BACKDRAFT AND PRESSURE RELIEF DAMPERS

A. Description: Gravity balanced.

B. Maximum Air Velocity: 1250 fpm.

C. Maximum System Pressure: 1-inch wg.

D. Frame: Hat-shaped, 0.094-inch- thick, galvanized sheet steel, with welded corners or mechanically attached.

E. Blades: Multiple single-piece blades, maximum 6-inch width, 0.025-inch- thick, roll-formed aluminum with sealed edges.

F. Blade Action: Parallel.

G. Blade Axles:
 1. Material: Galvanized steel.

H. Tie Bars and Brackets: Galvanized steel.

I. Return Spring: Adjustable tension.

J. Bearings: Steel ball or synthetic pivot bushings.

K. Accessories:
 1. Adjustment device to permit setting for varying differential static pressure.
 2. Counterweights and spring-assist kits for vertical airflow installations.

2.4 BAROMETRIC RELIEF DAMPERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
a. McGill AirFlow LLC.
b. Nailor Industries Inc.
c. Ruskin Company.

B. Suitable for horizontal or vertical mounting.

C. Maximum Air Velocity: 1000 fpm.

D. Maximum System Pressure: 2-inch wg.

E. Frame: Hat-shaped, 0.05-inch thick, galvanized sheet steel, with welded corners or mechanically attached and mounting flange.

F. Blades:
 1. Multiple, 0.050-inch thick aluminum sheet.
 3. Action: Parallel.

G. Blade Seals: Neoprene.

H. Blade Axles: Stainless steel or Nonmetallic.

I. Tie Bars and Brackets:
 1. Material: Galvanized steel.
 2. Rattle free with 90-degree stop.

J. Return Spring: Adjustable tension.

K. Bearings: Synthetic or Stainless steel.

L. Accessories:
 1. Flange on intake.
 2. Adjustment device to permit setting for varying differential static pressures.

2.5 MANUAL VOLUME DAMPERS

A. Standard, Steel, Manual Volume Dampers:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. McGill AirFlow LLC.
 b. Nailor Industries Inc.
 c. Ruskin Company.
 2. Standard leakage rating, with linkage outside airstream.
3. Suitable for horizontal or vertical applications.
4. Frames:
 a. Frame: Hat-shaped, 0.094-inch thick, galvanized sheet steel.
 b. Mitered and welded corners.
 c. Flanges for attaching to walls and flangeless frames for installing in ducts.
5. Blades:
 a. Multiple or single blade.
 b. Parallel- or opposed-blade design.
 c. Stiffen damper blades for stability.
 d. Galvanized-steel, 0.064 inch thick.
7. Bearings:
 a. Oil-impregnated stainless-steel sleeve.
 b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
8. Tie Bars and Brackets: Galvanized steel.

B. Jackshaft:
1. Size: 0.5-inch diameter.
2. Material: Galvanized-steel pipe rotating within pipe-bearing assembly mounted on supports at each mullion and at each end of multiple-damper assemblies.
3. Length and Number of Mountings: As required to connect linkage of each damper in multiple-damper assembly.

C. Damper Hardware:
1. Zinc-plated die cast core with dial and handle made of 3/32-inch thick zinc-plated steel, and a 3/4-inch hexagon locking nut.
2. Include center hole to suit damper operating-rod size.
3. Include elevated platform for insulated duct mounting.

2.6 FIRE DAMPERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
2. Nailor Industries Inc.
3. Ruskin Company.

B. Type: dynamic; rated and labeled according to UL 555 by an NRTL.

C. Closing rating in ducts up to 4-inch wg static pressure class and minimum 2000-fpm velocity.
D. Fire Rating: 3 hours.

E. Frame: Curtain type with blades outside airstream except when located behind grille where blades may be inside airstream; fabricated with roll-formed galvanized steel; with mitered and interlocking corners; gauge in accordance with UL listing.

F. Mounting Sleeve: Factory- or field-installed, galvanized sheet steel; gauge in accordance with UL listing.

G. Mounting Orientation: Vertical or horizontal as indicated.

H. Blades: Roll-formed, interlocking, galvanized sheet steel; gauge in accordance with UL listing.

I. Horizontal Dampers: Include blade lock and stainless-steel closure spring.

2.7 SM OKE DAMPERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

2. Nailor Industries Inc.
3. Ruskin Company.

B. General Requirements: Label according to UL 555S by an NRTL.

C. Smoke Detector: Integral, factory wired for single-point connection.

D. Frame: Hat-shaped, galvanized sheet steel, with welded interlocking, gusseted or mechanically attached corners and mounting flange; gauge in accordance with UL listing.

E. Blades: Roll-formed, horizontal, triple V-groove shaped, galvanized sheet steel; gauge in accordance with UL listing.

F. Leakage: Class II.

G. Rated pressure and velocity to exceed design airflow conditions.

H. Mounting Sleeve: Factory-installed, galvanized sheet steel; length to suit wall or floor application; gauge in accordance with UL listing.

I. Damper Motors: two-position action.

J. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 23 05 13 "Common Motor Requirements for HVAC Equipment."

1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
2. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Section 23 09 23 "Direct Digital Control (DDC) System for HVAC."

3. Permanent-Split-Capacitor or Shaded-Pole Motors: With oil-immersed and sealed gear trains.

4. Spring-Return Motors: Equip with an integral spiral-spring mechanism where indicated. Enclose entire spring mechanism in a removable housing designed for service or adjustments. Size for running torque rating of 150 in. x lbf and breakaway torque rating of 150 in. x lbf.

5. Outdoor Motors and Motors in Outdoor-Air Intakes: Equip with O-ring gaskets designed to make motors weatherproof. Equip motors with internal heaters to permit normal operation at minus 40 deg F.

6. Nonspring-Return Motors: For dampers larger than 25 sq. ft., size motor for running torque rating of 150 in. x lbf and breakaway torque rating of 300 in. x lbf.

7. Electrical Connection: 115 V, single phase, 60 Hz.

K. Accessories:

1. Auxiliary switches for signaling or position indication.

2.8 CONSTANT AIR REGULATORS

A. Manufacturers: Provide products by the following:

1. ALDES Ventilation

B. Performance: Regulator shall maintain a constant airflow across varying duct pressures. Devices shall operate on duct pressure and require no external power supply. Regulators shall be factory pre-set and calibrated.

1. Maintain scheduled airflow within ±10% or ±15% for units 50 CFM and less.

C. Pressure Range: 0.2 to 0.8 inches of water column.

D. Warranty: Manufacturer shall provide 5 year warranty.

2.9 DRYER VENT CAP

A. Manufacturers: Provide products by the following:

1. Dryer Jack – Model 486U

B. Description: Galvanized dryer exhaust cap for flat roof applications. Integral curved backdraft flapper prevents bird and rodent entry with 0.01 in WC or less back pressure. Curved shape prevents rain entry.

C. Comply with the International Mechanical Code 2015 section 504.4.

D. Do not install bird or bug screen. Screen will clog with dryer lint.

E. Provide roof curb to elevate base of cap 8” above top of roof insulation.
2.10 DRYER VENT WALL BOX

A. Manufacturers: Provide products by the following:
 1. Dryer Jack

B. Description: UL listed, 22 gauge aluminized steel, recessed wall box for dryer vent connection. Nailing flange for easy installation.

C. Contractor shall coordinate location and size required with owner’s dryer model and placement.

2.11 FLANGE CONNECTORS

A. Description: Add-on or roll-formed, factory-fabricated, slide-on transverse flange connectors, gaskets, and components.

B. Material: Galvanized steel.

C. Gauge and Shape: Match connecting ductwork.

2.12 TURNING VANES

A. Manufactured Turning Vanes for Metal Ducts: Curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.

B. Manufactured Turning Vanes for Nonmetal Ducts: Fabricate curved blades of resin-bonded fiberglass with acrylic polymer coating; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.

C. General Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible"; Figures 4-3, "Vanes and Vane Runners," and 4-4, "Vane Support in Elbows."

D. Vane Construction: Double wall.

2.13 REMOTE DAMPER OPERATORS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 1. Young Regulator

B. Description: Cable system designed for remote manual damper adjustment.

C. Tubing: Galvanized flexible spiral wire sheath.

D. Cable: Stainless steel.

E. Ceiling-Box Mounting: Recessed.
2.14 DUCT-MOUNTED ACCESS DOORS

1. Door:
 a. Double wall, rectangular.
 b. Galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class.
 c. Vision panel.
 d. Hinges and Latches: 1-by-1-inch butt or piano hinge and cam latches.
 e. Fabricate doors airtight and suitable for duct pressure class.

2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.

3. Number of Hinges and Locks:
 a. Access Doors Less Than 12 Inches Square: No hinges and two sash locks.
 b. Access Doors up to 18 Inches Square: Two hinges and two sash locks.
 c. Access Doors up to 24 by 48 Inches: Three hinges and two compression latches with outside and inside handles.
 d. Access Doors Larger Than 24 by 48 Inches: Four hinges and two compression latches with outside and inside handles.

2.15 DUCT ACCESS PANEL ASSEMBLIES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 1. 3M.
 2. CL WARD &pany Inc.
 3. Ductmate Industries, Inc.

B. Labeled according to UL 1978 by an NRTL.

C. Panel and Frame: Minimum thickness 0.0428-inch stainless steel.

D. Fasteners: Stainless steel. Panel fasteners shall not penetrate duct wall.

E. Gasket: Comply with NFPA 96; grease-tight, high-temperature ceramic fiber, rated for minimum 2000 deg F.

F. Minimum Pressure Rating: 10-inch wg, positive or negative.

2.16 FLEXIBLE CONNECTORS

A. Materials: Flame-retardant or noncombustible fabrics.
B. Coatings and Adhesives: Comply with UL 181, Class 1.

C. Metal-Edged Connectors: Factory fabricated with a fabric strip [3-1/2 inches] [5-3/4 inches] wide attached to two strips of 2-3/4-inch- wide, 0.028-inch- thick, galvanized sheet steel or 0.032-inch- thick aluminum sheets. Provide metal compatible with connected ducts.

 1. Minimum Weight: 26 oz./sq. yd.
 2. Tensile Strength: 480 lbf/inch in the warp and 360 lbf/inch in the filling.
 3. Service Temperature: Minus 40 to plus 200 deg F.

E. Outdoor System, Flexible Connector Fabric: Glass fabric double coated with weatherproof, synthetic rubber resistant to UV rays and ozone.
 1. Minimum Weight: 24 oz./sq. yd.
 2. Tensile Strength: 530 lbf/inch in the warp and 440 lbf/inch in the filling.
 3. Service Temperature: Minus 50 to plus 250 deg F.

F. Thrust Limits: Combination coil spring and elastomeric insert with spring and insert in compression, and with a load stop. Include rod and angle-iron brackets for attaching to fan discharge and duct.
 1. Frame: Steel, fabricated for connection to threaded rods and to allow for a maximum of 30 degrees of angular rod misalignment without binding or reducing isolation efficiency.
 2. Outdoor Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 6. Elastomeric Element: Molded, oil-resistant rubber or neoprene.
 7. Coil Spring: Factory set and field adjustable for a maximum of 1/4-inch movement at start and stop.

2.17 DUCT ACCESSORY HARDWARE

A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct-insulation thickness.

B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Install duct accessories according to applicable details in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.

B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts.

C. Install control dampers at inlet of exhaust fans or exhaust ducts as close as possible to exhaust fan unless otherwise indicated.

D. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.
 1. Install steel volume dampers in steel ducts.

E. Set dampers to fully open position before testing, adjusting, and balancing.

F. Install test holes at fan inlets and outlets and elsewhere as indicated.

G. Install fire and smoke dampers according to UL listing.

H. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:
 1. At outdoor-air intakes and mixed-air plenums.
 2. Downstream from manual volume dampers, control dampers, backdraft dampers, and equipment.
 3. Adjacent to and close enough to fire or smoke dampers, to reset or reinstall fusible links.
 4. Upstream from turning vanes.
 5. Control devices requiring inspection.
 6. Elsewhere as indicated.

I. Install access doors with swing against duct static pressure.

J. Access Door Sizes:
 1. One-Hand or Inspection Access: 8 by 5 inches.
 2. Two-Hand Access: 12 by 6 inches.
K. Label access doors according to Section 23 05 53 "Identification for HVAC Piping and Equipment" to indicate the purpose of access door.

L. Install flexible connectors to connect ducts to equipment.

M. Install duct test holes where required for testing and balancing purposes.

N. Install thrust limits at centerline of thrust, symmetrical on both sides of equipment. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4-inch movement during start and stop of fans.

3.2 FIELD QUALITY CONTROL

A. Tests and Inspections:

1. Operate dampers to verify full range of movement.
2. Inspect locations of access doors and verify that purpose of access door can be performed.
3. Operate fire, smoke, and combination fire and smoke dampers to verify full range of movement and verify that proper heat-response device is installed.
4. Inspect turning vanes for proper and secure installation.
5. Operate remote damper operators to verify full range of movement of operator and damper.

END OF SECTION 23 33 00
SECTION 23 33 46

FLEXIBLE DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

 1. Insulated flexible ducts.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: For flexible ducts.

 1. Include plans showing locations and mounting and attachment details.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which ceiling-mounted access panels and access doors required for access to duct accessories are shown and coordinated with each other, using input from installers of the items involved.

PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTION

B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

C. Comply with the Air Diffusion Council's "ADC Flexible Air Duct Test Code FD 72-R1."

2.2 INSULATED FLEXIBLE DUCTS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Flexmaster U.S.A., Inc.
2. Thermaflex; a Flex-Tek Group company.

B. Insulated, Flexible Duct: UL 181, Class 1, black polymer film supported by helically wound, spring-steel wire; fibrous-glass insulation; polyethylene vapor-barrier film.

1. Pressure Rating: 4-inch wg positive and 0.5-inch wg negative.
3. Temperature Range: Minus 20 to plus 175 deg F.

2.3 FLEXIBLE DUCT CONNECTORS

A. Clamps: Stainless-steel band with cadmium-plated hex screw to tighten band with a worm-gear action in sizes 3 through 18 inches, to suit duct size.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install flexible ducts according to applicable details in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.

B. Install in indoor applications only. Flexible ductwork should not be exposed to UV lighting.

C. Connect diffusers or light troffer boots to ducts directly or with maximum 60-inch lengths of flexible duct clamped in place.

D. Connect flexible ducts to metal ducts with draw bands.

E. Installation:

1. Install ducts fully extended.
2. Do not bend ducts across sharp corners.
3. Bends of flexible ducting shall not exceed a minimum of one duct diameter.
4. Avoid contact with metal fixtures, water lines, pipes, or conduits.
5. Install flexible ducts in a direct line, without sags, twists, or turns.

F. Supporting Flexible Ducts:
1. Suspend flexible ducts with bands 1-1/2 inches wide or wider and spaced a maximum of 48 inches apart. Maximum centerline sag between supports shall not exceed 1/2 inch per 12 inches.

2. Install extra supports at bends placed approximately one duct diameter from center line of the bend.

3. Ducts may rest on ceiling joists or truss supports. Spacing between supports shall not exceed the maximum spacing per manufacturer's written installation instructions.

END OF SECTION 23 33 46
SECTION 23 34 23

HVAC POWER VENTILATORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Ceiling-mounted ventilators.
 2. Centrifugal ventilators - roof upblast and sidewall.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Construction details, material descriptions, dimensions of individual components and profiles, and finishes for fans.
 2. Rated capacities, operating characteristics, and furnished specialties and accessories.
 3. Certified fan performance curves with system operating conditions indicated.
 4. Certified fan sound-power ratings.
 5. Motor ratings and electrical characteristics, plus motor and electrical accessories.
 6. Material thickness and finishes, including color charts.
 7. Dampers, including housings, linkages, and operators.
 8. Prefabricated roof curbs.

B. Shop Drawings:
 1. Include plans, elevations, sections, and attachment details.
 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Floor plans, reflected ceiling plans, and other details, or BIM model, drawn to scale, showing the items described in this Section and coordinated with all building trades.
1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For HVAC power ventilators to include in normal and emergency operation, and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials, from the same product run, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Belts: One set(s) for each belt-driven unit.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

2.2 CEILING-MOUNTED VENTILATORS

A. Housing: Steel, lined with acoustical insulation.

B. Fan Wheel: Centrifugal wheels directly mounted on motor shaft. Fan shrouds, motor, and fan wheel removable for service.

C. Back-draft damper: Integral.

D. Grille: Plastic, louvered grille with flange on intake and thumbscrew or spring retainer attachment to fan housing.

E. Electrical Requirements - Junction box for electrical connection on housing and receptacle for motor plug-in.

F. Accessories:
 1. Manufacturer's standard roof jack or wall cap, and transition fittings.

2.3 CENTRIFUGAL VENTILATORS - ROOF UPBLAST (CLEAN AIR)

A. Configuration: Centrifugal roof upblast ventilator.

B. Housing: Removable spun-aluminum dome top and outlet baffle spun aluminum; square, one-piece aluminum base with venturi inlet cone.

 1. Upblast Units: Provide spun-aluminum discharge baffle to direct discharge air upward, with rain and snow drains.

C. Fan Wheels: Aluminum hub and wheel with backward-inclined blades.

D. Accessories:
1. Disconnect Switch: Nonfusible type, with thermal-overload protection mounted inside outside fan housing, factory wired through an internal aluminum conduit.
2. Motorized Dampers: Parallel-blade dampers mounted in curb base with electric actuator; wired to close when fan stops. Provide damper end switches to confirm if the damper opens and closes on command. Provide backdraft dampers where indicated.
3. Tie-Down Points: Four brackets located on the windband for securing the fan in heavy wind applications.
4. Curb Seal: Foam or high temperature seal between fan and curb to assure proper sealing when attached to a curb.
5. Drain Connection.
 a. Not required if motor is ECM.
7. Hi-pro Polyester coatings.

E. Prefabricated Roof Curbs: Galvanized steel; mitered and welded corners; 1-1/2-inch thickness, rigid, fiberglass insulation adhered to inside walls; and 1-1/2-inch wood nailer. Size as required to suit roof opening and fan base.

1. Configuration: Self-flashing without a cant strip, with a mounting flange.

2.4 CENTRIFUGAL VENTILATORS - ROOF UPBLAST OR SIDEWALL (HOOD EXHAUST)

A. Configuration: Centrifugal roof upblast, grease hood kitchen ventilator.

B. Housing: Removable spun-aluminum dome top and outlet baffle; square, one-piece aluminum base with venturi inlet cone.

1. Upblast Units: Provide spun-aluminum discharge baffle to direct discharge air upward, with rain and snow drains.
2. Provide grease collector with absorbent material.

C. Fan Wheels: Aluminum hub and wheel with backward-inclined blades.

D. Belt Drives:

1. Resiliently mounted to housing.
2. Fan Shaft: Turned, ground, and polished steel; keyed to wheel hub.
3. Shaft Bearings: Permanently lubricated, permanently sealed, self-aligning ball bearings; minimum ABMA9, L(10) of 100,000 hours.
4. Fan Pulleys: Cast iron or cast steel with split, tapered bushing; dynamically balanced at factory.
5. Motor Pulleys: Adjustable pitch for use with motors through 5 hp. Select pulley so pitch adjustment is at the middle of adjustment range at fan design conditions. Provide fixed pitch for use with motors larger than 5 hp.
6. Fan and motor isolated from exhaust airstream.

E. Accessories:

1. Disconnect Switch: Nonfusible type, with thermal-overload protection mounted outside fan housing, factory wired through an internal aluminum conduit.
2. Restaurant Kitchen Exhaust: UL 762 listed for grease-laden air exhaust.
3. Vented Curb Extension: Mounts between roof curb and roof mounted fan.
4. Tie-Down Points: Four brackets located on the windband for securing the fan in heavy wind applications.
5. Curb Seal: Foam or high temperature seal between fan and curb to assure proper sealing when attached to a curb.
 a. Not required if motor is ECM.
7. Clean-Out Port: Removable plug allows for easy spray or steam cleaning of wheel through the windband.
8. Drain Connection.
9. Non-stick Wheel Coating

F. Prefabricated Roof Curbs: Galvanized steel; mitered and welded corners; 1-1/2-inch-thick, rigid, fiberglass insulation adhered to inside walls; and 1-1/2-inch wood nailer. Size as required to suit roof opening and fan base.
 1. Configuration: Self-flashing without a cant strip, with mounting flange.

2.5 MOTORS

A. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 23 05 13 "Common Motor Requirements for HVAC Equipment."
 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

2.6 SOURCE QUALITY CONTROL

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.

B. AMCA Certification: Fans shall comply with AMCA 11 and bear the AMCA-Certified Ratings Seal.

C. Fan Sound Ratings: Comply with AMCA 311, and label fans with the AMCA-Certified Ratings Seal. Sound ratings shall comply with AMCA 301. The fans shall be tested according to AMCA 300.

D. Fan Performance Ratings: Comply with AMCA 211 and label fans with AMCA-Certified Rating Seal. The fans shall be tested for air performance - flow rate, fan pressure, power, fan efficiency, air density, speed of rotation, and fan efficiency - according to AMCA 210/ASHRAE 51.

E. Operating Limits: Classify according to AMCA 99.
F. UL Standards: Power ventilators shall comply with UL 705. Power ventilators for use for restaurant kitchen exhaust shall also comply with UL 762.

PART 3 - EXECUTION

3.1 INSTALLATION OF HVAC POWER VENTILATORS

A. Install power ventilators level and plumb.

B. Secure roof-mounted fans to roof curbs with stainless steel hardware. See Section 07 72 00 "Roof Accessories" for installation of roof curbs.

C. Ceiling Units: Suspend units from structure; use steel wire or metal straps.

D. Install units with clearances for service and maintenance.

E. Label units according to requirements specified in Section 23 05 53 "Identification for HVAC Piping and Equipment."

3.2 ELECTRICAL CONNECTIONS

A. Connect wiring according to Section 26 05 15 "Low-Voltage Electrical Power Conductors and Cables."

B. Ground equipment according to Section 26 05 26 "Grounding and Bonding for Electrical Systems."

C. Install electrical devices furnished by manufacturer, but not factory mounted, according to NFPA 70 and NECA 1.

1. Nameplate shall be laminated acrylic or melamine plastic signs, as specified in Section 26 05 53 "Identification for Electrical Systems."

3.3 CONTROL CONNECTIONS

A. Install control and electrical power wiring to field-mounted control devices.

B. Connect control wiring according to Section 26 05 23 "Control-Voltage Electrical Power Cables."

3.4 FIELD QUALITY CONTROL

A. Tests and Inspections:

1. Verify that shipping, blocking, and bracing are removed.
2. Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.
3. Verify that there is adequate maintenance and access space.
4. Verify that cleaning and adjusting are complete.
5. Disconnect fan drive from motor, verify proper motor rotation direction, and verify fan wheel free rotation and smooth bearing operation. Reconnect fan drive system, align and adjust belts, and install belt guards.
6. Adjust belt tension.
7. Adjust damper linkages for proper damper operation.
8. Verify lubrication for bearings and other moving parts.
9. Disable automatic temperature-control operators, energize motor and adjust fan to indicated rpm, and measure and record motor voltage and amperage.
10. Shut unit down and reconnect automatic temperature-control operators.
11. Remove and replace malfunctioning units and retest as specified above.

B. Test and adjust controls and safeties. Controls and equipment will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

3.5 ADJUSTING

A. Adjust damper linkages for proper damper operation.

B. Adjust belt tension.

C. Comply with requirements in Section 23 05 93 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing procedures.

D. Replace fan and motor pulleys as required to achieve design airflow.

E. Lubricate bearings.

3.6 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain centrifugal fans.

END OF SECTION 23 34 23
SECTION 23 35 33
LISTED KITCHEN VENTILATION SYSTEM EXHAUST DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Listed grease ducts.
 2. Access doors.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for listed grease ducts.
B. Shop Drawings: For listed grease ducts.
 1. Include plans, elevations, sections, and attachment details.
 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Detail fabrication and assembly of hangers and seismic restraints.

1.4 INFORMATIONAL SUBMITTALS
A. Welding certificates.

1.5 QUALITY ASSURANCE
A. Welding Qualifications: Qualify procedures and personnel according to the following:
PART 2 - PRODUCTS

2.1 LISTED GREASE DUCTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. McGill AirFlow LLC.
3. Metal-Fab, Inc.

B. Description: Factory-fabricated, -listed, and -labeled, double-wall ducts tested according to UL 1978 and rated for 500 deg F continuously, or 2000 deg F for 30 minutes, with positive or negative duct pressure and complying with NFPA 211.

C. Construction: Inner shell and outer jacket separated by at least a 3-inch annular space filled with high-temperature, ceramic-fiber insulation.

1. Inner Shell: ASTM A666, Type 316 stainless steel.

D. Gaskets and Flanges: Ensure that gaskets and sealing materials are rated at 1500 deg F minimum.

E. Hood Connectors: Constructed from same material as grease duct with internal or external continuously welded or brazed joints.

F. Accessories: Tees, elbows, increasers, terminations, adjustable roof flashings, storm collars, support assemblies, thimbles, firestop spacers, and fasteners; fabricated from similar materials and designs as vent-pipe straight sections; all listed for same assembly. Include unique components required to comply with NFPA 96 including cleanouts, transitions, adapters, and drain fittings.

G. Grease Duct Supports: Construct duct bracing and supports from non-combustible material.

1. Design bracing and supports to carry static and seismic loads within stress limitations of the International Building Code.
2. Ensure that bolts, screws, rivets and other mechanical fasteners do not penetrate duct walls.

H. Comply with ASTM E2336.

2.2 ACCESS DOORS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. 3M.
2. Acudor Products, Inc.
3. Ductmate Industries, Inc.

B. Description: Factory-fabricated, -listed, and -labeled, double-wall maintenance access doors tested according to UL 1978 and rated for 500 deg F continuously, or 2000 deg F for 30 minutes; with positive or negative duct pressure and complying with NFPA 211.

1. Construction: 0.0625 inch ASTM A666, Type 316 stainless-steel inner shell and aluminized-steel outer cover with two handles.
2. Fasteners: Stainless-steel bolts and wing nuts.
 a. Ensure that bolts do not penetrate interior of duct space.

4. Door Label: Mark door with uppercase lettering as follows: "ACCESS PANEL. DO NOT OBSTRUCT."

PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine areas and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION
A. Coordinate installation of roof curbs, equipment supports, and roof penetrations. Comply with requirements in Section 07 72 00 "Roof Accessories."
B. Coordinate connections to kitchen exhaust hoods with requirements in Section 1140000 "Food Service Equipment."
C. Coordinate connections to exhaust fans with requirements in Section 233423 "HVAC Power Ventilators."
D. Coordinate firestopping where grease ducts penetrate fire separations with requirements in Section 07 84 13 "Penetration Firestopping."
E. Comply with minimum clearances from combustibles and minimum termination heights according to product listing or NFPA 211 and UL 2221, whichever is most stringent.
F. Install airtight maintenance access doors where indicated.
G. Seal between sections of grease exhaust ducts according to manufacturer's written installation instructions, using sealants recommended by manufacturer.
H. Connections: Make grease duct connections according to the International Mechanical Code.
1. Grease duct to exhaust fan connections: Connect grease ducts to inlet side of fan using flanges, gaskets, and bolts.

2. Grease duct to hood connections:
 a. Make grease duct to hood joints connections using internal or external continuously welded or brazed joints.
 b. Make watertight grease duct to hood joints connections using flanges, gaskets, and bolts.

I. Support ducts at intervals recommended by manufacturer to support weight of ducts and accessories, without applying loading on kitchen hoods.
 1. Securely attach supports and bracing to structure.

J. Grease Duct Enclosures: Comply with requirements of the International Building Code and ASTM E2336.

K. Coordinate fire-rated enclosure construction with Section 09-21-6.23 "Gypsum Board Shaft Wall Assemblies."

L. Repair damage to adjacent materials caused by listed kitchen ventilation system exhaust ducts installation.

3.3 FIELD QUALITY CONTROL

A. Perform air leakage test in presence of Owner or Construction Manager before concealment of any portion of the grease duct system.
 1. Notify Owner a minimum of two days before test is performed.

END OF SECTION 23 35 33
SECTION 23 37 13.13

AIR DIFFUSERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Round ceiling diffusers.
2. Rectangular and square ceiling diffusers.
3. Linear bar diffusers.
4. Linear slot diffusers.
5. High-capacity drum louver diffusers.

B. Related Requirements:

1. Section 23 33 00 "Air Duct Accessories" for fire and smoke dampers and volume-control dampers not integral to diffusers.
2. Section 23 37 13.23 "Air Registers and Grilles" for adjustable-bar register and grilles, fixed-face registers and grilles, and linear bar grilles.
3. Section 23 37 16 "Fabric Air-Diffusion Devices" for continuous tubular diffusers.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
2. Diffuser Schedule: Indicate drawing designation, room location, quantity, model number, size, and accessories furnished.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Ceiling suspension assembly members.
2. Method of attaching hangers to building structure.
3. Size and location of initial access modules for acoustical tile.
4. Ceiling-mounted items including lighting fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.
5. Duct access panels.

B. Source quality-control reports.

PART 2 - PRODUCTS

2.1 GENERAL

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Carnes Company.
2. Krueger.
3. Nailor Industries Inc.
5. Titus.

B. See drawing schedules for specific performance, dimensions, throw, etc.

2.2 ROUND CEILING DIFFUSERS

A. Devices shall be specifically designed for variable-air-volume flows.

B. Material: Aluminum.

C. Finish: Anodized aluminum.

D. Face Style: Four cone.

E. Mounting: Duct connection.

F. Pattern: Fully adjustable.

G. Dampers: None (see volume dampers in Section 233300 “Air Duct Accessories”.

2.3 RECTANGULAR AND SQUARE CEILING DIFFUSERS

A. Devices shall be specifically designed for variable-air-volume flows.

B. Material: Steel or Aluminum (see schedules).

C. Finish: Baked enamel, white.

D. Face Size: 24 by 24 inches or 12 by 12 inches (see schedules).

E. Face Style: Plaque.
F. Mounting: T-bar.
G. Pattern: Adjustable.
H. Dampers: None (see volume dampers in Section 233300 “Air Duct Accessories”).

2.4 LINEAR BAR DIFFUSERS

A. Material: Aluminum.
B. Finish: Anodized Aluminum.
C. Wide Core Spacing Arrangement: 1/8-inch thick blades spaced 1/2 inch apart; 15-degree deflection.
D. One-Way Deflection Vanes: Extruded construction fixed louvers with removable core.
E. Mounting: Concealed plaster frame.
F. Damper Type: Adjustable opposed-blade assembly.
G. Accessories: Plaster frame.

2.5 LINEAR SLOT DIFFUSERS

A. Material - Shell: Aluminum, insulated.
B. Material - Pattern Controller and Tees: Aluminum.
C. Finish - Face and Shell: Baked enamel, black.
D. Finish - Pattern Controller: Baked enamel, black.
E. Finish - Tees: Baked enamel, white.
F. Slot Width: 1/2 inch, 3/4 inch, 1 inch or 1-1/2 inches (see schedules).
G. Number of Slots: One, Two, Three or Four (see schedules).
H. Length: 24 inches, 30 inches, 36 inches, 48 inches, or 60 inches (see schedules).
I. Accessories: T-bar on both sides.

2.6 HIGH-CAPACITY DRUM LOUVER DIFFUSERS

A. Airflow Principle: Extended distance for high airflow rates.
B. Material: Aluminum, heavy gage extruded.
C. Finish: White baked acrylic.

D. Border: 1-1/4-inch width with countersunk screw holes.

E. Gasket between drum and border.

F. Body: Drum shaped; adjustable vertically.

G. Blades: Individually adjustable horizontally.

H. Mounting: Surface to duct.

I. Accessories:
 1. Opposed-blade steel damper.
 2. Duct-mounting collars with countersunk screw holes.

2.7 SOURCE QUALITY CONTROL

A. Verification of Performance: Rate diffusers according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas where diffusers are installed for compliance with requirements for installation tolerances and other conditions affecting performance of equipment.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install diffusers level and plumb.

B. Ceiling-Mounted Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.

C. Install diffusers with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.3 ADJUSTING
A. After installation, adjust diffusers to air patterns indicated, or as directed, before starting air balancing.

END OF SECTION 23 37 13.13
SECTION 23 37 13.23

REGISTERS AND GRILLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Adjustable blade face registers.
 2. Fixed face grilles.
 3. Linear bar grilles.
B. Related Requirements:
 1. Section 23 33 00 "Air Duct Accessories" for fire and smoke dampers and volume-control dampers not integral to registers and grilles.
 2. Section 23 37 13.13 "Air Diffusers" for various types of air diffusers.
 3. Section 23 37 16 "Fabric Air-Diffusion Devices" for continuous tubular diffusers.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
 2. Register and Grille Schedule: Indicate drawing designation, room location, quantity, model number, size, and accessories furnished.

1.4 INFORMATIONAL SUBMITTALS
A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Ceiling suspension assembly members.
 2. Method of attaching hangers to building structure.
 3. Size and location of initial access modules for acoustical tile.
 4. Ceiling-mounted items including lighting fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.
 5. Duct access panels.
B. Source quality-control reports.

PART 2 - PRODUCTS

2.1 GENERAL

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Carnes Company.
2. Krueger.
3. Nailor Industries Inc.
5. Titus.

B. See drawing schedules for specific performance, dimensions, throw, etc.

2.2 REGISTERS

A. Adjustable Blade Face Register:
 1. Material: Steel.
 2. Finish: Baked enamel, white.
 7. Mounting: Countersunk screw.
 8. Damper Type: Adjustable opposed blade.

2.3 GRILLES

A. Adjustable Blade Face Grille:
 1. Material: Steel.
 2. Finish: Baked enamel, white.

B. Fixed Face Grille:
 1. Material: Aluminum.
 2. Finish: Baked enamel, white.
 3. Face Blade Arrangement: Horizontal; spaced 1/2 inch apart.
 7. Mounting: Lay in.

C. Linear Bar Grilles
 1. Material: Aluminum.
 2. Finish: Anodized Aluminum.
 3. Wide Core Spacing Arrangement: 1/8-inch thick blades spaced 1/2 inch apart; 15-degree deflection.
 4. One-Way Deflection Vanes: Extruded construction fixed louvers with removable core.
 5. Mounting: Concealed plaster frame.
 6. Damper Type: Adjustable opposed-blade assembly.

2.4 SOURCE QUALITY CONTROL
 A. Verification of Performance: Rate registers and grilles according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine areas where registers and grilles are installed for compliance with requirements for installation tolerances and other conditions affecting performance of equipment.
 B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION
 A. Install registers and grilles level and plumb.
 B. Outlets and Inlets Locations: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.
 C. Install registers and grilles with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.3 ADJUSTING
 A. After installation, adjust registers and grilles to air patterns indicated, or as directed, before starting air balancing.

END OF SECTION 23 37 13.23
SECTION 23 37 16

FABRIC AIR-DISTRIBUTION DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes continuous, tubular, fabric air-distribution devices and suspension system.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Data Sheet: Indicate materials of construction, finish, and mounting details; and project specific performance data including throw and drop, static-pressure drop, and noise ratings.

B. Shop Drawings: For fabric air-distribution devices.

1. Include plans, elevations, sections, and suspension and attachment details.

C. Samples for Initial Selection: For diffusers with factory-applied color finishes.

D. Diffuser Schedule: Use same designations indicated on Drawings. Indicate room location, quantity, model number, size, and accessories furnished.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from Installers of the items involved:

1. Ceiling suspension assembly members.
2. Method of attaching hangers to building structure.
3. Ceiling-mounted items including lighting fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.

B. Source quality-control reports.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. DuctSox Corp.
3. FabricAir Inc.

2.2 PERFORMANCE REQUIREMENTS

A. Continuous tubular diffuser materials shall be listed and labeled as complying with UL R20672 NFPA 90A.

B. Air permeability of fabric will comply with ASTM D737.

2.3 CONTINUOUS TUBULAR DIFFUSERS

A. Description:

2. Shape: Round or Oval.
3. Air-Outlet Configuration: Permeable fabric (2 cfm/sf per ASTM D737)
4. Air-Outlet Configuration: Lengthwise hole pattern; with diffusion-hole diameter up to 6 inch diameter (design dependent).
 a. Size, quantity and location of orifices to be specified and approved by manufacturer.

B. Duct Connection Type: Round worm-gear band.

C. Accessories:

 1. End cap.
 2. Removable support hoops.
 3. Elbows.

2.4 SUSPENSION SYSTEM

A. Hoops (IHS) System: Air diffusers shall be constructed with internal retention system.

 1. System shall consist of an internal 360 degree hoop system, spaced 5’ on center.
 2. System shall be installed with a one row suspension system located 1.5” above top-dead-center of the textile system.
3. System attachment to cable or U-Track shall be made using Gliders spaced 12 inches.
4. One row suspension (must specify if multiple on same project).

a. Cable suspension hardware to include cable, eye bolts, thimbles, cable clamps, and turnbuckle(s) as required.

 1) Cable suspension (must specify if multiple on same project).

 a) Galvanized steel cable.
 b) Stainless steel cable.

b. U-Track suspension hardware to include 8’ sections of aluminum track, aluminum splice connectors, track endcaps and vertical cable support kits consisting of a length of cable with cable connectors. Radius aluminum track must be included for all horizontal/flat radius sections.

 1) U-Track suspension (must specify if multiple on same project).

 a) Galvanized steel cable.
 b) Stainless steel cable.

c. U-Track Surface Mount hardware to include 8’ sections of aluminum track, aluminum splice connectors, track endcaps, and U-Track suspension attachments. Radius aluminum track must be included for all horizontal/flat radius sections.

 1) U-Track Surface Mount suspension (must specify if multiple on same project).

 a) U-Clip spring attachment.
 b) U-Clip spring attachment with T-Bar clip and rivet.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.
SECTION 23 72 23.23

PACKAGED, OUTDOOR, HEAT WHEEL ENERGY RECOVERY UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Heat wheels in packaged, outdoor, total energy-recovery units.

B. Related Requirements:

1. Section 237416.11 "Packaged, Small-Capacity, Rooftop Air-Conditioning Units" for packaged, air-cooled, rooftop HVAC, 6 tons and smaller.

2. Section 237416.13 “Packaged, Large-Capacity, Rooftop Air-Conditioning Units” for packaged, air-cooled, rooftop HVAC, 7-1/2 tons and greater.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include packaged, outdoor, heat-wheel, energy-recovery-unit rated capacities, operating characteristics, furnished specialties, and accessories.

2. Fans:

 a. Certified fan-performance curves with system operating conditions indicated.

 b. Certified fan-sound power ratings.

 c. Fan construction and accessories.

 d. Motor ratings, electrical characteristics, and motor accessories.

B. Shop Drawings: For packaged, outdoor, heat-wheel, energy-recovery units.

1. Include plans, elevations, sections, details, and mounting details.

2. Include details of equipment assemblies. Indicate dimensions, weights, loads, lifting requirements, required clearances, method of field assembly, components, and location and size of each field connection.

3. Include diagrams for power, signal, and control wiring.
1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For packaged, outdoor, heat-wheel, energy-recovery equipment to include in maintenance manuals.

1.5 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed. Package with protective covering for storage and identify with labels describing contents.

1. Filters: One set(s) of each type of filter specified.
2. Fan Belts: One set(s) of belts for each belt-driven fan in energy-recovery units.
3. Wheel Belts: One set(s) of belts for each heat wheel.

1.6 COORDINATION

A. Coordinate sizes and locations of building openings and duct connections with actual equipment provided.

1.7 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace components of packaged, outdoor, heat-wheel, energy-recovery units that fail in materials or workmanship within specified warranty period.

1. Warranty Period for Packaged Energy-Recovery Units: One years from date of Substantial Completion.
2. Warranty Period for Energy-Recovery Wheel: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. NFPA Compliance: Comply with NFPA 90A for design, fabrication, and installation of air-handling units and components.

B. ASHRAE Compliance:

1. Applicable requirements in ASHRAE 62.1.
2. Capacity ratings for heat-wheel, energy-recovery equipment: Comply with ASHRAE 84.

C. ASHRAE/IES 90.1 Compliance: Applicable requirements in ASHRAE/IES 90.1.

D. Comply with ASTM E84.
E. Delegated Design: Engage a qualified professional engineer, as defined in Section 01 40 00 "Quality Requirements," to design vibration-isolation controls and wind restraints, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

2.2 CAPACITIES AND CHARACTERISTICS (refer to drawing schedules).

2.3 PACKAGED, OUTDOOR, HEAT-WHEEL, ENERGY-RECOVERY UNITS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited, to the following:

1. AAON
2. Carrier
3. Daikin
5. Johnson Controls
7. Thybar Corporation.
8. York.

B. Source Limitations: Obtain packaged, outdoor, heat-wheel, energy-recovery units from single manufacturer.

C. Surfaces in Contact with Airstream: Comply with requirements in ASHRAE 62.1.

D. Housing: Manufacturer's standard construction with corrosion-protection coating and exterior finish, gasketed hinged access doors with neoprene gaskets for inspection and access to internal parts, minimum 1 inch thick, thermal insulation, knockouts for electrical connections, exterior drain connection, and lifting lugs.

E. Heat Wheel:

1. Casing:
 a. Manufacturer's standard construction with standard factory finish.
 b. Slide-in, slide-out cassette style.
 c. Support vertical rotors on grease-lubricated ball bearings having extended grease fittings or permanently lubricated bearings with minimum L-50 of 200,000 hours. Support horizontal rotors on tapered roller bearing.

2. Rotor: Aluminum, metallic, or polymer segmented wheel, strengthened with radial spokes impregnated with nonmigrating, water-selective, four-angstrom, molecular-sieve desiccant coating.
 a. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 23 05 13 "Common Motor Requirements for HVAC Equipment."
F. Supply and Exhaust Fans: Centrifugal, forward-curved fan with spring isolators of 1-inch static deflection.

1. Motor and Drive: Belt driven, with adjustable sheaves; motor mounted on adjustable base.

 a. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 23 05 13 "Common Motor Requirements for HVAC Equipment."

G. Filters:

1. Particulate air filtration is specified in Section 23 41 00 "Particulate Air Filtration."

H. Filters:

1. Description: pleated, factory-fabricated, self-supported, disposable air filters with holding frames.
2. UL Compliance: Comply with UL 900.
4. Filter Media Frame: Beverage board with perforated metal retainer or metal grid on outlet side.
5. Filter-Mounting Frames: Arranged with access doors or panels on one or both sides of unit. Design unit with filters removable from one side, or lift out from access plenum.

I. Wiring: Fabricate units with space within housing for electrical conduits. Wire motors and controls, so only external connections are required during installation.

 1. Outdoor Enclosure: NEMA 25, Type 3R enclosure contains relays, starters, and terminal strip.
 2. Include nonfused disconnect switches.

2.4 CONTROLS

A. Control Panel: Solid-state, programmable, microprocessor-based control unit for mounting inside unit’s control panel. Integrate to BACnet, LonWorks, or Modbus, as specified in Section 23 09 23 "Direct Digital Control (DDC) System for HVAC".

B. Starting relay, factory mounted and wired, and manual motor starter for field wiring.

C. Economizer Control, Stop Wheel: Stop wheel rotation or modulate wheel rotation speed when conditions are favorable for economizer operation.

D. Enthalpy sensor.

E. Rotation sensor and alarm.

F. Dirty filter switch.
G. Low-Voltage Transformer: Integral transformer to provide control voltage to unit from primary incoming electrical service.

2.5 SOURCE QUALITY CONTROL

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended application.

B. AHRI Compliance: Capacity ratings for air-to-air energy-recovery equipment certified as complying with AHRI 1060IP.

C. Fan Performance Rating: Comply with AMCA 211, and label fans with AMCA-certified rating seal. Factory test fan performance for airflow, pressure, power, air density, rotation speed, and efficiency in accordance with AMCA 210 and ASHRAE 51.

D. Fan Sound Rating: Comply with AMCA 301 or AHRI 260IP.

E. UL Compliance:

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine casing insulation materials and filter media before packaged, outdoor, heat wheel energy-recovery unit installation. Replace insulation materials and filter media that are wet, moisture damaged, or mold contaminated.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION OF PACKAGED, OUTDOOR, HEAT-WHEEL, ENERGY-RECOVERY UNITS

A. Install packaged, outdoor, heat-wheel, energy-recovery units, so supply and exhaust airstreams flow in opposite directions, and rotation is away from exhaust side to purge section to supply side.

B. Equipment Mounting:
 1. Install roof-mounted packaged, outdoor, heat-wheel, energy-recovery units on manufacturer's-recommended-height equipment roof curbs. Comply with requirements for equipment curbs specified in Section 077200 "Roof Accessories."
C. Install units with clearances for service and maintenance.
D. Do not operate equipment fans until temporary or permanent filters are in place. Replace temporary filters used during construction and testing with new, clean filters prior to final inspection.

3.3 ELECTRICAL CONNECTIONS

A. Install electrical devices furnished by manufacturer, but not factory mounted, in accordance with NFPA 70 and NECA 1.
B. Connect wiring in accordance with Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."
C. Ground equipment in accordance with Section 26 05 26 "Grounding and Bonding for Electrical Systems."
D. Install nameplate for each electrical connection, indicating electrical equipment designation and circuit number feeding connection.

1. Nameplate shall be laminated acrylic or melamine plastic signs, as specified in Section 26 05 53 "Identification for Electrical Systems."
2. Nameplate shall be laminated acrylic or melamine plastic signs with a black background and engraved white letters at least 1/2 inch high.

3.4 CONTROL CONNECTIONS

A. Install control and electrical power wiring to field-mounted control devices.
B. Connect control wiring in accordance with Section 26 05 23 "Control-Voltage Electrical Power Cables."

3.5 STARTUP SERVICE

A. Engage factory-authorized service representative to perform startup service.

1. Complete installation and startup checks in accordance with manufacturer's written instructions.

3.6 ADJUSTING

A. Adjust moving parts to function smoothly, and lubricate as recommended by manufacturer.
B. Adjust initial temperature and humidity set points.
C. Set field-adjustable switches and circuit-breaker trip ranges as indicated.
3.7 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

B. Tests and Inspections:

1. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

C. Packaged, outdoor, heat-wheel, energy-recovery equipment will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

3.8 DEMONSTRATION

A. Engage factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain air-to-air energy-recovery units.
SECTION 23 74 16.11

PACKAGED, SMALL-CAPACITY, ROOFTOP AIR-CONDITIONING UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes packaged, small-capacity, rooftop air-conditioning units (RTUs) with the following components:

1. Casings.
2. Fans, drives, and motors.
3. Rotary heat exchangers.
5. Refrigerant circuit components.
6. Air filtration.
7. Dampers.
8. Electrical power connections.
9. Controls.
10. Roof curbs.
11. Accessories.

1.3 DEFINITIONS

A. RTU: Rooftop unit. As used in this Section, this abbreviation means packaged, small-capacity, rooftop air-conditioning units. This abbreviation is used regardless of whether the unit is mounted on the roof or on a concrete base on ground.

1.4 ACTION SUBMITTALS

A. Product Data: For each RTU.

1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.
2. Include rated capacities, dimensions, required clearances, characteristics, and furnished specialties and accessories.
3. Include unit dimensions and weight.
4. Include cabinet material, metal thickness, finishes, insulation, and accessories.
5. Fans:

Tetra Tech
a. Include certified fan-performance curves with system operating conditions indicated.
b. Include certified fan-sound power ratings.
c. Include fan construction and accessories.
d. Include motor ratings, electrical characteristics, and motor accessories.

6. Include certified coil-performance ratings with system operating conditions indicated.
7. Include filters with performance characteristics.
8. Include dampers, including housings, linkages, and operators.

B. Shop Drawings: For each packaged, small-capacity, rooftop air-conditioning unit
 1. Include plans, elevations, sections, and mounting details.
 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Include diagrams for power, signal, and control wiring.

C. Delegated-Design Submittal: For RTU supports indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 1. Include design calculations for selecting vibration isolators and for designing vibration isolation bases.
 2. Detail mounting, securing, and flashing of roof curb to roof structure. Indicate coordinating requirements with roof membrane system.
 3. Wind-Restraint Details: Detail fabrication and attachment of wind restraints. Show anchorage details and indicate quantity, diameter, and depth of penetration of anchors.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Floor plans and other details, or BIM model, drawn to scale, showing the items described in this Section, and coordinated with all building trades.
B. Sample Warranty: For manufacturer's warranty.
C. System startup reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For RTUs to include in emergency, operation, and maintenance manuals.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
1. Filters: One set(s) of filters for each unit.
2. Gaskets: One set(s) for each access door.

1.8 WARRANTY

A. Warranty: Manufacturer agrees to repair or replace components of outdoor, semi-custom, air-handling unit that fail in materials or workmanship within specified warranty period.

1. Warranty Period: One year(s) from date of Substantial Completion.
2. Warranty Period for Compressors: Manufacturer's standard, but not less than five years from date of Substantial Completion

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.

B. NFPA Compliance: Comply with NFPA 90A for design, fabrication, and installation of RTUs and components.

C. ASHRAE 62.1 Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and Startup."

D. ASHRAE 15 Compliance: For refrigeration system safety.

E. ASHRAE/IES 90.1 Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6 - "Heating, Ventilating, and Air Conditioning."

G. Delegated Design: Engage a qualified professional engineer, as defined in Section 01 40 00 "Quality Requirements," to design mounting and restraints for RTUs, including comprehensive engineering analysis.

1. Design RTU supports to comply with wind performance requirements.

H. Wind-Restraint Performance:

1. Basic Wind Speed: 130 mph.
2. Building Classification Category: III.
3. Minimum 10 lb/sq. ft. multiplied by the maximum area of the mechanical component projected on a vertical plane that is normal to the wind direction, and 45 degrees either side of normal.
2.2 **CAPACITIES AND CHARACTERISTICS** (refer to drawing schedules)

2.3 **MANUFACTURERS**

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. AAON
2. Carrier
3. Daikin
4. Johnson Controls
5. Trane
6. York

2.4 **UNIT CASINGS**

A. General Fabrication Requirements for Casings: Formed and reinforced double-wall insulated panels, fabricated to allow removal for access to internal parts and components, with joints between sections sealed.

B. Double-Wall Construction:

1. Outside Casing Wall: Galvanized steel, minimum 18 gauge thick with manufacturer's standard finish, with pitched roof panels and knockouts with grommet seals for electrical and piping connections and lifting lugs.
 a. Able to withstand a minimum of 3000-hour salt spray test in accordance with ASTM B117.
2. Inside Casing Wall: G90-coated galvanized steel.
3. Floor Plate: G90 galvanized steel, minimum 18 gauge thick.
4. Casing Insulation:
 c. Insulation Thickness: 1 inch.

C. Airstream Surfaces: Surfaces in contact with airstream shall comply with requirements in ASHRAE 62.1.

D. Panels and Doors:

1. Panels:
 a. Fabrication: Formed and reinforced with same materials and insulation thickness as casing.
 b. Fasteners: Two or more camlock type for panel lift-out operation. Arrangement shall allow panels to be opened against air-pressure differential.
 c. Gasket: Neoprene, applied around entire perimeters of panel frames.
 d. Size: Large enough to allow inspection and maintenance of air-handling unit's internal components.
2. Access Doors:
 a. Hinges: A minimum of two ball-bearing hinges or stainless steel piano hinge and two wedge-lever-type latches, operable from inside and outside. Arrange doors to be opened against air-pressure differential.
 b. Gasket: Neoprene, applied around entire perimeters of panel frames.
 c. Size: Large enough to allow inspection and maintenance of air-handling unit's internal components.

3. Locations and Applications:
 a. Fan Section: Doors.
 b. Access Section: Doors.
 c. Coil Section: Inspection and access panels.
 d. Damper Section: Inspection and access panels.
 e. Filter Section: Doors large enough to allow periodic removal and installation of filters.
 f. Mixing Section: Doors.

E. Condensate Drain Pans:
 1. Location: Each type of cooling coil.
 2. Construction:
 3. Drain Connection:
 a. Located at lowest point of pan and sized to prevent overflow. Terminate with threaded nipple on one end of pan.
 4. Slope: Minimum 0.125-in./ft. slope, to comply with ASHRAE 62.1, in at least two planes to collect condensate from cooling coils (including coil piping connections, coil headers, and return booms) and from humidifiers and to direct water toward drain connection.
 5. Length: Extend drain pan downstream from leaving face for distance to comply with ASHRAE 62.1.
 7. Depth: A minimum of 2 inches deep.
 8. Units with stacked coils shall have an intermediate drain pan to collect condensate from top coil.

2.5 FANS, DRIVES, AND MOTORS

A. Fan and Drive Assemblies: Statically and dynamically balanced and designed for continuous operation at maximum-rated fan speed and motor horsepower.

B. Supply-Air Fans: Centrifugal, rated according to AMCA 210; galvanized or painted steel; mounted on solid-steel shaft.
1. Shafts: With field-adjustable alignment.
 a. Turned, ground, and polished hot-rolled steel with keyway.

2. Shaft Bearings:
 a. Heavy-duty, self-aligning, pillow-block type with an L-50 rated life of minimum 100,000 hours according to ABMA 9.

3. Housings: Formed- and reinforced-steel panels to form curved scroll housings with shaped cutoff and spun-metal inlet bell.
 a. Bracing: Steel angle or channel supports for mounting and supporting fan scroll, wheel, motor, and accessories.

4. Centrifugal Fan Wheels: Inlet flange, backplate, and shallow blades with inlet and tip curved forward in direction of airflow and mechanically fastened to flange and backplate; steel or aluminum hub swaged to backplate and fastened to shaft with setscrews.

5. Mounting: For internal vibration isolation. Factory mounted fans with manufacturer's standard neoprene vibration isolation mounting device.

6. Shaft Lubrication Lines: Extended to a location outside the casing.

7. Flexible Connector: Factory fabricated with a fabric strip minimum 3-1/2 inches wide, attached to two strips of minimum 2-3/4-inch wide by 0.028-inch thick, galvanized-steel sheet.

C. Drives, Direct: Factory-mounted, direct drive.

D. Condenser-Coil Fan: Propeller mounted on shaft of permanently lubricated PSC motors.

E. Relief-Air Fan: Forward curved, shaft mounted on permanently lubricated motor.

F. Motors:
 1. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 23 05 13 "Common Motor Requirements for HVAC Equipment."
 2. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in electrical Sections.

2.6 ROTARY HEAT EXCHANGER

A. Heat exchanger integral with unit or separate unit connected to the outside air and exhaust air inlets and outlets respectively. Refer to Section 237223.23 “Packaged, Outdoor, Heat Wheel Energy Recovery Units”

B. Casing:
1. Galvanized steel, stainless steel, or aluminum with manufacturer's standard factory-painted finish.
2. Integral purge section limiting carryover of exhaust air to between 0.05 percent at 1.6-inch wg and 0.20 percent at 4-inch wg differential pressure.
3. Casing seals on periphery of rotor and on duct divider and purge section.
4. Support vertical rotor on grease-lubricated ball bearings having extended grease fittings or permanently lubricated bearings. Support horizontal rotors on tapered roller bearing.

C. Rotor - Aluminum, Metallic, or Polymer: Aluminum, metallic, or polymer segmented wheel, strengthened with radial spokes impregnated with nonmigrating, water-selective, 3-angstrom molecular-sieve desiccant coating.

D. Drive: Fractional horsepower motor and gear reducer, with speed changed by variable-frequency controller. Permanently lubricated wheel bearings with an L-10 400,000 hours.

E. Controls:
 1. Starting relay, factory mounted and wired, and manual motor starter for field wiring.
 2. Variable-frequency controller, factory mounted and wired, with exhaust- and outdoor-air sensors, automatic changeover thermostat and set-point adjuster, to vary rotor speed and maintain exhaust temperature above freezing and air differential temperature above set point. Rotor speed shall increase to maximum when exhaust-air temperature is less than outdoor-air temperature.
 3. Control energy recovery to permit air economizer operation.
 a. Pivoting wheel to allow for air bypass.
 4. Speed Settings: Adjustable settings for maximum and minimum rotor speed limits.
 5. Defrost cycle.

2.7 COILS

A. General Requirements for Coils:
 1. Comply with AHRI 410.
 2. Fabricate coils section to allow for removal and replacement of coil for maintenance and to allow in-place access for service and maintenance of coil(s).
 3. Coils shall not act as structural component of unit.

B. Supply-Air Refrigerant Coil:
 1. Tubes: Riffled Copper.
 2. Fins:
 b. Fin Spacing: Maximum 16 fins per inch.
 3. Fin and Tube Joints: Mechanical bond.
 5. Frames: Galvanized steel.
7. Ratings: Designed, tested, and rated according to ASHRAE 33 and AHRI 410.
 a. Working Pressure: Minimum 300 psig.

C. Outdoor-Air Refrigerant Coil:
 1. Tubes: Microchannel condenser coils shall be constructed of parallel flow aluminum alloy tubes metallurgically brazed to enhanced aluminum alloy fins. Condenser cleaning hatches shall be provided for access to condenser coil without the removal of condenser fans.
 2. Coatings: Corrosion-resistant coating.
 3. Ratings: Designed, tested, and rated according to ASHRAE 33 and AHRI 410.
 a. Working Pressure: Minimum 300 psig.

D. Redundant Electric Heating Coil:
 1. Electric heating coil shall provide redundant heat if the heat pump system fails to meet heating capacity. Controls shall be structured to only activate electric heating coil when needed.
 2. Open Heating Elements: Resistance wire of 80 percent nickel and 20 percent chromium supported and insulated by floating ceramic bushings recessed into casing openings, fastened to supporting brackets, and mounted in galvanized-steel frame.
 3. Overtemperature Protection: Disk-type, automatically resetting, thermal-cutout, safety device; serviceable through terminal box without removing heater from coil section.

2.8 REFRIGERANT CIRCUIT COMPONENTS

A. Compressor: Hermetic, variable speed scroll, mounted on vibration isolators; with internal overcurrent and high-temperature protection, internal pressure relief, and crankcase heater.

B. Refrigeration Specialties:
 1. Refrigerant: R-410A.
 2. Expansion valve with replaceable thermostatic element.
 3. Refrigerant filter/dryer.
 5. Automatic-reset low-pressure safety switch.
 8. Brass service valves installed in compressor suction and liquid lines.
 9. Low-ambient kit high-pressure sensor.
 10. Four-way reversing valve with a replaceable magnetic coil, thermostatic expansion valves with bypass check valves, and a suction line accumulator.

2.9 AIR FILTRATION

A. Panel Filters:
1. Description: Pleated factory-fabricated, self-supported, disposable air filters with holding frames.
2. Filter Unit Class: UL 900.
3. Media: Interlaced glass, synthetic or cotton fibers coated with nonflammable adhesive and antimicrobial coating.
4. Filter-Media Frame: Beverage board with perforated metal retainer, or metal grid, on outlet side.

B. Adhesive, LEED for Schools Projects: As recommended by air-filter manufacturer and that complies with the testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

2.10 DAMPERS

A. Outdoor- and Return-Air Dampers: Low-leakage, double-skin, airfoil-blade, galvanized-steel dampers with compressible jamb seals and extruded-vinyl blade edge seals in parallel-blade arrangement with zinc-plated steel operating rods rotating in sintered bronze or nylon bearings mounted in a single galvanized-steel frame, and with operating rods connected with a common linkage. Leakage rate shall not exceed 4 cfm/sq. ft. at 1-inch wg and 8 cfm/sq. ft. at 4-inch wg.

B. Barometric relief dampers.

C. Electronic Damper Operators:
 1. Direct-coupled type designed for minimum 60,000 full-stroke cycles at rated torque.
 2. Electronic damper position indicator shall have visual scale indicating percent of travel and 2- to 10-V dc, feedback signal.
 3. Nonspring-Return Motors for Dampers Larger Than 25 Sq. Ft.: Size for running torque of 150 in. x lbf and breakaway torque of 300 in. x lbf.
 4. Spring-Return Motors for Dampers Larger Than 25 Sq. Ft.: Size for running and breakaway torque of 150 in. x lbf.
 5. Size dampers for running torque calculated as follows:
 7. Overload Protection: Electronic overload or digital rotation-sensing circuitry.
 8. Fail-Safe Operation: Mechanical, spring-return mechanism with external, manual gear release on nonspring-return actuators.
 10. Proportional Signal: 2 to 10 V dc or 4 to 20 mA, and 2- to 10-V dc position feedback signal.
 11. Temperature Rating: Minus 22 to plus 122 deg F.
 12. Run Time: 12 seconds open, 5 seconds closed.
2.11 ELECTRICAL POWER CONNECTIONS

A. RTU shall have a single connection of power to unit with unit-mounted disconnect switch accessible from outside unit and control-circuit transformer with built-in overcurrent protection.

2.12 CONTROLS

A. Control equipment are specified in Section 23 09 23 "Direct Digital Control (DDC) System for HVAC."

B. Basic Unit Controls:

1. Control-voltage transformer.
2. Wall-mounted thermostat or sensor with the following features:
 b. Fan on-auto switch.
 c. Fan-speed switch.
 d. Automatic changeover.
 e. Adjustable deadband.
 f. Exposed set point.
 g. Exposed indication.
 h. Degree F indication.
 i. Unoccupied-period-override push button.
 j. Data entry and access port to input temperature and humidity set points, occupied and unoccupied periods, and output room temperature and humidity, supply-air temperature, operating mode, and status.

C. DDC Controller:

1. Controller shall have volatile-memory backup.
2. Safety Control Operation:
 a. Smoke Detectors: Stop fan and close outdoor-air damper if smoke is detected. Provide additional contacts for alarm interface to fire-alarm control panel.
 b. Firestats: Stop fan and close outdoor-air damper if air greater than 130 deg F Insert temperature enters unit. Provide additional contacts for alarm interface to fire-alarm control panel.
 c. Fire-Alarm Control Panel Interface: Provide control interface to coordinate with operating sequence described in Section 284621.11 "Addressable Fire-Alarm Systems."
 d. Low-Discharge Temperature: Stop fan and close outdoor-air damper if supply-air temperature is less than 40 deg F.
 e. Defrost Control for Condenser Coil: Pressure differential switch to initiate defrost sequence.

3. Scheduled Operation: Occupied and unoccupied periods on 365-day clock with a minimum of four programmable periods per day. Schedule adjustments and setup shall be done on the central controller and pushed down to the equipment level controllers. If connection to central controller is lost, equipment will continue to run schedule.
4. Supply Fan Operation:
 a. See controls drawings.

5. Refrigerant Circuit Operation:
 a. See controls drawings.

6. Hot-Gas Reheat-Coil Operation:
 a. See controls drawings.

7. Economizer Outdoor-Air Damper Operation:
 a. See controls drawings.

D. Interface Requirements for HVAC Instrumentation and Control System:
 1. Interface relay for scheduled operation.
 2. Interface relay to provide indication of fault at the central workstation and diagnostic code storage.
 3. Provide BACnet compatible interface for central HVAC control workstation for the points shown on the controls drawings.

2.13 ROOF CURBS
A. Roof curbs with vibration isolators and wind restraints are specified in Section 23 05 48.13 "Vibration Controls for HVAC."
B. Wind Restraints: Metal brackets compatible with the curb and casing, painted to match RTU, used to anchor unit to the curb and designed for loads at Project site. Comply with requirements in Section 230548.13 "Vibration Controls for HVAC" for wind-load requirements.

2.14 ACCESSORIES
A. Duplex, 115-V, ground-fault-interrupter outlet with 15-A overcurrent protection. Include transformer if required. Outlet shall be energized even if the unit main disconnect is open.
B. Filter differential pressure switch with sensor tubing on either side of filter. Set for final filter pressure loss.
C. Safeties:
 1. Smoke detector, where indicated on drawings.
 2. Condensate overflow switch.
 3. High and low pressure control.
D. Coil guards of painted, galvanized-steel wire.
E. Outdoor-air intake weather hood.
2.15 MATERIALS

A. Steel:
 1. ASTM A36/A36M for carbon structural steel.
 2. ASTM A568/A568M for steel sheet.

B. Stainless Steel:
 1. Manufacturer's standard grade for casing.
 2. Manufacturer's standard type, ASTM A240/A240M for bare steel exposed to airstream or moisture.

C. Galvanized Steel: ASTM A653/A653M.

E. Corrosion-Resistant Coating: Coat with a corrosion-resistant coating capable of withstanding a 3000-hour salt-spray test according to ASTM B117.
 1. Standards:
 a. ASTM B117 for salt spray.
 b. ASTM D2794 for minimum impact resistance of 100 in-lb.
 c. ASTM B3359 for cross-hatch adhesion of 5B.
 3. Thickness: 1 mil.
 4. Gloss: Minimum gloss of 60 on a 60-degree meter.

2.16 SOURCE QUALITY CONTROL

A. AHRI Compliance:
 1. Comply with AHRI 210/240 for testing and rating energy efficiencies for RTUs.
 2. Comply with AHRI 340/360 for testing and rating energy efficiencies for RTUs.
 3. Comply with AHRI 270 for testing and rating sound performance for RTUs.
 4. Comply with AHRI 1060 for testing and rating performance for air-to-air exchanger.

B. AMCA Compliance:
 1. Comply with AMCA 11 and bear the AMCA-Certified Ratings Seal for air and sound performance according to AMCA 211 and AMCA 311.
 2. Damper leakage tested according to AMCA 500-D.
 3. Operating Limits: Classify according to AMCA 99.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of RTUs.

B. Examine roughing-in for RTUs to verify actual locations duct connections before equipment installation.

C. Examine roofs for suitable conditions where RTUs will be installed.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Roof Curb: Install on roof structure or concrete base, level and secure, according to NRCA's "NRCA Roofing Manual: Membrane Roof Systems." Install RTUs on curbs and coordinate roof penetrations and flashing with roof construction specified in Section 07 72 00 "Roof Accessories." Secure RTUs to upper curb rail, and secure curb base to roof framing or concrete base with anchor bolts. Coordinate sizes and locations of roof curbs with actual equipment provided.

B. Unit Support: Install unit level on structural curbs. Coordinate wall penetrations and flashing with wall construction. Secure RTUs to structural support with anchor bolts.

3.3 DUCT CONNECTIONS

A. Comply with duct installation requirements specified in other HVAC Sections. Drawings indicate general arrangement of ducts. The following are specific connection requirements:

1. Install ducts to termination at top of roof curb.
2. Remove roof decking only as required for passage of ducts. Do not cut out decking under entire roof curb.
3. Connect supply ducts to RTUs with flexible duct connectors specified in Section 23 33 00 "Air Duct Accessories."
4. Install return-air duct continuously through roof structure.

3.4 ELECTRICAL CONNECTIONS

A. Connect electrical wiring according to Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."

B. Ground equipment according to Section 26 05 26 "Grounding and Bonding for Electrical Systems."
C. Install electrical devices furnished by manufacturer, but not factory mounted, according to NFPA 70 and NECA 1.

D. Install nameplate for each electrical connection, indicating electrical equipment designation and circuit number feeding connection.

1. Nameplate shall be laminated acrylic or melamine plastic signs as specified in Section 26 05 53 "Identification for Electrical Systems."
2. Locate nameplate where easily visible.

3.5 CONTROL CONNECTIONS

A. Install control and electrical power wiring to field-mounted control devices.

B. Connect control wiring according to Section 26 05 23 "Control Voltage Electrical Power Cables."

3.6 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

B. Tests and Inspections:

1. After installing RTUs and after electrical circuitry has been energized, test units for compliance with requirements.
2. Inspect for and remove shipping bolts, blocks, and tie-down straps.
3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

C. RTU will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

3.7 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.

1. Complete installation and startup checks according to manufacturer's written instructions.
2. Inspect for visible damage to unit casing.
3. Inspect for visible damage to compressor, coils, and fans.
4. Inspect internal insulation.
5. Verify that labels are clearly visible.
6. Verify that clearances have been provided for servicing.
7. Verify that controls are connected and operable.
8. Verify that filters are installed.
9. Clean condenser coil and inspect for construction debris.
10. Remove packing from vibration isolators.
11. Inspect operation of barometric relief dampers.
12. Verify lubrication on fan and motor bearings.
13. Inspect fan-wheel rotation for movement in correct direction without vibration and binding.
14. Start unit according to manufacturer's written instructions.
 a. Start refrigeration system.
 b. Do not operate below recommended low-ambient temperature.
 c. Complete startup sheets and attach copy with Contractor's startup report.
15. Inspect and record performance of interlocks and protective devices; verify sequences.
16. Operate unit for an initial period as recommended or required by manufacturer.
17. Calibrate thermostats.
18. Adjust and inspect high-temperature limits.
19. Inspect outdoor-air dampers for proper stroke and interlock with return-air dampers.
20. Start refrigeration system and measure and record the following when ambient is a minimum of 15 deg F above return-air temperature:
 a. Coil leaving-air, dry- and wet-bulb temperatures.
 b. Coil entering-air, dry- and wet-bulb temperatures.
 c. Outdoor-air, dry-bulb temperature.
 d. Outdoor-air-coil, discharge-air, dry-bulb temperature.
21. Inspect controls for correct sequencing of heating, mixing dampers, refrigeration, and normal and emergency shutdown.
22. Measure and record the following minimum and maximum airflows. Plot fan volumes on fan curve.
 a. Supply-air volume.
 b. Return-air volume.
 c. Relief-air volume.
 d. Outdoor-air intake volume.
23. Simulate maximum cooling demand and inspect the following:
 a. Compressor refrigerant suction and hot-gas pressures.
 b. Short circuiting of air through condenser coil or from condenser fans to outdoor-air intake.
24. Verify operation of remote panel including pilot-light operation and failure modes. Inspect the following:
 b. Low-temperature safety operation.
 c. Filter high-pressure differential alarm.
 d. Economizer to minimum outdoor-air changeover.
 e. Relief-air fan operation.
 f. Smoke and firestat alarms.
25. After startup and performance testing and prior to Substantial Completion, replace existing filters with new filters.

3.8 ADJUSTING

A. Adjust damper linkages for proper damper operation.

B. Comply with requirements in Section 23 05 93 "Testing, Adjusting, and Balancing for HVAC" for air-handling system testing, adjusting, and balancing.

C. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.9 CLEANING

A. After completing system installation and testing, adjusting, and balancing RTUs and air-distribution systems, clean RTUs internally to remove foreign material and construction dirt and dust. Clean fan wheels, cabinets, dampers, coils, and filter housings, and install new, clean filters.

3.10 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

B. Tests and Inspections:

1. After installing RTUs and after electrical circuitry has been energized, test units for compliance with requirements.
2. Inspect for and remove shipping bolts, blocks, and tie-down straps.
3. Operate Main Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

C. RTU will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

3.11 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain RTUs.

END OF SECTION 23 74 16.11
SECTION 23 74 16.13

PACKAGED, LARGE-CAPACITY, ROOFTOP AIR-CONDITIONING UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section applies only to the packaged, large-capacity, rooftop air conditioning unit (RTU) serving the cafeteria, which includes the following components:

1. Casings.
2. Fans, drives, and motors.
3. Rotary heat exchanger.
5. Refrigerant circuit components.
6. Air filtration.
7. Gas furnaces.
8. Dampers.
9. Electrical power connections.
10. Controls.
11. Roof curbs.
12. Accessories.

1.3 DEFINITIONS

A. RTU: Rooftop unit. As used in this Section, this abbreviation means packaged, large-capacity, rooftop air conditioning units. This abbreviation is used regardless of whether the unit is mounted on the roof or on a concrete base on ground.

1.4 ACTION SUBMITTALS

A. Product Data: For each RTU.

1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.
2. Include rated capacities, dimensions, required clearances, characteristics, furnished specialties, and accessories.
3. Include unit dimensions and weight.
4. Include cabinet material, metal thickness, finishes, insulation, and accessories.
5. Fans:
 a. Include certified fan-performance curves with system operating conditions indicated.
 b. Include certified fan-sound power ratings.
 c. Include fan construction and accessories.
 d. Include motor ratings, electrical characteristics, and motor accessories.

6. Include certified coil-performance ratings with system operating conditions indicated.
7. Include filters with performance characteristics.
8. Include gas furnaces with performance characteristics.
9. Include factory selection calculations for each antimicrobial ultraviolet lamp installation.
10. Include dampers, including housings, linkages, and operators.

B. Shop Drawings: For each packaged, large-capacity, rooftop air-conditioning units.
 1. Include plans, elevations, sections, and mounting details.
 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Include diagrams for power, signal, and control wiring.

C. Delegated-Design Submittal: For RTU supports indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 1. Include design calculations for selecting vibration isolators and for designing vibration isolation bases.
 2. Detail mounting, securing, and flashing of roof curb to roof structure. Indicate coordinating requirements with roof membrane system.
 3. Wind-Restraint Details: Detail fabrication and attachment of wind restraints. Show anchorage details and indicate quantity, diameter, and depth of penetration of anchors.

1.5 INFORMATIONAL SUBMITTALS
 A. Sample Warranty: For manufacturer's warranty.
 B. System startup reports.

1.6 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For RTUs to include in emergency, operation, and maintenance manuals.

1.7 MAINTENANCE MATERIAL SUBMITTALS
 A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
1. Filters: One set(s) of filters for each unit.
2. Gaskets: One set(s) for each access door.

1.8 WARRANTY

A. Warranty: Manufacturer agrees to repair or replace components of outdoor, semi-custom, air-handling unit that fail in materials or workmanship within specified warranty period.

1. Warranty Period: One year(s) from date of Substantial Completion.
2. Warranty Period for Compressors: Manufacturer's standard, but not less than five years from date of Substantial Completion

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.

B. NFPA Compliance: Comply with NFPA 90A for design, fabrication, and installation of RTUs and components.

C. ASHRAE 62.1 Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and Startup."

D. ASHRAE 15 Compliance: For refrigeration system safety.

E. ASHRAE/IES 90.1 Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6 - "Heating, Ventilating, and Air-Conditioning."

G. Delegated Design: Engage a qualified professional engineer, as defined in Section 01 40 00 "Quality Requirements," to design mounting and restraints for RTUs, including comprehensive engineering analysis.

1. Design RTU supports to comply with wind performance requirements.

H. Wind-Restraint Performance:

1. Basic Wind Speed: 130 mph.
2. Building Classification Category: III.
3. Minimum 10 lb/sq. ft. multiplied by the maximum area of the mechanical component projected on a vertical plane that is normal to the wind direction, and 45 degrees either side of normal.
2.2 CAPACITIES AND CHARACTERISTICS (refer to drawing schedules)

2.3 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. AAON
2. Carrier
3. Daikin
4. Johnson Controls
5. Mammoth
6. Trane
7. York

2.4 UNIT CASINGS

A. General Fabrication Requirements for Casings: Formed and reinforced double-wall insulated panels, fabricated to allow removal for access to internal parts and components, with joints between sections sealed.

B. Double-Wall Construction:

1. Outside Casing Wall: Galvanized steel, minimum 18 gauge thick with corrosion-resistant coating, with pitched roof panels and knockouts with grommet seals for electrical and piping connections and lifting lugs.
 a. Able to withstand a minimum of 3000-hour salt spray test in accordance with ASTM B117.
2. Inside Casing Wall: G90-coated galvanized steel, thick.
3. Floor Plate: G90 galvanized steel, minimum 18 gauge thick.
4. Casing Insulation:
 c. Insulation Thickness: 2 inches.

C. Airstream Surfaces: Surfaces in contact with airstream shall comply with requirements in ASHRAE 62.1.

D. Static-Pressure Classifications:

1. For Unit Sections Upstream of Fans: Minus 2-inch wg.
2. For Unit Sections Downstream and Including Fans: 4-inch wg.

E. Panels and Doors:

1. Panels:
a. Fabrication: Formed and reinforced with same materials and insulation thickness as casing.
b. Fasteners: Two or more camlock type for panel lift-out operation. Arrangement shall allow panels to be opened against air-pressure differential.
c. Gasket: Neoprene, applied around entire perimeters of panel frames.
d. Size: Large enough to allow inspection and maintenance of air-handling unit's internal components.

2. Access Doors:

a. Hinges: A minimum of two ball-bearing hinges or stainless steel piano hinge and two wedge-lever-type latches, operable from inside and outside. Arrange doors to be opened against air-pressure differential.
b. Gasket: Neoprene, applied around entire perimeters of panel frames.
c. Size: Large enough to allow inspection and maintenance of air-handling unit's internal components.

3. Locations and Applications:

a. Fan Section: Doors.
b. Access Section: Doors.
c. Coil Section: Inspection and access panels.
d. Damper Section: Inspection and access panels.
e. Filter Section: Doors large enough to allow periodic removal and installation of filters.
f. Mixing Section: Doors.

F. Condensate Drain Pans:

1. Location: Each type of cooling coil.
2. Construction:
3. Drain Connection:
 a. Located at lowest point of pan and sized to prevent overflow. Terminate with threaded nipple on one end of pan.
4. Slope: Minimum 0.125-in./ft. slope, to comply with ASHRAE 62.1, in at least two planes to collect condensate from cooling coils (including coil piping connections, coil headers, and return bends) and from humidifiers and to direct water toward drain connection.
5. Length: Extend drain pan downstream from leaving face for distance to comply with ASHRAE 62.1.
7. Depth: A minimum of 2 inches deep.
8. Units with stacked coils shall have an intermediate drain pan to collect condensate from top coil.
2.5 FANS, DRIVES, AND MOTORS

A. Fan and Drive Assemblies: Statically and dynamically balanced and designed for continuous operation at maximum-rated fan speed and motor horsepower.

B. Supply-Air Fans: Centrifugal airfoil SWSI, rated according to AMCA 210; galvanized or painted steel; mounted on solid-steel shaft.
 1. Shafts: With field-adjustable alignment.
 a. Turned, ground, and polished hot-rolled steel with keyway.
 2. Shaft Bearings:
 a. Heavy-duty, self-aligning, pillow-block type with an L-50 rated life of minimum 100,000 hours according to ABMA 9.
 3. Housings: Formed- and reinforced-steel panels to form curved scroll housings with shaped cutoff and spun-metal inlet bell.
 a. Bracing: Steel angle or channel supports for mounting and supporting fan scroll, wheel, motor, and accessories.
 4. Mounting: For internal vibration isolation. Factory-mount fans with manufacturer's standard vibration isolation mounting devices having a minimum static deflection of 1 inch.
 5. Shaft Lubrication Lines: Extended to a location outside the casing.

C. Drives, Direct: Factory mounted, direct drive.

D. Condenser-Coil Fan: Variable-speed propeller, mounted on shaft of permanently lubricated ECM motors.

E. Motors:
 1. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 23 05 13 "Common Motor Requirements for HVAC Equipment."
 2. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in electrical Sections.

2.6 COILS

A. General Requirements for Coils:
1. Comply with AHRI 410.
2. Fabricate coils section to allow removal and replacement of coil for maintenance and to allow in-place access for service and maintenance of coil(s).
3. Coils shall not act as structural component of unit.

B. Supply-Air Refrigerant Coil:
 1. Tubes: Copper.
 2. Fins:
 b. Fin Spacing: Maximum 15 fins per inch.
 3. Fin and Tube Joints: Mechanical bond.
 5. Frames: Galvanized steel.
 7. Ratings: Designed, tested, and rated according to ASHRAE 33 and AHRI 410.
 a. Working Pressure: Minimum 300 psig.

C. Condenser Coil:
 1. Tubes: Microchannel condenser coils shall be constructed of parallel flow aluminum alloy tubes metallurgically brazed to enhanced aluminum alloy fins. Condenser cleaning hatches shall be provided for access to condenser coil without the removal of condenser fans.
 2. Coatings: Corrosion-resistant coating.
 3. Ratings: Designed, tested, and rated according to ASHRAE 33 and AHRI 410.
 a. Working Pressure: Minimum 300 psig.

D. Hot-Gas Reheat Refrigerant Coil:
 1. Tubes: Copper.
 2. Fins:
 b. Fin Spacing: Maximum 16 fins per inch.
 3. Fin and Tube Joints: Mechanical bond.
 5. Frames: Galvanized steel.
 7. Ratings: Designed, tested, and rated according to ASHRAE 33 and AHRI 410.
 a. Working Pressure: Minimum 300 psig.
 8. Suction-discharge bypass valve.
2.7 REFRIGERANT CIRCUIT COMPONENTS

A. Number of Refrigerant Circuits: Two.

B. Compressors: Hermetic, variable speed and fixed speed scroll, mounted on vibration isolators; with internal overcurrent and high-temperature protection, internal pressure relief, and crankcase heater.

C. Refrigeration Specialties:
 1. Refrigerant: R-410A.
 2. Expansion valve with replaceable thermostatic element.
 3. Refrigerant filter/dryer.
 5. Automatic-reset low-pressure safety switch.
 8. Brass service valves installed in compressor suction and liquid lines.
 9. Hot-gas reheat solenoid valve modulating with a replaceable magnetic coil.

2.8 AIR FILTRATION

A. Panel Filters:
 1. Description: Pleated factory-fabricated, self-supported, disposable air filters with holding frames.
 2. Filter Unit Class: UL 900.
 3. Media: Interlaced glass, synthetic or cotton fibers coated with nonflammable adhesive and antimicrobial coating.
 4. Filter-Media Frame: Beverage board with perforated metal retainer, or metal grid, on outlet side.

B. Adhesive, LEED for Schools Projects: As recommended by air-filter manufacturer and that complies with the testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

2.9 GAS FURNACES

A. Description: Factory assembled, piped, and wired; complying with ANSI Z21.47/CSA 2.3 and NFPA 54.

B. CSA Approval: Designed and certified by and bearing label of CSA.

C. Burners: Stainless steel.

 1. Rated Minimum Turndown Ratio: 15 to 1.
 3. Ignition: Electronically controlled electric spark or hot-surface igniter with flame sensor.

D. Heat-Exchanger and Drain Pan: Stainless steel.

E. Safety Controls:

2.10 DAMPERS

A. Outdoor- and Return-Air Dampers: Low-leakage, double-skin, airfoil-blade, galvanized-steel dampers with compressible jamb seals and extruded-foil blade edge seals; in parallel-blade arrangement with zinc-plated steel operating rods rotating in sintered bronze or nylon bearings mounted in a single galvanized-steel frame, and with operating rods connected with a common linkage. Leakage rate shall not exceed 4 cfm/sq. ft. at 1-inch wg and 8 cfm/sq. ft. at 4-inch wg.

B. Barometric relief dampers. Building exhaust air shall be accomplished through barometric relief dampers installed in the return air plenum. The dampers shall open relative to the building pressure. The opening pressure shall be adjustable.

C. Damper Operators: Comply with requirements in Section 23.09.23.12 "Control Dampers."

D. Electronic Damper Operators:
 1. Direct-coupled type designed for minimum 60,000 full-stroke cycles at rated torque.
 2. Electronic damper position indicator shall have visual scale indicating percent of travel and 2- to 10-V dc, feedback signal.
 3. Nonspring-Return Motors for Dampers Larger Than 25 Sq. Ft.: Size for running torque of 150 in. x lbf and breakaway torque of 300 in. x lbf.
 4. Spring-Return Motors for Dampers Larger Than 25 Sq. Ft.: Size for running and breakaway torque of 150 in. x lbf.
 5. Size dampers for running torque calculated as follows:
 7. Overload Protection: Electronic overload or digital rotation-sensing circuitry.
 8. Fail-Safe Operation: Mechanical, spring-return mechanism with external, manual gear release on nonspring-return actuators.
 10. Proportional Signal: 2 to 10 V dc or 4 to 20 mA, and 2- to 10-V dc position feedback signal.
 11. Temperature Rating: Minus 22 to plus 122 deg F.
 12. Run Time: 12 seconds open, 5 seconds closed.
2.11 ELECTRICAL POWER CONNECTIONS

A. RTU shall have a single connection of power to unit with unit-mounted disconnect switch accessible from outside unit and control-circuit transformer with built-in overcurrent protection.

2.12 CONTROLS

A. Basic Unit Controls:

1. Control-voltage transformer.
2. Wall-mounted thermostat or sensor with the following features:
 b. Fan on-auto switch.
 c. Fan-speed switch.
 d. Automatic changeover.
 e. Adjustable deadband.
 f. Exposed set point.
 g. Exposed indication.
 h. Degree F indication.
 i. Unoccupied-period-override push button.
 j. Data entry and access port to input temperature and humidity set points, occupied and unoccupied periods, and output room temperature and humidity, supply-air temperature, operating mode, and status.

B. DDC Controller:

1. Controller shall have volatile-memory backup.
2. Safety Control Operation:
 a. Smoke Detectors: Stop fan and close outdoor-air damper if smoke is detected. Provide additional contacts for alarm interface to fire alarm control panel.
 b. Firestats: Stop fan and close outdoor-air damper if air greater than 130 deg F enters unit. Provide additional contacts for alarm interface to fire alarm control panel.
 c. Fire Alarm Control Panel Interface: Provide control interface to coordinate with operating sequence described in Section 284621.11 "Addressable Fire-Alarm Systems."
 d. Low-Discharge Temperature: Stop fan and close outdoor-air damper if supply air temperature is less than 40 deg F.
 e. Defrost Control for Condenser Coil: Pressure differential switch to initiate defrost sequence.

3. Scheduled Operation: Occupied and unoccupied periods on 365-day clock with a minimum of four programmable periods per day. Schedule adjustments and setup shall be done on the central controller and pushed down to the equipment level controllers. If connection to central controller is lost, equipment will continue to run schedule.

4. Supply Fan Operation:
 a. See controls drawings.
5. Refrigerant Circuit Operation:
 a. See controls drawings.

6. Hot-Gas Reheat-Coil Operation:
 a. See controls drawings.

7. Economizer Outdoor-Air Damper Operation:
 a. See controls drawings.

C. Interface Requirements for HVAC Instrumentation and Control System:
 1. Interface relay for scheduled operation.
 2. Interface relay to provide indication of fault at the central workstation and diagnostic code storage.
 3. Provide BACnet compatible interface for central HVAC control workstation for the points shown on the controls drawings.

2.13 ROOF CURBS

A. Roof curbs with vibration isolators and wind restraints are specified in Section 23 05 48.13 "Vibration Controls for HVAC."

B. Wind Restraints: Metal brackets compatible with the curb and casing, painted to match RTU, used to anchor unit to the curb, and designed for loads at Project site. Comply with requirements in Section 23 05 48.13 "Vibration Controls for HVAC" for wind-load requirements.

2.14 ACCESSORIES

A. Electric heater with integral thermostat maintains minimum 50 deg F temperature in gas burner compartment.

B. Duplex, 115-V, ground-fault-interrupter outlet with 15-A overcurrent protection. Include transformer if required. Outlet shall be energized even if the unit main disconnect is open.

C. Filter differential pressure switch with sensor tubing on either side of filter. Set for final filter pressure loss.

D. Safeties:
 1. Smoke detector.
 2. Condensate overflow switch.
 3. High and low pressure control.

E. Coil guards of painted, galvanized-steel wire.

F. Outdoor air intake weather hood.
2.15 MATERIALS

A. Steel:
 1. ASTM A36/A36M for carbon structural steel.
 2. ASTM A568/A568M for steel sheet.

B. Stainless Steel:
 1. Manufacturer's standard grade for casing.
 2. Manufacturer's standard type, ASTM A240/A240M for bare steel exposed to airstream or moisture.

C. Galvanized Steel: ASTM A653/A653M.

E. Corrosion-Resistant Coating: Coat with a corrosion-resistant coating capable of withstanding a 3000-hour salt-spray test according to ASTM B117.
 1. Standards:
 a. ASTM B117 for salt spray.
 b. ASTM D2794 for minimum impact resistance of 100 in-lb.
 c. ASTM B3359 for cross-hatch adhesion of 5B.
 3. Thickness: 1 mil.
 4. Gloss: Minimum gloss of 60 on a 60-degree meter.

2.16 SOURCE QUALITY CONTROL

A. AHRI Compliance:
 1. Comply with AHRI 340/360 for testing and rating energy efficiencies for RTUs.
 2. Comply with AHRI 210/240 for testing and rating energy efficiencies for RTUs.
 3. Comply with AHRI 270 for testing and rating sound performance for RTUs.
 4. Comply with AHRI 1060 for testing and rating performance for air-to-air exchanger.

B. AMCA Compliance:
 1. Comply with AMCA 11 and bear the AMCA-Certified Ratings Seal for air and sound performance according to AMCA 211 and AMCA 311.
 2. Damper leakage tested in accordance with AMCA 500-D.
 3. Operating Limits: Classify according to AMCA 99.
PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of RTUs.
B. Examine roughing-in for RTUs to verify actual locations of duct connections before equipment installation.
C. Examine roofs for suitable conditions where RTUs will be installed.
D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION
A. Roof Curb: Install on roof structure or concrete base, level and secure, according to NRCA's "NRCA Roofing Manual: Membrane Roof Systems." Install RTUs on curbs and coordinate roof penetrations and flashing with roof construction specified in Section 07 72 00 "Roof Accessories." Secure RTUs to upper curb rail, and secure curb base to roof framing or concrete base with anchor bolts. Coordinate sizes and locations of roof curbs with actual equipment provided.

3.3 DUCT CONNECTIONS
A. Comply with duct installation requirements specified in other HVAC Sections. Drawings indicate the general arrangement of ducts. The following are specific connection requirements:
 1. Install ducts to termination at top of roof curb.
 2. Remove roof decking only as required for passage of ducts. Do not cut out decking under entire roof curb.
 3. Connect supply ducts to RTUs with flexible duct connectors specified in Section 23 33 00 "Air Duct Accessories."
 4. Install return-air duct continuously through roof structure.

3.4 ELECTRICAL CONNECTIONS
A. Connect electrical wiring according to Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."
B. Ground equipment according to Section 26 05 26 "Grounding and Bonding for Electrical Systems."
C. Install electrical devices furnished by manufacturer, but not factory mounted, according to NFPA 70 and NECA 1.
D. Install nameplate for each electrical connection, indicating electrical equipment designation and circuit number feeding connection.
 1. Nameplate shall be laminated acrylic or melamine plastic signs as specified in Section 26 05 53 "Identification for Electrical Systems."
 2. Locate nameplate where easily visible.

3.5 CONTROL CONNECTIONS

A. Install control and electrical power wiring to field-mounted control devices.

B. Connect control wiring according to Section 26 05 23 "Control-Voltage Electrical Power Cables."

3.6 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.

B. Complete installation and startup checks according to manufacturer's written instructions.
 1. Inspect for visible damage to unit casing.
 2. Inspect for visible damage to compressor, coils, and fans.
 3. Inspect internal insulation.
 4. Verify that labels are clearly visible.
 5. Verify that clearances have been provided for servicing.
 6. Verify that controls are connected and operable.
 7. Verify that filters are installed.
 8. Clean condenser coil and inspect for construction debris.
 9. Remove packing from vibration isolators.
 10. Inspect operation of barometric relief dampers.
 11. Verify lubrication on fan and motor bearings.
 12. Inspect fan-wheel rotation for movement in correct direction without vibration and binding.
 13. Start unit according to manufacturer's written instructions.
 a. Start refrigeration system.
 b. Do not operate below recommended low-ambient temperature.
 c. Complete startup sheets and attach copy with Contractor's startup report.
 15. Operate unit for an initial period as recommended or required by manufacturer.
 17. Adjust and inspect high-temperature limits.
 18. Inspect outdoor-air dampers for proper stroke and interlock with return-air dampers.
 19. Start refrigeration system and measure and record the following when ambient is a minimum of 15 deg F above return-air temperature:
 a. Coil leaving-air, dry- and wet-bulb temperatures.
b. Coil entering-air, dry- and wet-bulb temperatures.
c. Outdoor-air, dry-bulb temperature.
d. Outdoor-air-coil, discharge-air, dry-bulb temperature.

20. Inspect controls for correct sequencing of heating, mixing dampers, refrigeration, and normal and emergency shutdown.

21. Measure and record the following minimum and maximum airflows. Plot fan volumes on fan curve.
 a. Supply-air volume.
 b. Return-air volume.
 c. Relief-air volume.
 d. Outdoor-air intake volume.

22. Simulate maximum cooling demand and inspect the following:
 a. Compressor refrigerant suction and hot-gas pressures.
 b. Short circuiting of air through condenser coil or from condenser fans to outdoor-air intake.

23. Verify operation of remote panel including pilot-light operation and failure modes. Inspect the following:
 b. Low-temperature safety operation.
 c. Filter high-pressure differential alarm.
 d. Economizer to minimum outdoor-air changeover.
 e. Relief-air fan operation.
 f. Smoke and firestat alarms.

24. After startup and performance testing and prior to Substantial Completion, replace existing filters with new filters.

3.7 ADJUSTING

A. Adjust damper linkages for proper damper operation.

B. Comply with requirements in Section 23 05 93 "Testing, Adjusting, and Balancing for HVAC" for air-handling system testing, adjusting, and balancing.

C. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.8 CLEANING

A. After completing system installation and testing, adjusting, and balancing RTUs and air-distribution systems and after completing startup service, clean RTUs internally to remove
foreign material and construction dirt and dust. Clean fan wheels, cabinets, dampers, coils, and filter housings, and install new, clean filters.

3.9 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

1. After installing RTUs and after electrical circuitry has been energized, test units for compliance with requirements.
2. Inspect for and remove shipping bolts, blocks, and tie-down straps.
3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

B. RTU will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports.

3.10 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain RTUs.

END OF SECTION 23 74 16.13
SECTION 23 74 23.13

PACKAGED, DIRECT-FIRED, OUTDOOR, HEATING-ONLY MAKEUP-AIR UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes outdoor, direct, gas-fired heating-only, makeup air units, including the following components:

1. Casings.
2. Outdoor-air intake hood.
3. Roof curbs.
5. Air filtration.
6. Dampers.
7. Direct, gas-fired burners.
8. Unit control panel.
9. Controls.
10. Accessories.

1.3 ACTION SUBMITTALS

A. Product Data: For each outdoor, direct, gas-fired heating-only, makeup air unit.

1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.
2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
3. Include unit dimensions and weight.
4. Include cabinet material, metal thickness, finishes, insulation, and accessories.
5. Fans:
 a. Include certified fan-performance curves with system operating conditions indicated.
 b. Include certified fan-sound power ratings.
 c. Include fan construction and accessories.
 d. Include motor ratings, electrical characteristics, and motor accessories.
6. Include direct, gas-fired burners with performance characteristics.
7. Include dampers, including housings, linkages, and operators.
B. Shop Drawings: For each outdoor, direct, gas-fired, heating-only, makeup air unit.
 1. Include plans, elevations, sections, and mounting details.
 2. Detail fabrication and assembly of gas-fired heating and ventilating units, as well as procedures and diagrams.
 3. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Sample Warranty: For manufacturer's warranty.

B. Product Certificates: Submit certification that specified equipment will withstand wind forces identified in "Performance Requirements" Article and in Section 23 05 48, "Vibration Controls for HVAC."
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculations.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of wind force and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Startup service reports.

D. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For direct, gas-fired, heating-only, makeup air units to include in emergency, operation, and maintenance manuals.

1.6 WARRANTY

A. Warranty: Manufacturer agrees to repair or replace components of direct-fired heating and ventilating units that fail in materials or workmanship within specified warranty period.
 1. Warranty Period for Entire Unit: Manufacturer's standard, but not less than 2 year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.
B. NFPA Compliance: Comply with NFPA 90A for design, fabrication, and installation of units and components.

C. ASHRAE 62.1 Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and Startup."

D. ASHRAE/IES 90.1 Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6 - "Heating, Ventilating, and Air-Conditioning."

2.2 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Greenheck Fan Corporation.
4. REZNOR, a brand of Nortek Global HVAC.

2.3 UNIT CASINGS

A. General Fabrication Requirements for Casings:

1. Forming: Form walls, roofs, and floors with at least two breaks at each joint.
2. Casing Joints: Sheet metal screws or pop rivets, factory sealed with water-resistant sealant.
3. Makeup Air Unit Mounting Frame: Formed galvanized-steel channel or structural channel supports, designed for low deflection, welded with integral lifting lugs.

B. Configuration: Horizontal unit with bottom discharge for roof-mounting installation.

C. Single-Wall Construction:

1. Outside Casing Wall: Galvanized steel, minimum 20 gauge thick, with manufacturer's standard finish.
2. Floor Plate: Galvanized steel, minimum 18 gauge thick.
3. Casing Insulation:
 a. Materials: Glass-fiber blanket or board insulation, Type I or Type II ASTM C1071.
 b. Insulation Thickness: 1 inch.
 c. Thermal Break: Provide continuity of insulation with no through-casing metal in casing walls, floors, or roof of unit.

4. Airstream Surfaces: Surfaces in contact with airstream shall comply with requirements in ASHRAE 62.1.

D. Panels and Doors:
1. Panels:
 a. Fabrication: Formed and reinforced, with same materials and insulation thickness as casing.
 b. Fasteners: Two or more camlock type for panel lift-out operation. Arrangement shall allow panels to be opened against airflow.
 c. Gasket: Neoprene, applied around entire perimeters of panel frames.
 d. Size: Large enough to allow unobstructed access for inspection and maintenance of unit's internal components.

2. Doors:
 a. Fabrication: Formed and reinforced with same materials and insulation thickness as casing.
 b. Hinges: A minimum of two ball-bearing hinges or stainless steel piano hinge and two wedge-lever-type latches, operable from inside and outside. Arrange doors to be opened against airflow. Provide safety latch retainers on doors so that doors do not open uncontrollably.
 c. Gasket: Neoprene, applied around entire perimeters of panel frames.
 d. Size: Large enough to allow unobstructed access for inspection and maintenance of unit's internal components.

3. Locations and Applications:
 a. Fan Section: Doors.
 b. Access Section: Doors.
 c. Gas-Fired Burner Section: Inspection and access panels.
 d. Filter Section: Doors, large enough to allow periodic removal and installation of filters.
 e. Mixing Section: Doors.

2.4 OUTDOOR-AIR INTAKE HOOD
 A. Type: Manufacturer’s standard hood or louver.
 B. Materials: Match cabinet.
 C. Bird Screen: Comply with requirements in ASHRAE 62.1.
 D. Filter: Aluminum, 2 inches cleanable.
 E. Configuration: Designed to inhibit wind-driven rain and snow from entering unit.

2.5 ROOF CURBS
 A. Roof curbs with vibration isolators and wind restraints are specified in Section 23 05 48 "Vibration and Controls for HVAC."
B. Materials: Galvanized steel with corrosion-protection coating, watertight gaskets, and factory-installed wood nailer; complying with NRCA standards.

1. Curb Insulation and Adhesive: Comply with NFPA 90A or NFPA 90B.
 a. Materials: ASTM C1071, Type I or Type II.
 b. Thickness: 1 inch.

2. Application: Factory applied with adhesive and mechanical fasteners to the internal surface of curb.
 a. Liner Adhesive: Comply with ASTM C916, Type I.
 b. Mechanical Fasteners: Galvanized steel, suitable for adhesive, attachment, mechanical attachment, or welding attachment to duct without damaging liner when applied as recommended by manufacturer and without causing leakage in cabinet.
 c. Liner materials applied in this location shall have a t-sream surface coated with a temperature-resistant coating or faced with a plain or coated fibrous mat or fabric depending on service air velocity.
 d. Liner Adhesive: Comply with ASTM C916, Type I.

C. Curb Height: 20-24 inches.

D. Wind Restraints: Metal brackets compatible with the curb and casing, painted to match unit, used to anchor unit to the curb, and designed for loads at Project site. Comply with requirements in Section 23 05 48 "Vibration Controls for HVAC" for wind-load requirements.

2.6 FANS, DRIVES, AND MOTORS

A. Fan and Drive Assemblies: Statically and dynamically balanced and designed for continuous operation at maximum rated fan speed and motor horsepower.

B. Fans: Centrifugal; rated according to AMCA 210; galvanized steel; mounted on solid-steel shaft.

1. Shafts: With field-adjustable alignment.
2. Shaft, Bearings: Heavy-duty, self-aligning, permanently lubricated ball bearings with an L50 rated life of 200,000 hours according to ABMA 9.
3. Housings: Formed- and reinforced-steel panels to form curved scroll housings with shaped cutoff and spun-metal inlet bell.
4. Flexible Connector: Factory fabricated with a fabric strip minimum 3-1/2 inches (89 mm) wide, attached to two strips of minimum 2-3/4-inch- (70-mm-) wide by 0.028-inch- (0.7-mm-) thick, galvanized-steel sheet.

C. Drives: Direct Drive.

D. Motors:
1. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 23 05 13 "Common Motor Requirements for HVAC Equipment."

2. Motor Sizes: Maximum sizes as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

3. Enclosure: Open, dripproof.

4. Enclosure Materials: Cast iron.

5. Efficiency: Premium efficient as defined in NEMA MG 1.

2.7 DAMPERS

A. Dampers: Comply with requirements in Section 23 09 23.12 "Control Dampers."

B. Outdoor-Air Dampers: Low-leakage, double-skin, airfoil-blade, galvanized-steel dampers with compressible jamb seals and extruded-vinyl blade edge seals with steel operating rods rotating in sintered bronze or nylon bearings mounted in a single galvanized-steel frame, and with operating rods connected with a common linkage. Leakage rate shall not exceed 4 cfm/sq. ft. (20 L/s per sq. m) at 1-inch wg (250 Pa) and 8 cfm/sq. ft. (40 L/s per sq. m) at 4-inch wg (1.0 MPa) rated in accordance with AMCA 500D.

2.8 DIRECT-FIRED GAS BURNER

A. Description: Factory assembled, piped, and wired; and complying with ANSI Z21.47 and with NFPA 54.

B. Burners: Aluminized steel with stainless-steel inserts.

1. Rated Minimum Turndown Ratio: 30 to 1.
3. Ignition: Electronically controlled electric spark with flame sensor.
5. Gas Train: Regulated, redundant, 24-V ac gas valve assembly containing pilot solenoid valve, pilot filter, pressure regulator, pilot shutoff, and manual shutoff all in one body.

C. Safety Controls:
2. High Limit: Thermal switch or fuse to stop burner.
3. Purge-period timer shall automatically delay burner ignition and bypass low-limit control.
5. Automatic-Reset, High-Limit Control Device: Stops burner and closes main gas valve if high-limit temperature is exceeded.
6. Safety Lockout Switch: Locks out ignition sequence if burner fails to light after three tries. Controls are reset manually by turning the unit off and on.
7. Control Transformer: 24 V ac.

2.9 UNIT CONTROL PANEL
A. Factory-wired, fuse-protected control transformer, connection for power supply and field-wired unit to remote control panel.
B. Control Panel: [Surface-mounted] [Exposed, with trim ring,] remote panel, with engraved plastic cover and the following light-and switches:
 4. Heating operation indicating light.
 5. Thermostat.
 6. Damper position potentiometer.
 7. Dirty-filter indicating light operated by unit-mounted differential pressure switch.
 8. Safety-lockout indicating light.
 9. Enclosure: NEMA 250, [Type 1] [Type 3R] [Type 4] [Explosion proof].

2.10 CONTROLS
A. Comply with requirements in Section 23 09 23 "Direct Digital Control (DDC) System for HVAC" and Section 23 09 93.11 "Sequence of Operations for HVAC DDC" for control equipment and sequence of operation.
B. Control Devices:
C. Outdoor-Air Damper Control, 100 Percent Outdoor-Air Units: Outdoor-air damper shall open when supply fan starts, and close when fan stops.
D. Temperature Control:
1. Operates gas valve to maintain discharge-air temperature with factory-mounted sensor in blower outlet.

2. Burner Control, Modulating: 20 to 100 percent modulation of the firing rate. 10 to 100 percent with dual burner units.

E. Interface with DDC System for HVAC: Factory-installed hardware and software to enable the DDC system for HVAC to monitor, control, and display status and alarms of heating and ventilating unit.

1. ASHRAE 135.1 (BACnet) communication interface with the DDC system for HVAC shall enable the DDC system for HVAC operator to remotely control and monitor the heating and ventilating unit from an operator workstation. Control features and monitoring points displayed locally at heating and ventilating unit control panel shall be available through the DDC system for HVAC. BMS shall set run schedule for unit based on kitchen occupancy.

2.11 ACCESSORIES

A. Duplex, 115-V, ground-fault-interrupter outlet with 15-A overcurrent protection. Include transformer if required.

B. Filter differential pressure switch with sensor tubing on either side of filter. Set for final filter pressure loss.

C. Coil guards of painted, galvanized-steel wire.

D. Hail guards of galvanized steel, painted to match casing.

2.12 MATERIALS

A. Steel:

1. ASTM A36/A36M for carbon structural steel.

2. ASTM A568/A568M for steel sheet.

B. Stainless Steel:

1. Manufacturer's standard grade for casing.

2. Manufacturer's standard type, ASTM A240/A240M for bare steel exposed to airstream or moisture.

C. Galvanized Steel: ASTM A653/A653M.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for piping, ducts, and electrical systems to verify actual locations of piping and electrical connections before equipment installation.

C. Verify cleanliness of airflow path to include inner-casing surfaces, filters, coils, turning vanes, fan wheels, and other components.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Unit Support: Install unit level on structural curbs. Coordinate roof penetrations and flashing with roof construction. Secure units to structural support with anchor bolts. Coordinate sizes and locations of curbs with actual equipment provided.

B. Install gas-fired units according to NFPA 54, "National Fuel Gas Code."

C. Install controls and equipment shipped by manufacturer for field installation with direct-fired heating and ventilating units.

3.3 PIPING CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

1. Gas Piping: Comply with requirements in Section 231123 "Facility Natural-Gas Piping." Connect gas piping with shutoff valve and union, and with sufficient clearance for burner removal and service. Make final connections of gas piping to unit with corrugated, stainless-steel tubing flexible connectors complying with ANSI LC 1/CSA 6.26 equipment connections.

B. Drain: Comply with requirements in Section 22 13 16 "Sanitary Waste and Vent Piping" for traps and accessories on piping connections to condensate drain pans under condensing heat exchangers.

C. Where installing piping adjacent to heating and ventilating units, allow space for service and maintenance.

3.4 DUCT CONNECTIONS

A. Duct Connections: Connect supply ducts to direct-fired heating and ventilating units with flexible duct connectors. Comply with requirements in Section 23 33 00 "Air Duct Accessories" for flexible duct connectors.
3.5 ELECTRICAL CONNECTIONS

A. Connect wiring according to Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."

B. Ground equipment according to Section 26 05 26 "Grounding and Bonding for Electrical Systems."

C. Install electrical devices furnished by manufacturer, but not factory mounted, according to NFPA 70 and NECA 1.

D. Install nameplate for each electrical connection, indicating electrical equipment designation and circuit number feeding connection.
 1. Nameplate shall be laminated acrylic or melamine plastic signs, as specified in Section 26 05 53 "Identification for Electrical Systems."
 2. Nameplate shall be laminated acrylic or melamine plastic signs with a black background and engraved white letters at least 1/2 inch high.

3.6 CONTROL CONNECTIONS

A. Install control and electrical power wiring to field-mounted control devices.

B. Connect wiring according to Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."

3.7 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.

B. Complete installation and startup checks according to manufacturer's written instructions and perform the following:
 1. Inspect for visible damage to burner combustion chamber.
 2. Inspect casing insulation for integrity, moisture content, and adhesion.
 3. Verify that clearances have been provided for servicing.
 4. Verify that controls are connected and operable.
 5. Verify that filters are installed.
 6. Purge gas line.
 7. Inspect and adjust vibration isolators.
 8. Verify bearing lubrication.
 9. Inspect fan-wheel rotation for movement in correct direction without vibration and binding.
 10. Adjust fan belts to proper alignment and tension.

C. Start unit according to manufacturer's written instructions.
 1. Complete startup sheets and attach copy with Contractor's startup report.
 2. Inspect and record performance of interlocks and protective devices; verify sequences.
3. Operate unit for run-in period recommended by manufacturer.
4. Perform the following operations for both minimum and maximum firing, and adjust burner for peak efficiency:
 a. Measure gas pressure at manifold.
 b. Measure combustion-air temperature at inlet to combustion chamber.
 c. Measure supply-air temperature and volume when burner is at maximum firing rate and when burner is off. Calculate useful heat to supply air.
5. Calibrate thermostats.
6. Adjust and inspect high-temperature limits.
7. Inspect dampers, if any, for proper stroke and interlock with return-air dampers.
8. Inspect controls for correct sequencing of heating, mixing dampers, refrigeration, and normal and emergency shutdown.
9. Measure and record airflow. Plot fan volumes on fan curve.
10. Verify operation of remote panel, including pilot-operation and failure modes. Inspect the following:
 a. High-limit heat.
 b. Alarms.
11. After startup and performance testing, change filters, verify bearing lubrication, and adjust belt tension.
13. Verify outdoor-air damper operation.

3.8 ADJUSTING
 A. Adjust initial temperature set points.
 B. Set field-adjustable switches and circuit-breaker trip ranges as indicated.

3.9 CLEANING
 A. After completing system installation and testing, adjusting, and balancing makeup air unit and air-distribution systems and after completing startup service, clean air-handling units internally to remove foreign material and construction dirt and dust. Clean fan wheels, cabinets, dampers, coils, and filter housings, and install new, clean filters.

3.10 FIELD QUALITY CONTROL
 A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.
 B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
 C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
D. Perform tests and inspections with the assistance of a factory-authorized service representative.

E. Units will be considered defective if they do not pass tests and inspections.

F. Prepare test and inspection reports.

3.11 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain heating and ventilating units.

END OF SECTION 23 74 23.13
SECTION 23 74 33
DEDICATED OUTDOOR-AIR UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes factory-packaged units capable of supplying up to 100 percent outdoor air and providing cooling and heating.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product. Include rated capacities, operating characteristics, and furnished specialties and accessories.
B. Shop Drawings:
 1. Include plans, elevations, sections, and attachment details.
 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Prepare the following by or under the supervision of a qualified professional engineer:
 a. Mounting Details: For securing and flashing roof curb to roof structure. Indicate coordinating requirements with roof membrane system.
 b. Include diagrams for power, signal, and control wiring.
C. Delegated-Design Submittal: For design of vibration isolation and wind restraints, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 1. Unit fabrication and assembly details.
 2. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
 3. Design Calculations:
 a. Calculate requirements for selecting vibration isolators and wind restraints and for designing vibration isolation bases.
 b. Indicate compliance with "Performance Requirements" article.
1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Roof-curb mounting details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Size and location of unit-mounted rails and anchor points and methods for anchoring units to roof curb.
2. Required roof penetrations for ducts, pipes, and electrical raceways, including size and location of each penetration.

B. Startup service reports.

C. Sample Warranty: For special warranty.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For units to include in emergency, operation, and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Filters: One set for each unit.

1.7 WARRANTY

A. Special Warranty: Manufacturer agrees to replace components of units that fail in materials or workmanship within specified warranty period.
 1. Warranty Period for Compressors: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. AAON.
2. Desert Aire.
3. Johnson Controls.
2.2 PERFORMANCE REQUIREMENTS

A. General Fabrication Requirements: Comply with requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment," and Section 7 - "Construction and System Start-up."

B. Delegated Design: Engage a qualified professional engineer, as defined in Section 01 40 00 "Quality Requirements," to design vibration isolation and wind restraints.

C. Wind-Restraint Performance:
 1. Basic Wind Speed: 130 mph.
 2. Building Classification Category: III.
 3. Minimum 10 lb/sq. ft multiplied by the maximum area of unit projected on a vertical plane that is normal to the wind direction and 45 degrees either side of normal.

D. Cabinet Thermal Performance:
 1. Maximum Overall U-Value: Comply with requirements in ASHRAE/IESNA 90.1.
 2. Include effects of metal-to-metal contact and thermal bridges in the calculations.

E. Cabinet Surface Condensation:
 1. Cabinet shall have additional insulation and vapor seals if required to prevent condensation on the interior and exterior of the cabinet.
 2. Portions of cabinet located downstream from the cooling coil shall have a thermal break at each thermal bridge between the exterior and interior casing to prevent condensation from occurring on the interior and exterior surfaces. The thermal break shall not compromise the structural integrity of the cabinet.

F. Maximum Cabinet Leakage: 0.5 percent of the total supply-air flow at a pressure rating equal to the fan shut-off pressure.

G. Electrical components, devices, and accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

H. Capacities and Characteristics: (Refer to drawing schedules)

2.3 CABINET

A. Construction: double wall.

B. Exterior Casing Material: Galvanized steel with paint finish.

C. Interior Casing Material: Galvanized steel.

E. Base Rails: Galvanized-steel rails for mounting on roof curb or pad as indicated.
F. Access for Inspection, Cleaning, and Maintenance: Comply with requirements in ASHRAE 62.1.
 1. Service Doors: Hinged access doors with gaskets. Material and construction of doors shall match material and construction of cabinet in which doors are installed.

G. Roof: Standing seam or membrane; sloped to drain water.

H. Floor: Reinforced, metal surface; reinforced to limit deflection when walked on by service personnel. Insulation shall be below metal walking surface.

I. Cabinet Insulation:
 1. Type: Closed cell polyisocyanurate foam (R13).
 2. Thickness: 2 inches.
 3. Mechanical Fasteners: Suitable for adhesive, mechanical, or welding attachment to casing without damaging liner and without causing air leakage when applied as recommended by manufacturer.

J. Condensate Drain Pans:
 1. Shape: Rectangular, with 1 percent slope in at least two planes to direct water toward drain connection.
 2. Size: Large enough to collect condensate from cooling coils including coil piping connections, coil headers, and return bends.
 a. Length: Extend drain pan downstream from leaving face to comply with ASHRAE 62.1.
 b. Depth: A minimum of 2 inches deep.
 5. Drain Connection:
 a. Located on one end of pan, at lowest point of pan.
 b. Terminated with threaded nipple.
 6. Units with stacked coils shall have an intermediate drain pan to collect condensate from top coil.

K. Surfaces in Contact with Airstream: Comply with requirements in ASHRAE 62.1 for resistance to mold and erosion.

L. Roof Curb: Refer to Section 230548.13 “Vibration Controls for HVAC”.
2.4 SUPPLY AND EXHAUST FANS

A. Plenum Fan Type: Single width, non-overloading, with backward-inclined or airfoil blades.

1. Fan Wheel Material: Aluminum; attached directly to motor shaft.
5. Fan Balance: Precision balance fan below 0.08 inch/s at design speed with filter in.

B. Motors:

1. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 23.05.13 "Common Motor Requirements for HVAC Equipment."

C. Mounting: Fan wheel, motor, and drives shall be mounted to fan casing with elastomeric isolators.

2.5 ROTARY HEAT EXCHANGERS

A. Heat exchanger integral with unit or separate unit connected to the outside air and exhaust air inlets and outlets respectively. Refer to Section 23.7223.23 “Packaged, Outdoor, Heat Wheel Energy Recovery Units”

B. Casing:

1. Galvanized steel, stainless steel, or aluminum with manufacturer's standard factory finish.
2. Integral purge section limiting carryover of exhaust air to between 0.05 percent at 1.6-inch wg and 0.20 percent at 4-inch wg differential pressure.
3. Casing seals on periphery of rotor, on duct divider, and on purge section.

C. Rotor - Aluminum, Metallic, or Polymer: Aluminum, metallic, or polymer segmented wheel, strengthened with radial spokes impregnated with nonmigrating, water-selective, 4-angstrom molecular-sieve desiccant coating.

D. Drive: Fractional horsepower motor and gear reducer, with speed changed by variable-frequency controller. Permanently lubricated wheel bearings with an L-10 400,000 hours.

E. Controls:

1. Starting relay, factory mounted and wired, and manual motor starter for field wiring.
2. Retain one of first three subparagraphs below.
3. Variable-frequency controller, factory mounted and wired, with exhaust- and outdoor-air sensors, automatic changeover thermostat and set-point adjuster, to vary rotor speed and maintain exhaust temperature above freezing and air differential temperature above set point. Provide maximum rotor speed when exhaust-air temperature is less than outdoor-air temperature.
4. Control energy recovery to permit air economizer operation.
 a. Bypass dampers to assist energy recovery control.

7. Integral purge section limiting carryover of exhaust air to between 0.05 percent at 1.6-inch wg and 0.20 percent at 4-inch wg differential pressure.

2.6 COOLING COILS
A. Capacity Ratings: Comply with ASHRAE 33 and ARI 410 and coil bearing the ARI label.
B. Coil Casing Material: Manufacturer's standard material.
C. Tube Material: Copper.
D. Tube Header Material: Copper.
E. Fin Material: Aluminum.
F. Fin and Tube Joints: Mechanical bond.
G. Leak Test: Coils shall be leak tested with air underwater.
H. Refrigerant Coil Capacity Reduction: Circuit coils for interleaved control.
I. Refrigerant Coil Suction and Distributor Header Materials: Seamless copper tube with brazed joints.
J. Coating: Corrosion-resistant coating after assembly.

2.7 REFRIGERATION SYSTEM
B. Refrigerant Charge: Factory charged with refrigerant and filled with oil.
C. Compressors: Scroll compressors with integral vibration isolators, internal overcurrent and overtemperature protection, internal pressure relief, and crankcase heater.
D. Refrigerant: R-410A.
 1. Classified as Safety Group A1 according to ASHRAE 34.
 2. Provide unit with operating charge of refrigerant.
E. Refrigeration System Specialties:
 1. Expansion valve with replaceable thermostatic element.
 2. Refrigerant dryer.
3. High-pressure switch.
4. Brass service valves installed in discharge and liquid lines.

F. Capacity Control:

1. A digital compressor shall be available for lead or both refrigeration circuits. A Digital Control Module (DCM) shall be included. The control system shall be capable of unloading the compressor in an unlimited number of steps from 100% capacity down to 10% capacity.

G. Refrigerant condenser and reheat condenser coils:

1. Capacity Ratings: Complying with ASHRAE 33 and ARI 410 and coil bearing the ARI label.
2. Tube Material: Copper.
3. Fin Material: Aluminum.
5. Leak Test: Coils shall be leak tested with air underwater.

H. Condenser Fan Assembly:

1. Fans: Direct-drive propeller type with statically and dynamically balanced fan blades.
 a. Fans shall be external rotor direct driven axial fans with a minimum 5-1/2” spun venturi for high efficiency and low noise, with cast profiled blades.
 b. The fan motor assembly shall be end mounted to a structurally rigid welded finger guard.
 1) Fans shall discharge air vertically upward and the finger guard shall be powder coated.
 2) Fans shall be statically and dynamically balanced as an assembly to a quality level of G=6.3 in accordance with DIN ISO 1940-1.
2. Fan Motors:
 a. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 23 05 13 "Common Motor Requirements for HVAC Equipment."

I. Safety Controls:

1. Compressor motor and condenser coil fan motor low ambient lockout.
2. Overcurrent protection for compressor motor.

2.8 CORROSION-RESISTANT COATINGS

A. Corrosion-Resistant Coating: Coat coils and interior and exterior cabinet with a corrosion-resistant coating capable of withstanding a 10,000-hour salt-spray test according to ASTM B117.

1. Standards:
2.9 OUTDOOR-AIR INTAKE HOOD

A. Type: Manufacturer's standard hood or louver.
B. Materials: Match cabinet.
C. Bird Screen: Comply with requirements in ASHRAE 62.1.
D. Configuration: Designed to inhibit wind-driven rain and snow from entering unit.

2.10 FILTERS

A. Disposable Panel Filters:
 1. Comply with NFPA 90A.
 2. Factory-fabricated, viscous-coated, flat-panel type.
 3. Thickness: 2 inches.
 4. Minimum MERV: 8, according to ASHRAE 52.2.

B. Mounting Frames:
 1. Panel filters arranged for flat or angular orientation, with access doors on both sides of unit. Filters shall be removable from one side or from access plenum.
 2. Extended surface filters arranged for flat orientation, removable from access plenum.
 3. Galvanized or stainless steel with gaskets and fasteners, suitable for bolting together into built-up filter banks.

2.11 ELECTRICAL POWER CONNECTIONS

A. General Electrical Power Connection Requirements: Factory-installed and wired switches, motor controllers, transformers, and other necessary electrical devices shall provide a single-point field power connection to unit.

B. Enclosure: NEMA 250, Type 3R, mounted in unit with hinged access door in unit cabinet having a lock and key or padlock and key.

C. Wiring: Numbered and color-coded to match wiring diagram.
D. Wiring Location: Install factory wiring outside an enclosure in a raceway.

E. Power Interface: Field power interface shall be to NEMA KS 1, heavy-duty, nonfused disconnect switch.

F. Factory-Mounted, Overcurrent-Protection Service: For each motor.

G. Transformer: Factory mounted with primary and secondary fuses and sized with enough capacity to operate electrical load plus spare capacity.

H. Controls: Factory wire unit-mounted controls where indicated.

I. Receptacle: Factory wire unit-mounted, ground fault interrupt (GFI) duplex receptacle.

J. Control Relays: Auxiliary and adjustable time-delay relays.

2.12 CONTROLS

A. Control equipment and sequence of operation are specified in Section 23 09 23 "Direct Digital Control (DDC) System for HVAC."

B. Control Wiring: Factory wire connection for controls' power supply.

C. Control Devices: Sensors, transmitters, relays, switches, detectors, operators, actuators, and valves shall be manufacturer's standard items to accomplish indicated control functions.

D. BACnet communication with central Building Automation System:

1. Cooling/Off/Heating Controls: Control operational mode.
2. Damper Position: Indicate position of outdoor-air dampers in terms of percentage of outdoor air.
3. Status Lights:
 a. Filter dirty.
 b. Fan operating.
 c. Cooling operating.
 d. Heating operating.
 e. Smoke alarm.
 f. General alarm.
4. Digital Numeric Display:
 a. Outdoor airflow.
 b. Supply airflow.
 c. Outdoor dry-bulb temperature.
 d. Outdoor dew point temperature.
 e. Supply temperature.

E. Control Dampers:

NOT FOR BIDDING PURPOSES
1. Damper Location: Factory installed inside unit for ease of blade axle and bushing service. Arrange dampers located in a mixing box to achieve convergent airflow to minimize stratification.

2. Damper Leakage: Comply with requirements in AMCA 500-D. Leakage shall not exceed 6.5 cfm per sq. ft. at a static-pressure differential of 4.0 inches water column when a torque of 5 in./lb per sq. ft. is applied to the damper jackshaft.

3. Damper Rating: Rated for close-off pressure equal to the fan shutoff pressure.

4. Damper Label: Bear the AMCA seal for both air leakage and performance.

5. Blade Configuration: Unless otherwise indicated, use parallel blade configuration for two-position control and equipment isolation service and use modulating control when mixing two airstreams. For other applications, use an opposed-blade configuration.

7. Blade Type: Single-thickness metal reinforced with multiple V-grooves or hollow-shaped airfoil.

F. Damper Operators:

1. Factory-installed electric operator for each damper assembly with one operator for each damper assembly mounted to the damper frame.

2. Operator capable of shutoff against fan pressure and able to operate the damper with sufficient reserve power to achieve smooth modulating action and proper speed of response at the velocity and pressure conditions to which the damper is subjected.

3. Maximum Operating Time: Open or close damper 90 degrees in 60 seconds.

4. Adjustable Stops: For both maximum and minimum positions.

5. Position Indicator and Graduated Scale: Factory installed on each actuator with words "OPEN" and "CLOSED," or similar identification, at travel limits.

6. Spring-return operator to fail-safe; either closed or open as required by application.

7. Operator Type: Direct coupled, designed for minimum 60,000 full-stroke cycles at rated torque.

G. Refrigeration System Controls:

1. Outdoor-air sensor de-energizes dehumidifier operation when outdoor-air temperature is less than 60 deg F.

2. Relative-humidity sensor energizes dehumidifier operation when relative humidity is more than 50 percent.

H. Integral Smoke Alarm: Smoke detector installed in returnair.

I. DDC Temperature Control: Standalone control module for link between unit controls and DDC temperature-control system. Control module shall be compatible with control system specified...
in Section 23 09 23 "Direct Digital Control (DDC) System for HVAC." Links shall include the following:

1. Start/stop interface relay, and relay to notify DDC temperature-control system alarm condition.
2. Hardware interface or additional sensors for the following:
 a. Discharge-air temperature.
 b. Refrigeration system operating.
 c. Constant and variable motor loads.
 d. Variable-frequency-controller operation.
 e. Cooling load.
 f. Economizer cycles.

J. Interface with DDC System for HVAC: Factory-installed hardware and software to enable the DDC system for HVAC to monitor, control, and display unit status and alarms.

1. Hardwired Points:
 b. Control: On-off operation, supply temperature set-point adjustment.

2. ASHRAE 135 (BACnet) communication interface with the DDC system for HVAC shall enable the DDC system for HVAC operator to remotely control and monitor the unit from an operator workstation. Control features and monitoring points displayed locally at unit control panel shall be available through the DDC system for HVAC.

2.13 ACCESSORIES

A. Duplex Receptacle: Factory mounted in unit supply-fan section, with 20 amp 120 V GFI duplex receptacle and weatherproof cover.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for piping, ducts, and electrical systems to verify actual locations of connections before equipment installation.

C. Examine roof curbs and equipment supports for suitable conditions where units will be installed.

D. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 INSTALLATION

A. Comply with manufacturer's rigging and installation instructions for unloading units and moving to final locations.

B. Curb Support: Install roof curb on roof structure according to "The NRCA Roofing Manual."
 1. Install and secure units on curbs and coordinate roof penetrations and flashing with roof construction.
 2. Coordinate size, installation, and structural capacity of roof curbs, equipment supports, and roof penetrations. These items are specified in Section 07 72 00 "Roof Accessories."
 3. Coordinate size, location, and installation of unit manufacturer's roof curbs and equipment supports with roof Installer.

C. Restrained Curb Support: Install restrained vibration isolation roof-curb rails on roof structure according to "The NRCA Roofing Manual."

D. Equipment Mounting:
 1. Comply with requirements for vibration isolation devices specified in Section 230548.13 "Vibration Controls for HVAC."

E. Install wall- and duct-mounted sensors furnished by manufacturer for field installation. Install control wiring and make final connections to control devices and unit control panel.

F. Install separate devices furnished by manufacturer and not factory installed.

G. Install new filters at completion of equipment installation and before testing, adjusting, and balancing.

H. Install drain pipes from unit drain pans to sanitary drain.
 1. Drain Piping: Refer to Section 232113 “Hydronic Piping” for condensate drain piping materials and methods of installation.

3.3 CONNECTIONS

A. Where installing piping adjacent to units, allow space for service and maintenance.

B. Hydronic Piping Connections:
 1. Comply with requirements in Section 23 21 13 "Hydronic Piping."

C. Duct Connections:
 1. Comply with requirements in Section 23 31 13 "Metal Ducts."
 2. Drawings indicate the general arrangement of ducts.
 3. Connect ducts to units with flexible duct connectors. Comply with requirements for flexible duct connectors in Section 23 33 00 "Air Duct Accessories."
D. Electrical Connections: Comply with requirements for power wiring, switches, and motor controls in electrical Sections.

1. Install electrical devices furnished by unit manufacturer but not factory mounted.

3.4 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.

1. Complete installation and startup checks according to manufacturer's written instructions.

2. Inspect units for visible damage to refrigerant compressor, condenser and evaporator coils, and fans.

3. Start refrigeration system when outdoor-air temperature is within normal operating limits and measure and record the following:
 a. Cooling coil leaving-air, dry- and wet-bulb temperatures.
 b. Cooling coil entering-air, dry- and wet-bulb temperatures.
 c. Condenser coil entering-air dry-bulb temperature.
 d. Condenser coil leaving-air dry-bulb temperature.

4. Simulate maximum cooling demand and inspect the following:
 a. Compressor refrigerant suction and hot-gas pressures.
 b. Short-circuiting of air through outside coil or from outside coil to outdoor-air intake.

5. Inspect casing insulation for integrity, moisture content, and adhesion.

6. Verify that clearances have been provided for servicing.

7. Verify that controls are connected and operable.

8. Verify that filters are installed.

9. Clean coils and inspect for construction debris.

10. Inspect and adjust vibration isolators and wind restraints.

11. Verify bearing lubrication.

12. Clean fans and inspect fan-wheel rotation for movement in correct direction without vibration and binding.

13. Adjust rotary heat exchanger belts to proper alignment and tension.

15. Inspect and record performance of interlocks and protective devices including response to smoke detectors by fan controls and fire alarm.

16. Operate unit for run-in period.

17. Calibrate controls.

18. Adjust and inspect high-temperature limits.

19. Inspect outdoor-air dampers for proper stroke and interlock with exhaust-air dampers.

20. Verify operational sequence of controls.

21. Measure and record the following airflows. Plot fan volumes on fan curve.
 a. Supply-air volume.
 b. Return-air flow.
 c. Exhaust-air flow.
d. Outdoor-air flow.

B. After startup, change filters, verify bearing lubrication, and adjust belt tension.

C. Remove and replace components that do not properly operate and repeat startup procedures as specified above.

D. Prepare written report of the results of startup services.

3.5 ADJUSTING

A. Adjust initial temperature and humidity set points.

B. Set field-adjustable switches and circuit-breaker trip ranges as indicated.

C. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain units.

END OF SECTION 23 74 33
SECTION 23 81 23.11

SMALL CAPACITY (6 TONS (21 KW) AND SMALLER), COMPUTER-ROOM AIR-CONDITIONERS, FLOOR-MOUNTED UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes floor-mounted, computer-room air conditioners of 6 tons and smaller.

1.3 DEFINITIONS
A. COP: Coefficient of performance.
B. EER: Energy efficiency ratio.
C. SCR: Silicon controlled rectifier.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include material descriptions, dimensions of individual components and profiles, and finished for computer-room air-conditioning units.
 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
B. Shop Drawings: For computer-room air conditioners.
 1. Include plans, elevations, sections, and attachment details.
 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Include diagrams for power, signal, and control wiring.
1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Plans, elevations, and other details, drawn to scale, using input from installers of the items involved.

B. Field quality-control reports.

C. Sample Warranty: For special warranty.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For computer-room air conditioners to include in emergency, operation, and maintenance manuals.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and are packaged with protective covering for storage and identified with labels describing contents.

1. Filters: One set(s) of filters for each unit.

1.8 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace components of computer-room air conditioners that fail in materials or workmanship within specified warranty period.

1. Warranty Period for Compressors: Manufacturer's standard, but not less than five years from date of Substantial Completion.

2. Warranty Period for Humidifiers: Manufacturer's standard, but not less than two years from date of Substantial Completion.

3. Warranty Period for Control Boards: Manufacturer's standard, but not less than two years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Compu-Aire, Inc.

2. Data Aire Inc.

3. Liebert; a brand of Vertiv.

4. Stulz
2.2 PERFORMANCE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. ASHRAE Compliance:
 1. Fabricate and label refrigeration system to comply with ASHRAE 15, "Safety Standard for Refrigeration Systems."
 2. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 4 - "Outdoor Air Quality," Section 5 - "Systems and Equipment," Section 6 - "Ventilation Rate Procedures," and Section 7 - "Construction and Startup."

C. ASHRAE/IES Compliance: Applicable requirements in ASHRAE/IES 90.1.

D. ASME Compliance: Fabricate and label water-cooled condenser shell to comply with ASME Boiler and Pressure Vessel Code: Section VIII, "Pressure Vessels," Division 1.

2.3 MANUFACTURED UNITS

A. Description: Self-contained, factory assembled, prewired, and piped; consisting of cabinet, fan, filters, and controls; for vertical floor mounting in upflow or downflow configuration.

B. Cabinet and Frame: Welded tubular-steel frame with removable steel panels with baked-enamel finish, insulated with 1-inch-thick duct liner.
 1. Finish of Interior Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
 2. Unit with two-way, powder-coated insulated air distribution plenum.

C. Supply-Air Fan: Backward inclined, direct driven.

D. Refrigeration System:
 1. Compressor: Scroll, with oil strainer, internal motor overload protection, resilient suspension system, and crankcase heater.
 2. Refrigeration Circuit:
 a. Low-pressure switch.
 b. Manually reset, high-pressure switch.
 c. Thermal-expansion valve with external equalizer.
 d. Sight glass with moisture indicator.
 3. Refrigerant: R-407C.
 4. Refrigerant Evaporator Coil: Direct-expansion coil of seamless copper tubes expanded into aluminum fins, with two circuits, each with solenoid valve.
 5. Refrigerant line sets.
 6. Refrigerant line-sweat-adapter kit to permit field brazing of refrigerant lines.
 7. Remote Air-Cooled Refrigerant Condenser:

Tetra Tech SMALL CAPACITY (6 TONS (21 KW) AND SMALLER), COMPUTER-ROOM AIR CONDITIONERS, FLOOR-MOUNTED UNITS 23 81 23.11 - 3
a. Integral, copper-tube aluminum-fin coil.
b. Condenser with surge protection device (SPD) and locking disconnect in the enclosed electrical panel section.

9. Split system shall have suction- and liquid-line compatible fittings and refrigerant piping for field interconnection.

E. Filter: 2-inch-thick, disposable, pleated, glass-fiber media.

1. Filter Minimum Efficiency Reporting Value:
 a. MERV Rating: MERV 8 according to ASHRAE 52.2.

F. Disconnect Switch: Locking disconnect with handle accessible with the door closed.

G. Control System:

1. Microprocessor remote-mounted panel.
2. Fan contactor.
3. Compressor contactor.
4. Compressor start capacitor.
5. Control transformer with circuit breaker.
7. Time-delay relay.
8. Heating contactor.
9. Smoke sensor.
11. Solid-state, wall-mounted control panel with start-stop switch remote temperature sensors and adjustable temperature set point.
12. Remote panel to monitor and change temperature and humidity set points and sensitivities of the unit and unit alarms.

H. Fan Motors:

1. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 23 05 13 "Common Motor Requirements for HVAC Equipment."
2. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load does not require motor to operate in service factor range above 1.0.

2.4 CAPACITIES AND CHARACTERISTICS

A. Unit Configuration: Draw through.

B. Supply-Air Fan:

Tetra Tech SMALL CAPACITY (6 TONS (21 KW) AND SMALLER), COMPUTER-ROOM AIR CONDITIONERS, FLOOR-MOUNTED UNITS 23 81 23.11 - 4
1. Number of Fans: One.
3. Minimum Static Pressure: 0.5 inches wg.
4. Motor Size: 3.6 hp.

C. Refrigeration System:

1. Refrigerant Compressor:
 a. Total Unit Cooling Capacity: 56,000 Btu/h.
 b. Sensible Unit Cooling Capacity: 50,000 Btu/h.
 c. Number of Compressors: One.

2. Refrigerant Evaporator Coil:
 a. Cooling Capacity: 56,000 Btu/h.
 b. Entering-Air Dry-Bulb Temperature: 72 deg F.
 c. Entering-Air Wet-Bulb Temperature: 60 deg F.

3. Air-Cooled Refrigerant Condenser:
 a. Cooling Capacity: 115,000 Btu/h.
 b. Entering-Air Temperature: 95 deg F.
 c. Number of Condenser Fan Motors: 1.
 d. Condenser Fan Motors: 1.41 hp.

D. Electrical Characteristics:

2. Phase: Three.
3. Hertz: 60.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for hydronic piping systems to verify actual locations of piping connections before equipment installation.

C. Examine walls, floors, and roofs for suitable conditions where computer-room air conditioners will be installed.

Tetra Tech

SMALL CAPACITY (6 TONS (21 KW) AND SMALLER), COMPUTER-ROOM AIR CONDITIONERS, FLOOR-MOUNTED UNITS

23 81 23.11 - 5
D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Layout and install computer-room air conditioners and suspension system coordinated with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, fire-suppression system, and partition assemblies.

B. Install computer-room air conditioners coordinated with computer-room access flooring Installer.

C. Install computer-room air conditioners level and plumb, maintaining manufacturer's recommended clearances.

3.3 CONNECTIONS

A. Piping installation requirements are specified in other heating, ventilating, and air-conditioning Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Where installing piping adjacent to computer-room air conditioners, allow space for service and maintenance.

C. Water and Drainage Connections: Comply with applicable requirements in Section 22 11 16 "Domestic Water Piping." Provide adequate connections for water-cooled units, condensate drain, and humidifier flushing system.

D. Refrigerant Piping: Comply with applicable requirements in Section 23 23 00 "Refrigerant Piping." Provide shutoff valves and piping.

3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

B. Perform the following tests and inspections:

1. Inspect for and remove shipping bolts, blocks, and tie-down straps. After installing computer-room air conditioners and after electrical circuitry has been energized, test for compliance with requirements.

3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.

4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

C. Computer-room air conditioners will be considered defective if they do not pass tests and inspections.
D. Prepare test and inspection reports.

3.5 ADJUSTING

A. Adjust initial temperature set points.

B. Set field-adjustable switches and circuit-breaker trip ranges as indicated.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain computer-room air conditioners.

END OF SECTION 23.81 23.11
SECTION 23 81 26
SPLIT-SYSTEM AIR-CONDITIONERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes split-system air-conditioning and heat-pump units consisting of separate evaporator-fan and compressor-condenser components.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and furnished specialties and accessories. Include performance data in terms of capacities, outlet velocities, static pressures, sound power characteristics, motor requirements, and electrical characteristics.

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Wiring Diagrams: For power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS
A. Field quality-control reports.

B. Warranty: Sample of special warranty.

1.5 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For split-system air-conditioning units to include in emergency, operation, and maintenance manuals.
1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Filters: One set(s) for each air-handling unit.

1.7 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. ASHRAE Compliance:

1. Fabricate and label refrigeration system to comply with ASHRAE 15, "Safety Standard for Refrigeration Systems."
2. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 4 - "Outdoor Air Quality," Section 5 - "Systems and Equipment," Section 6 - "Procedures," and Section 7 - "Construction and System Start-up."

C. ASHRAE/IES Compliance: Applicable requirements in ASHRAE/IES 90.1.

1.8 COORDINATION

A. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.

1.9 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of split-system air-conditioning units that fail in materials or workmanship within specified warranty period.

1. Warranty Period:

a. For Compressor: Five year(s) from date of Substantial Completion.
b. For Parts: One year(s) from date of Substantial Completion.
c. For Labor: One year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Carrier Corporation; a unit of United Technologies Corp.
2. Daikin Applied
3. LG
4. Mitsubishi Electric & Electronics USA, Inc.
5. Samsung HVAC.
6. SANYO North America Corporation.
7. Trane.

2.2 INDOOR UNITS (5 TONS OR LESS)

A. Wall-Mounted, Evaporator-Fan Components:

1. Cabinet: Enameled steel with removable panels on front and ends in color selected by Architect, and discharge drain pans with drain connection.
2. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins and thermal-expansion valve. Comply with ARI 206/110.
3. Fan: Direct drive, centrifugal.
4. Fan Motors:
 a. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements specified in Section 23 05 13 "Common Motor Requirements for HVAC Equipment."
 b. Multitapped, multispeed with internal thermal protection and permanent lubrication.
 c. Enclosure Type: Totally enclosed, fan cooled.
 d. NEMA Premium (TM) efficient motors as defined in NEMA MG 1.
 e. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in electrical Sections.
 f. Mount unit-mounted disconnect switches on interior of unit.

5. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

6. Condensate Drain Pans:
 a. Fabricated with one percent slope in at least two planes to collect condensate from cooling coils (including coil piping connections, coil headers, and return bends) and humidifiers, and to direct water toward drain connection.
 b. Drain Connection: Located at lowest point of pan and sized to prevent overflow. Terminate with threaded nipple on one end of pan.

7. Air Filtration Section:
 a. General Requirements for Air Filtration Section:
 1) Comply with NFPA 90A.
 2) Filter-Holding Frames: Arranged for flat or angular orientation. Filters shall be removable from one side or lifted out from access plenum.
2.3 OUTDOOR UNITS (5 TONS OR LESS)

A. Air-Cooled, Compressor-Condenser Components:

1. Casing: Steel, with removable panels for access to controls, weep holes for water drainage, and mounting holes in base. Provide brass service valves, fittings, and gage ports on exterior of casing.
2. Compressor: Hermetically sealed with crankcase heater and mounted on vibration isolation device. Compressor motor shall have thermal- and current-sensitive overload devices, start capacitor, relay, and contactor.
 a. Compressor Type: Digital Scroll.
 c. Refrigerant: R-410A.
 d. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins and liquid subcooler. Comply with ARI 206/110.

4. Fan: Aluminum-propeller type, directly connected to motor.
5. Motor: Permanently lubricated, with integral thermal overload protection.
6. Low Ambient Kit: Permits operation down to 5 deg F.
7. Mounting Base: Roof curb.

2.4 ACCESSORIES

A. Control equipment and sequence of operation are specified in Section 23 09 23 "Direct Digital Control (DDC) System for HVAC."
B. Thermostat: Low voltage with subbase to control compressor and evaporator fan.
C. Automatic-reset timer to prevent rapid cycling of compressor.
D. Condensate Pump: Unit-mounted, factory provided, pump capable of lifting drain water 4 feet in elevation. Aspen condensate pumps or equivalent manufacturer.

2.5 CAPACITIES AND CHARACTERISTICS (refer to drawing schedules).

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install units level and plumb.
B. Install evaporator-fan components using manufacturer's standard mounting devices securely fastened to building structure.
C. Install roof-mounted, compressor-condenser components on equipment supports specified in Section 07 72 00 "Roof Accessories." Anchor units to supports with removable, cadmium-plated fasteners.

3.2 CONNECTIONS

A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

1. Refrigerant Coil Connections: Comply with requirements specified in Section 232300 "Refrigerant Piping." Connect refrigerant piping to supply and return coil connections.

B. Where piping is installed adjacent to unit, allow space for service and maintenance of unit.

3.3 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

B. Perform tests and inspections.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

C. Tests and Inspections:

1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
2. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

D. Remove and replace malfunctioning units and retest as specified above.

E. Prepare test and inspection reports.

3.4 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.

1. Complete installation and startup checks according to manufacturer's written instructions.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain units.
SECTION 23 81 29

VARIABLE-REFRIGERANT-FLOW HVAC SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes complete VRF HVAC system(s) including, but is not limited to, delegated design and the following components to make a complete operating system(s) according to requirements indicated:

1. Indoor, concealed, ceiling-mounted units for ducting.
2. Indoor, concealed, floor-mounted units for ducting.
3. Indoor, exposed, floor-mounted units.
4. Indoor, exposed, wall-mounted units.
5. Indoor, recessed, ceiling-mounted units.
6. Outdoor, air-source, heat-pump units.
7. System controls.
8. System refrigerant and oil.
9. System condensate drain piping.
10. System refrigerant piping.
11. Metal framing systems.
12. Fastener systems.
13. Pipe stands.
14. Miscellaneous support materials.
15. Piping and tubing insulation.

1.3 DEFINITIONS

A. Air-Conditioning System Operation: System capable of operation with all zones in cooling only.

B. Heat-Pump System Operation: System capable of operation with all zones in either heating or cooling, but not with simultaneous heating and cooling zones that transfer heat between zones.

C. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control, signaling power-limited circuits.
D. Plenum: A space forming part of the air distribution system to which one or more air ducts are connected. An air duct is a passageway, other than a plenum, for transporting air to or from heating, ventilating, or air-conditioning equipment.

E. Two-Pipe System Design: One refrigerant vapor line and one refrigerant liquid line connect a single outdoor unit or multiple manifold outdoor units in a single system to associated indoor units.

F. VRF: Variable refrigerant flow.

1.4 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for indoor and outdoor units.
 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
 3. Include operating performance at design conditions and at extreme maximum and minimum outdoor ambient conditions.
 4. Include description of system controllers, dimensions, features, control interfaces and connections, power requirements, and connections.
 5. Include system operating sequence of operation in narrative form for each unique indoor- and outdoor-unit control.
 6. Include description of control software features.
 7. Include total refrigerant required and a comprehensive breakdown of refrigerant required by each system installed.
 8. Include refrigerant type and data sheets showing compliance with requirements indicated.
 9. For system design software.
 10. Indicate location and type of service access.

B. Shop Drawings: For VRF HVAC systems.
 1. Include plans, elevations, sections, and mounting and attachment details.
 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
 4. Include diagrams and details of refrigerant piping and tubing showing installation requirements for manufacturer-furnished divided flow fittings.
 5. Include diagrams for power, signal, and control wiring.

C. Delegated-Design Submittals:
1. Include design calculations for selecting vibration isolators and wind restraints.
2. Include design calculations with corresponding diagram of refrigerant piping and tubing sizing for each system installed.
3. Include design calculations with corresponding floor plans indicating that refrigerant concentration limits are within allowable limits of ASHRAE 15 and governing codes.
4. Include calculations showing that system travel distance for refrigerant piping and controls cabling are within horizontal and vertical travel distances set by manufacturer. Provide a comparison table for each system installed.

1.6 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Plans, elevations, sections, and details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Suspended ceiling components.
2. Structural floors, roofs and associated members to which equipment, piping, ductwork, cables, and conduit will be attached.
3. Size and location of initial access modules for acoustical tile.
4. Wall-mounted controllers located in finished space showing relationship to light switches, fire-alarm devices, and other installed devices.
5. Size and location of access doors and panels installed behind walls and inaccessible ceilings for products installed behind walls and requiring access.
6. Items penetrating finished ceiling including the following:
 a. Luminaires.
 b. Air outlets and inlets.
 c. Speakers.
 d. Sprinklers.
 e. Service access panels.

B. Qualification Data:

1. For Installer: Certificate from VRF HVAC system manufacturer certifying that Installer has successfully completed prerequisite training administered by manufacturer for proper installation of systems, including but not limited to, equipment, piping, controls, and accessories indicated and furnished for installation.
 a. Retain copies of Installer certificates on-site and make available on request.
2. For VRF HVAC system manufacturer.
3. For VRF HVAC system provider.

C. Product Test Reports: Where tests are required, for each product, for tests performed by manufacturer and witnessed by a qualified testing agency.

D. Field quality-control reports.

E. Sample Warranties: For manufacturer's warranties.
1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For VRF HVAC systems to include in emergency, operation, and maintenance manuals.

B. Software and Firmware Operational Documentation:
 1. Software operating and upgrade manuals.
 2. Program Software Backup: On CD or DVD, USB media, or approved cloud storage platform, complete with data files.
 3. Device address list.
 4. Printout of software application and graphic screens.

1.8 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Filters:
 a. One set(s) for each unit with replaceable filters.
 b. One set(s) for each unit with washable filters.

1.9 QUALITY ASSURANCE

A. Manufacturer Qualifications:
 1. Nationally recognized manufacturer of VRF HVAC systems and products.
 2. Shipped VRF HVAC systems with similar requirements to those indicated for a continuous period of five years within time of bid.
 3. VRF HVAC systems and products that have been successfully tested and in use on at least five completed projects.
 4. Having complete published catalog literature, installation, and operation and maintenance manuals for all products intended for use.
 5. Having full-time in-house employees for the following:
 a. Product research and development.
 b. Product and application engineering.
 c. Product manufacturing, testing, and quality control.
 d. Technical support for system installation training, startup, commissioning, and troubleshooting of installations.
 e. Owner training.

B. Factory-Authorized Service Representative Qualifications:
 1. Authorized representative of, and trained by, VRF HVAC system manufacturer.
 2. In-place facility located within 150 miles of Project.
 3. Demonstrated past experience with products being installed for period within five consecutive years before time of bid.
4. Demonstrated past experience on five projects of similar complexity, scope, and value.
 a. Each person assigned to Project shall have demonstrated past experience.

5. Staffing resources of competent and experienced full-time employees that are assigned to execute work according to schedule.

6. Service and maintenance staff assigned to support Project during warranty period.

7. Product parts inventory to support ongoing system operation for a period of not less than five years after Substantial Completion.

8. VRF HVAC system manufacturer's backing to take over execution of Work if necessary to comply with requirements indicated. Include Project-specific written letter, signed by manufacturer's corporate officer, if requested.

C. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by VRF HVAC system manufacturer.

1. Each employee shall be certified by manufacturer for proper installation of systems, including, but not limited to, equipment, piping, controls, and accessories indicated and furnished for installation.

2. Installer certification shall be valid and current for duration of Project.

3. Retain copies of Installer certificates on-site and make available on request.

4. Each person assigned to Project shall have demonstrated past experience.
 a. Demonstrated past experience with products being installed for period within three consecutive years before time of bid.
 b. Demonstrated past experience on five projects of similar complexity, scope, and value.

D. ISO Compliance: System equipment and components furnished by VRF HVAC system manufacturer shall be manufactured in an ISO 9001 and ISO 14001 facility.

1.10 DELIVERY, STORAGE, AND HANDLING

A. Deliver and store products in a clean and dry place.

B. Comply with manufacturer's written rigging and installation instructions for unloading and moving to final installed location.

C. Handle products carefully to prevent damage, breaking, denting, and scoring. Do not install damaged products.

D. Protect products from weather, dirt, dust, water, construction debris, and physical damage.
 1. Retain factory-applied coverings on equipment to protect finishes during construction and remove just prior to operating unit.
 2. Cover unit openings before installation to prevent dirt and dust from entering inside of units. If required to remove coverings during unit installation, reapply coverings over openings after unit installation and remove just prior to operating unit.

E. Replace installed products damaged during construction.
1.11 WARRANTY

A. Manufacturer's Warranty: Manufacturer agrees to repair or replace equipment and components that fail(s) in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:
 a. Structural failures.
 b. Faulty operation.
 c. Deterioration of metals, metal finishes, and other materials beyond normal weathering and use.

2. Warranty Period:
 a. For Compressor: Five year(s) from date of Substantial Completion.
 b. For Parts, Including Controls: Five year(s) from date of Substantial Completion.
 c. For Labor: Five year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Daikin AC (Americas), Inc
2. LG Electronics
3. Mitsubishi Electric & Electronics USA, Inc
4. Samsung HVAC

B. Source Limitations: Obtain products from single source from single manufacturer including, but not limited to, the following:

1. Indoor and outdoor units, including accessories.
2. Controls and software.
3. Refrigerant isolation valves.
4. Specialty refrigerant pipe fittings.

2.2 SYSTEM DESCRIPTION

A. Direct-expansion (DX) VRF HVAC system(s) with variable capacity in response to varying cooling and heating loads. System shall consist of multiple indoor units, outdoor unit(s), piping, controls, and electrical power to make complete operating system(s) complying with requirements indicated.

1. Two-pipe system design.
2. System(s) operation, heat pump as indicated on Drawings.
3. Each system with one refrigerant circuit shared by all indoor units connected to system.
B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. AHRI Compliance: System and equipment performance certified according to AHRI 1230 and products listed in AHRI directory.

D. ASHRAE Compliance:

1. ASHRAE 15: For safety code for mechanical refrigeration.
2. ASHRAE 62.1: For indoor air quality.
3. ASHRAE 135: For control network protocol with remote communication.
4. ASHRAE/IES 90.1 Compliance: For system and component energy efficiency.

E. UL Compliance: Comply with UL 1995.

2.3 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 01 40 00 "Quality Requirements," to design complete and operational VRF HVAC system(s) complying with requirements indicated.

1. Provide system refrigerant calculations.
 a. Indicate compliance with manufacturer's maximum vertical and horizontal travel distances. Prepare a comparison table for each system showing calculated distances compared to manufacturer's maximum allowed distances.

2. System Refrigerant Piping and Tubing:
 a. Arrangement: Arrange piping to interconnect indoor units and outdoor unit(s) in compliance with manufacturer requirements and requirements indicated.
 b. Routing: Conceal piping above ceilings and behind walls to maximum extent possible.
 c. Sizing: Size piping system, using a software program acceptable to manufacturer, to provide performance requirements indicated. Consider requirements to accommodate future change requirements.

3. System Controls:
 a. Network arrangement.
 b. Network interface with other building systems.
 c. Product selection.
 d. Sizing.

B. Service Access:

1. Provide and document service access requirements.
2. Locate equipment, system isolation valves, and other system components that require service and inspection in easily accessible locations. Avoid locations that are difficult to access if possible.
3. Where serviceable components are installed behind walls and above inaccessible ceilings, provide finished assembly with access doors or panels to gain access. Properly size the openings to allow for service, removal, and replacement.
4. If less than full and unrestricted access is provided, locate components within an 18-inch reach of the finished assembly.
5. Where ladder access is required to service elevated components, provide an installation that provides for sufficient access within ladder manufacturer's written instructions for use.
6. Comply with OSHA regulations.

C. System Design and Installation Requirements:
 1. Design and install systems indicated according to manufacturer's recommendations and written instructions.
 2. Where manufacturer's requirements differ from requirements indicated, contact Architect for direction. The most stringent requirements should apply unless otherwise directed in writing by Architect.

D. Isolation of Equipment: Provide isolation valves to isolate each indoor unit and outdoor unit for service, removal, and replacement without interrupting system operation.

E. System Capacity Ratio: The sum of connected capacity of all indoor units shall be within the following range of outdoor-unit rated capacity:
 1. Not less than 50 percent.
 2. Not more than 130 percent.
 3. Range acceptable to manufacturer.

F. System Turndown: Stable operation down to 20 percent of outdoor-unit capacity.

G. System Auto Refrigerant Charge: Each system shall have an automatic refrigerant charge function to ensure the proper amount of refrigerant is installed in system.

H. Outdoor Conditions:
 1. Suitable for outdoor ambient conditions encountered.
 a. Design equipment and supports to withstand wind loads of governing code and ASCE/SEI 7.
 b. Design equipment and supports to withstand snow and ice loads of governing code and ASCE/SEI 7.
 c. Provide corrosion-resistant coating for components and supports where located in coastal or industrial climates that are known to be harmful to materials and finishes.

I. Sound Performance: Sound levels generated by operating HVAC equipment shall be within requirements indicated.
1. Indoor: Within design guidelines of "2015 ASHRAE HANDBOOK - HVAC Applications."
2. Outdoor: Within ordinance of governing authorities.

J. Thermal Movements: Allow for controlled thermal movements from ambient, surface, and system temperature changes.

K. Capacities and Characteristics: As indicated on Drawings.

2.4 INDOOR, CONCEALED, CEILING-MOUNTED UNITS FOR DUCTING

A. Description: Factory-assembled and -tested complete unit with components, piping, wiring, and controls required for mating to ductwork, piping, power, and controls field connections.

B. Cabinet:
 1. Material: Galvanized steel.
 2. Insulation: Manufacturer's standard internal insulation complying with ASHRAE 62.1, to provide thermal resistance and prevent condensation.
 3. Duct Connections: Extended collar or flange, or designated exterior cabinet surface, designed for attaching field-installed ductwork.
 4. Mounting: Manufacturer-designed provisions for field installation.
 5. Internal Access: Removable panels or hinged doors of adequate size for field access to internal components for inspection, cleaning, service, and replacement.

C. DX Coil Assembly:
 1. Coil Casing: Aluminum, galvanized, or stainless steel.
 2. Coil Fins: Aluminum, mechanically bonded to tubes, with arrangement required by performance.
 3. Coil Tubes: Copper, of diameter and thickness required by performance.
 4. Expansion Valve: Electronic modulating type with linear or proportional characteristics.
 5. Unit Internal Tubing: Copper tubing with brazed joints.
 6. Unit Internal Tubing Insulation: Manufacturer's standard insulation, of thickness to prevent condensation.
 7. Field Piping Connections: Manufacturer's standard.
 8. Factory Charge: Dehydrated air or nitrogen.
 9. Testing: Factory pressure tested and verified to be without leaks.

D. Drain Assembly:
 1. Pan: Non-ferrous material, with bottom sloped to low point drain connection.
 2. Condensate Removal: Unit-mounted pump or other integral lifting mechanism, capable of lifting drain water to an elevation above top of cabinet.
 3. Field Piping Connection: Non-ferrous material with threaded NPT.

E. Fan and Motor Assembly:
 1. Fan(s):
a. Direct-drive arrangement.
b. Single or multiple fans connected to a common motor shaft and driven by a single motor.
c. Fabricated from non-ferrous components or ferrous components with corrosion-resistant finish.
d. Wheels statically and dynamically balanced.

2. Motor: Brushless dc or electronically commutated with permanently lubricated bearings.
4. Speed Settings and Control: Two (low, high), three (low, medium, high), or more than three speed settings or variable speed with a speed range of least 50 percent.
5. Vibration Control: Integral isolation to dampen vibration transmission.

F. Filter Assembly (where indicated on drawings):
 1. Access: Bottom, side, or rear to accommodate field installation without removing ductwork and to accommodate filter replacement without need for tools.
 2. Efficiency: ASHRAE 52.2, MERV 7.
 3. Media:
 a. Replaceable: Extended surface, panel, or cartridge with antimicrobial treatment fiber media.

G. Unit Controls:
 1. Enclosure: Metal, suitable for indoor locations.
 2. Factory-Installed Controller: Configurable digital control.
 3. Factory-Installed Sensors:
 a. Unit inlet air temperature.
 b. Coil entering refrigerant temperature.
 c. Coil leaving refrigerant temperature.

4. Field-Customizable I/O Capability:
 a. Analog Inputs: Two for use in customizable control strategies.

5. Features and Functions:
 a. Self-diagnostics.
 b. Time delay.
 c. Auto-restart.
 d. External static pressure control.
 e. Auto operation mode.
 f. Manual operation mode.
 g. Filter service notification.
 h. Power consumption display.
 i. Drain assembly high water level safety shutdown and notification.
 j. Run test switch.
6. Communication: Network communication with other indoor and outdoor units.
7. Cable and Wiring: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.
8. Field Connection: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.

H. Unit Electrical:
1. Enclosure: Metal, suitable for indoor locations.
2. Field Connection: Single point connection to power unit and integral controls.
3. Control Transformer: Manufacturer's standard. Coordinate requirements with field power supply.
4. Wiring: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.
5. Raceways: Enclose line voltage wiring in metal raceways.

2.5 INDOOR, CONCEALED, FLOOR-MOUNTED UNITS FOR DUCTING
A. Description: Factory-assembled and -tested complete unit with components, piping, wiring, and controls required for mating to ductwork, piping, power, and controls field connections.

B. Cabinet:
1. Material: Galvanized steel.
2. Insulation: Manufacturer's standard internal insulation, complying with ASHRAE 62.1, to provide thermal resistance and prevent condensation.
3. Duct Connections: Extended collar or flange, or designated exterior cabinet surface, designed for attaching field-installed ductwork.
4. Mounting: Manufacturer-designed provisions for field installation.
5. Internal Access: Removable panels or hinged doors of adequate size for field access to internal components for inspection, cleaning, service, and replacement.

C. DX Coil Assembly:
1. Coil Casing: Aluminum, galvanized, or stainless steel.
2. Coil Fins: Aluminum, mechanically bonded to tubes, with arrangement required by performance.
3. Coil Tubes: Copper, of diameter and thickness required by performance.
4. Expansion Valve: Electronic modulating type with linear or proportional characteristics.
5. Unit Internal Tubing: Copper tubing with brazed joints.
6. Unit Internal Tubing Insulation: Manufacturer's standard insulation, of thickness to prevent condensation.
7. Field Piping Connections: Manufacturer's standard.
8. Factory Charge: Dehydrated air or nitrogen.
9. Testing: Factory pressure tested and verified to be without leaks.

D. Drain Assembly:
1. Pan: Non-ferrous material, with bottom sloped to low point drain connection.
2. Condensate Removal: Condensate pump by Aspen or equivalent manufacturer provided with fan coil. Pump shall be capable of lifting drain water 10 feet.
3. Field Piping Connection: Non-ferrous material with threaded NPT.

E. Fan and Motor Assembly:
 1. Fan(s):
 a. Direct-drive arrangement.
 b. Single or multiple fans connected to a common motor shaft and driven by a single motor.
 c. Materials: Non-ferrous components or ferrous components with corrosion resistant finish.
 d. Statically and dynamically balanced.

 2. Motor: Brushless dc or electronically commutated with permanently lubricated bearings.
 4. Speed Settings and Control: Two (low, high), three (low, medium, high), or more than three speed settings or variable speed with a speed range of at least 50 percent.
 5. Vibration Control: Integral isolation to dampen vibration transmission.

F. Filter Assembly:
 1. Access: Bottom, side, or rear to accommodate field installation without removing ductwork and to accommodate filter replacement without need for tools.
 2. Efficiency: ASHRAE 52.2, MERV 7.
 3. Media:
 a. Replaceable: Extended surface, panel, or cartridge with antimicrobial treatment fiber media.

G. Unit Controls:
 1. Enclosure: Metal, suitable for indoor locations.
 2. Factory-Installed Controller: Configurable digital control.
 3. Factory-Installed Sensors:
 a. Unit inlet air temperature.
 b. Coil entering refrigerant temperature.
 c. Coil leaving refrigerant temperature.
 4. Field-Customizable I/O Capability:
 a. Analog Inputs: Two for use in customizable control strategies.
 5. Features and Functions:
 a. Self-diagnostics.
 b. Time delay, auto-restart.
c. External static pressure control.
d. Auto operation mode.
e. Manual operation mode.
f. Filter service notification.
g. Power consumption display.
h. Drain assembly high water level safety shutdown and notification.
i. Run test switch.

6. Communication: Network communication with other indoor units and outdoor unit(s).
7. Cable and Wiring: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.
8. Field Connection: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.

H. Unit Electrical:

1. Enclosure: Metal, similar to enclosure, and suitable for indoor locations.
2. Field Connection: Single point connection to power unit and integral controls.
3. Control Transformer: Manufacturer's standard. Coordinate requirements with field power supply.
4. Wiring: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.
5. Raceways: Enclose line voltage wiring in metal raceways.

2.6 INDOOR, EXPOSED, WALL-MOUNTED UNITS

A. Description: Factory-assembled complete unit with components, piping, wiring, and controls required for mating to piping, power, and controls field connections.

B. Cabinet:

1. Material: Painted steel, or coated steel frame covered by a plastic cabinet, with an architecturally acceptable finish suitable for tenant occupancy on exposed surfaces.
2. Insulation: Manufacturer's standard internal insulation, complying with ASHRAE 62.1, to provide thermal resistance and prevent condensation.
3. Mounting: Manufacturer-designed provisions for field installation.
4. Internal Access: Removable panels of adequate size for field access to internal components for inspection, cleaning, service, and replacement.

C. DX Coil Assembly:

1. Coil Casing: Aluminum, galvanized, or stainless steel.
2. Coil Fins: Aluminum, mechanically bonded to tubes, with arrangement required by performance.
3. Coil Tubes: Copper, of diameter and thickness required by performance.
4. Expansion Valve: Electronic modulating type with linear or proportional characteristics.
5. Unit Internal Tubing: Copper tubing with brazed joints.
6. Unit Internal Tubing Insulation: Manufacturer's standard insulation, of thickness to prevent condensation.
7. Field Piping Connections: Manufacturer's standard.
8. Factory Charge: Dehydrated air or nitrogen.
9. Testing: Factory pressure tested and verified to be without leaks.

D. Drain Assembly:
 1. Pan: Non-ferrous material, with bottom sloped to low point drain connection.
 a. If a floor drain is not available at unit, provide unit with field-installed condensate pump accessory.
 3. Field Piping Connection: Non-ferrous material with threaded NPT.

E. Fan and Motor Assembly:
 1. Fan(s):
 a. Direct-drive arrangement.
 b. Single or multiple fans connected to a common motor shaft and driven by a single motor.
 c. Fabricated from non-ferrous components or ferrous components with corrosion protection finish.
 d. Wheels statically and dynamically balanced.
 2. Motor: Brushless dc or electronically commutated with permanently lubricated bearings.
 4. Speed Settings and Control: Two (low, high), three (low, medium, high), or more than three speed settings or variable speed with a speed range of least 50 percent.
 5. Vibration Control: Integral isolation to dampen vibration transmission.

F. Filter Assembly:
 1. Access: Front, to accommodate filter replacement without the need for tools.

G. Grille Assembly: Manufacturer's standard discharge grille with field-adjustable air pattern mounted in top or front face of unit cabinet.

H. Unit Accessories:
 1. Condensate Pump: Integral reservoir and control with electrical power connection through unit power. Provide if gravity drain is not feasible. See drain section above.

I. Unit Controls:
 1. Enclosure: Manufacturer's standard, and suitable for indoor locations.
 2. Factory-Installed Controller: Configurable digital control.
 4. Field-Customizable I/O Capability:
 a. Analog Inputs: Two for use in customizable control strategies.

5. Features and Functions: Self-diagnostics, time delay, auto-restart, auto operation mode, manual operation mode, filter service notification, drain assembly high water level safety shutdown and notification, run test switch.

6. Communication: Network communication with other indoor units and outdoor unit(s).

7. Cable and Wiring: Manufacturer’s standard with each connection labeled and corresponding to a unit-mounted wiring diagram.

8. Field Connection: Manufacturer’s standard with each connection labeled and corresponding to a unit-mounted wiring diagram.

J. Unit Electrical:

1. Enclosure: Manufacturer's standard, and suitable for indoor locations.
2. Field Connection: Single point connection to power entire unit and integral controls.
3. Control Transformer: Manufacturer's standard. Coordinate requirements with field power supply.
4. Wiring: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.
5. Raceways: Enclose line voltage wiring in metal raceways to comply with NFPA 70.

2.7 INDOOR, RECESSED, CEILING-MOUNTED UNITS

A. Description: Factory-assembled and -tested complete unit with components, piping, wiring, and controls required for mating to ductwork, piping, power, and controls field connections.

B. Cabinet:

1. Material: Painted steel, or coated steel frame covered by a plastic cabinet, with an architectural acceptable finish suitable for tenant occupancy on exposed surfaces.
2. Insulation: Manufacturer's standard internal insulation, complying with ASHRAE 62.1, to provide thermal resistance and prevent condensation.
3. Mounting: Manufacturer-designed provisions for field installation.
4. Internal Access: Removable panels of adequate size for field access to internal components for inspection, cleaning, service, and replacement.

C. DX Coil Assembly:

1. Coil Casing: Aluminum, galvanized, or stainless steel.
2. Coil Fins: Aluminum, mechanically bonded to tubes, with arrangement required by performance.
3. Coil Tubes: Copper, of diameter and thickness required by performance.
4. Expansion Valve: Electronic modulating type with linear or proportional characteristics.
5. Internal Tubing: Copper tubing with brazed joints.
6. Internal Tubing Insulation: Manufacturer's standard insulation, of thickness to prevent condensation.
7. Field Piping Connections: Manufacturer's standard.
8. Factory Charge: Dehydrated air or nitrogen.
9. Testing: Factory pressure tested and verified to be without leaks.
D. Drain Assembly:
 1. Pan: Non-ferrous material, with bottom sloped to low point drain connection.
 2. Condensate Removal: Unit-mounted pump or other integral lifting mechanism, capable of lifting drain water to an elevation above top of cabinet.
 3. Field Piping Connection: Non-ferrous material with threaded NPT.

E. Fan and Motor Assembly:
 1. Fan(s):
 a. Direct-drive arrangement.
 b. Single or multiple fans connected to a common motor shaft and driven by a single motor.
 c. Fabricated from non-ferrous components or ferrous components with corrosion protection finish.
 d. Wheels statically and dynamically balanced.
 2. Motor: Brushless dc or electronically commutated with permanently lubricated bearings.
 4. Speed Settings and Control: Two (low, high), three (low, medium, high), or more than three speed settings or variable speed with a speed range of least 50 percent.
 5. Vibration Control: Integral isolation to dampen vibration transmission.

F. Filter Assembly:
 1. Access: Bottom, to accommodate filter replacement without the need for tools.
 2. Efficiency: ASHRAE 52.2, MERV 7.
 3. Media:
 a. Replaceable: Extended surface, panel, or cartridge with antimicrobial treatment fiber media.

G. Discharge-Air Grille Assembly: Mounted in bottom of unit cabinet.
 1. Discharge Pattern: One-, two-, three-, or four-way throw as indicated on Drawings.
 a. Discharge Pattern Adjustment: Field-adjustable limits for up and down range of motion.
 b. Discharge Pattern Closure: Ability to close individual discharges of units with multiple patterns.
 2. Motorized Vanes: Modulating up and down flow pattern for uniform room air distribution.
 3. Additional Branch Supply Duct Connection: Sheet metal knockout for optional connection to one additional supply branch duct.

H. Return-Air Grille Assembly: Manufacturer's standard grille mounted in bottom of unit cabinet.

I. Outdoor Air Ventilation Connection: Sheet metal knockout for optional connection to outdoor air ventilation duct.
J. Unit Controls:
 1. Enclosure: Manufacturer's standard, and suitable for indoor locations.
 2. Factory-Installed Controller: Configurable digital control.
 4. Field-Customizable I/O Capability:
 a. Analog Inputs: Two for use in customizable control strategies.
 5. Features and Functions: Self-diagnostics, time delay, auto-restart, auto operation mode, manual operation mode, filter service notification, drain assembly high water level safety shutdown and notification, run test switch.
 6. Communication: Network communication with other indoor units and outdoor unit(s).
 7. Cable and Wiring: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.
 8. Field Connection: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.

K. Unit Electrical:
 1. Enclosure: Manufacturer's standard, and suitable for indoor locations.
 2. Field Connection: Single point connection to power entire unit and integral controls.
 3. Control Transformer: Manufacturer's standard. Coordinate requirements with field power supply.
 4. Wiring: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.
 5. Raceways: Enclose line voltage wiring in metal raceways to comply with NFPA 70.

2.8 OUTDOOR, AIR-SOURCE HEAT-PUMP UNITS

A. Description: Factory-assembled and -tested complete unit with components, piping, wiring, and controls required for mating to piping, power, and controls field connections.
 1. Specially designed for use in systems with either all heating or all cooling demands, but not for use in systems with simultaneous heating and cooling.
 2. Systems shall consist of one unit, or multiple unit modules that are designed by variable refrigerant system manufacturer for field interconnection to make a single refrigeration circuit that connects multiple indoor units.
 3. All units installed shall be from the same product development generation.

B. Cabinet:
 1. Galvanized steel and coated with a corrosion-resistant finish.
 a. Coating with documented salt spray test performance of 1000 hours according ASTM B117 surface scratch test (SST) procedure.
 2. Mounting: Manufacturer-designed provisions for field installation.
3. Internal Access: Removable panels or hinged doors of adequate size for field access to internal components for inspection, cleaning, service, and replacement.

C. Compressor and Motor Assembly:

1. One or more positive-displacement, direct-drive and hermetically sealed scroll compressor(s) with inverter drive and turndown to 15 percent of rated capacity.
2. Protection: Integral protection against the following:
 a. High refrigerant pressure.
 b. Low oil level.
 c. High oil temperature.
 d. Thermal and overload.
 e. Voltage fluctuations.
 f. Phase failure and phase reversal.
 g. Short cycling.

3. Speed Control: Variable to automatically maintain refrigerant suction and condensing pressures while varying refrigerant flow to satisfy system cooling and heating loads.
5. Oil management system to ensure safe and proper lubrication over entire operating range.
6. Crankcase heaters with integral control to maintain safe operating temperature.
7. Fusible plug.

D. Condenser Coil Assembly:

1. Plate Fin Coils:
 a. Casing: Aluminum, galvanized, or stainless steel.
 b. Fins: Aluminum, or copper, mechanically bonded to tubes, with arrangement required by performance.
 c. Tubes: Copper, of diameter and thickness required by performance.

2. Aluminum Microchannel Coils:
 b. Single- or multiple-pass arrangement.
 c. Construct fins, tubes, and header manifolds of aluminum alloy.

3. Coating: Corrosion resistant.
4. Hail Protection: Provide condenser coils with louvers, baffles, or hoods to protect against hail damage.

E. Condenser Fan and Motor Assembly:

1. Fan(s): Propeller type.
 a. Direct-drive arrangement.
 b. Fabricated from non-ferrous components or ferrous components with corrosion protection finish to match performance indicated for condenser coil.
c. Statically and dynamically balanced.

2. Fan Guards: Removable safety guards complying with OSHA regulations. If using metal materials, coat with corrosion-resistant coating to match performance indicated for condenser coil.

3. Motor(s): Brushless dc or electronically commutated with permanently lubricated bearings and rated for outdoor duty.

5. Speed Settings and Control: Variable speed with a speed range of least 75 percent.

F. Drain Pan: If required by manufacturer's design, provide unit with non-ferrous drain pan with bottom sloped to a low point drain connection.

G. Unit Controls:

1. Enclosure: Manufacturer's standard, and suitable for unprotected outdoor locations.

2. Factory-Installed Controller: Configurable digital control.

3. Factory-Installed Sensors:
 a. Refrigerant suction temperature.
 b. Refrigerant discharge temperature.
 c. Outdoor air temperature.
 d. Refrigerant high pressure.
 e. Refrigerant low pressure.
 f. Oil level.

4. Features and Functions: Self-diagnostics, time delay, auto-restart, fuse protection, auto operation mode, manual operation mode, night setback control, power consumption display, run test switch, equalize run time between multiple same components.

5. Communication: Network communication with indoor units and other outdoor unit(s).

6. Cable and Wiring: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.

7. Field Connection: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.

H. Unit Electrical:

1. Enclosure: Metal, similar to enclosure, and suitable for unprotected outdoor locations.

2. Field Connection: Single point connection to power entire unit and integral controls.

3. Control Transformer: Manufacturer's standard. Coordinate requirements with field power supply.

4. Wiring: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.

5. Raceways: Enclose line voltage wiring in metal raceways to comply with NFPA 70.

I. Unit Hardware: Zinc-plated steel, or stainless steel. Coat exposed surfaces with additional corrosion-resistant coating if required to prevent corrosion when exposed to salt spray test for 1000 hours according ASTM B117.

J. Unit Piping:
1. Unit Tubing: Copper tubing with brazed joints.
2. Unit Tubing Insulation: Manufacturer's standard insulation, of thickness to prevent condensation.
3. Field Piping Connections: Manufacturer's standard.
4. Factory Charge: Dehydrated air or nitrogen.
5. Testing: Factory pressure tested and verified to be without leaks.

2.9 SYSTEM CONTROLS

A. General Requirements:

1. Network: Indoor units and outdoor units shall include integral controls and connect through a TIA-485A or manufacturer-selected control network.
2. Network Communication Protocol: Manufacturer proprietary control communication between interconnected units.
3. Integration with Building Automation System: ASHRAE 135, BACnet IP and certified by BACnet Testing Lab (BTL), including the following:
 a. Ethernet connection via RJ-45 connectors and ports with transmission at 100 Mbps or higher.
 b. Integration devices shall be connected to local uninterruptible power supply unit(s) to provide at least 5 minutes of battery backup operation after a power loss.
 c. Integration shall include control.
4. Operator Interface:
 a. Operators shall interface with system and unit controls through the following:
 1) Operator interfaces integral to controllers.
 2) Owner-furnished PC connected to central controller(s).
 3) Web interface through web browser software.
 4) Integration with Building Automation System.
 b. Users shall be capable of interface with wall mounted controllers for indoor units control to extent privileges are enabled. Control features available to users shall include the following:
 1) On/off control.
 2) Temporary temperature set-point adjustment. ±3°F.

B. VRF HVAC System Operator Software for PC:

1. Software offered by VRF HVAC system manufacturer shall provide system operators with ability to monitor and control VRF HVAC system(s) from a single dedicated Owner-furnished PC.
2. Software shall provide operator with a graphic user interface to allow monitoring and control of multiple central controllers from a single device location through point-and-click mouse exchange.
3. Plan views shall show building plans with location of indoor units and identification superimposed on plans.
4. Controls operation mode of indoor units as individual units, by selected groups of indoor units, or as collection of all indoor units. Operation modes available through central controller shall match those operation modes of controllers for indoor units.

5. Schedules operation of indoor units as individual units, by selected groups of indoor units, or as collection of all indoor units. Schedules daily, weekly, and annual events.

6. Changes operating set points of indoor units as individual units, by selected groups of indoor units, or as collection of all indoor units.

7. Optimized start feature to start indoor units before scheduled time to reach temperature set-point at scheduled time based on operating history.

8. Night setback feature to operate indoor units at energy-conserving heating and cooling temperature set-points during unoccupied periods.

9. Supports Multiple Languages: English.

10. Supports Imperial and Metric Temperature Units: Fahrenheit and Celsius.

11. Displays service notifications and error codes.

12. Monitors and displays up to 3000 item error history and 10000 item operation history for regular reporting and further archiving.

13. Monitors and displays cumulative operating time of indoor units.

14. Able to disable and enable operation of individual controllers for indoor units.

15. Information displayed on individual controllers shall also be available for display.

16. Information displayed for outdoor units, including refrigerant high and low pressures percent capacity.

C. Central Controllers:

1. Centralized control for all indoor and outdoor units from a single central controller location.

 a. Include multiple interconnected controllers as required.

2. Controls operation mode of indoor units as individual units, by selected groups of indoor units, or as collection of all indoor units. Operation modes available through central controller shall match those operation modes of controllers for indoor units.

3. Schedule operation of indoor units as individual units, by selected groups of indoor units, or as collection of all indoor units.

 a. Sets schedule for daily, weekly, and annual events.

 b. Schedule options available through central controller shall at least include the schedule options of controllers for indoor units.

4. Changes operating set points of indoor units as individual units, by selected groups of indoor units, or as collection of all indoor units.

5. Optimized start feature to start indoor units before scheduled time to reach temperature set-point at scheduled time based on operating history.

6. Night setback feature to operate indoor units at energy-conserving heating and cooling temperature set-points during unoccupied periods.

7. Service diagnostics tool.

8. Able to disable and enable operation of individual controllers for indoor units.

9. Information displayed on individual controllers shall also be available for display through central controller.

10. Information displayed for outdoor units, including refrigerant high and low pressures percent capacity.
11. Multiple RJ-45 ports for direct connection to a local PC and an Ethernet network switch.
12. Operator interface through a backlit, high-resolution color display touch panel and web accessible through standard web browser software.

D. Wired Controllers for Indoor Units:

1. Basis of design: Samsung MWR-WG00JN programmable wall controller.
2. Single controller capable of controlling multiple indoor units as group, at least 9.
3. Auto Timeout Touch Screen LCD: Timeout duration shall be adjustable.
4. Multiple Language: English.
5. Temperature Units: Fahrenheit and Celsius.
6. On/Off: Turns indoor unit on or off.
8. Temperature Display: 1-degree increments.
10. Fan Speed Setting: Select between available options furnished with the unit.
11. Airflow Direction Setting: If applicable to unit, select between available options furnished with the unit.
12. Seven-day programmable operating schedule. Schedule will be set and adjusted by central controller and shall push down to wall controllers. If communication to central controller is lost, wall controller shall continue with last updated schedule.
13. Service Notification Display: "Filter".
15. Error Code Notification Display: Used by service personnel to troubleshoot abnormal operation and equipment failure.
17. Setting stored in nonvolatile memory to ensure that settings are not lost if power is lost. Battery backup for date and time only.
18. Low-voltage power required for controller shall be powered through non-polar connections to indoor unit.

2.10 SYSTEM REFRIGERANT AND OIL

A. Refrigerant:

1. As required by VRF HVAC system manufacturer for system to comply with performance requirements indicated.
2. R-410a.

B. Oil:

1. As required by VRF HVAC system manufacturer and to comply with performance requirements indicated.
2.11 SYSTEM CONDENSATE DRAIN PIPING

A. Comply with requirements in Section 232113 “Hydronic Piping” for system drain piping requirements.

2.12 SYSTEM REFRIGERANT PIPING

A. Comply with requirements in Section 232300 "Refrigerant Piping" for system piping requirements.

B. Divided-Flow Specialty Fittings: Where required by VRF HVAC system manufacturer for proper system operation, VRF HVAC system manufacturer shall furnish specialty fittings with identification and instructions for proper installation by Installer.

C. Refrigerant Isolation Ball Valves:
 1. Description: Uni-body full port design, rated for maximum system temperature and pressure, and factory tested under pressure to ensure tight shutoff. Designed for valve operation without removing seal cap.
 2. Seals: Compatible with system refrigerant and oil. Seal service life of at least 20 years.
 3. Valve Connections: Flare or sweat depending on size.

2.13 METAL HANGERS AND SUPPORTS

A. Comply with requirements in Section 230529 "Hangers and Supports for HVAC Piping and Equipment” for pipe hanger support requirements.

B. Comply with requirements in Section 230548.13 "Vibration Control for HVAC” for equipment support requirements.

2.14 PIPING AND TUBING INSULATION

A. Comply with requirements in Section 230719 "HVAC Piping Insulation" for system piping insulation requirements.

2.15 SYSTEM CONTROL CABLE

A. Cable Rating: Listed and labeled for application according to NFPA 70.

 1. Flame Travel and Smoke Density in Plenums: As determined by testing identical products according to NFPA 262, by a qualified testing agency. Identify products for installation in plenums with appropriate markings of applicable testing agency.
 a. Flame Travel Distance: 60 inches or less.
 b. Peak Optical Smoke Density: 0.5 or less.
 c. Average Optical Smoke Density: 0.15 or less.
2. Flame Travel and Smoke Density for Riser Cables in Non-Plenum Building Spaces: As determined by testing identical products according to UL 1666.
3. Flame Travel and Smoke Density for Cables in Non-Riser Applications and Non-Plenum Building Spaces: As determined by testing identical products according to UL 1685.

B. Low-Voltage Control Cabling:
1. Plenum-Rated, Paired Cable: NFPA 70, Type CMP.
 a. One pair, twisted, No. 16 AWG, stranded (19x29) or No. 18 AWG, stranded (19x30) tinned-copper conductors as required by VRF HVAC system manufacturer.
 b. PVC insulation.
 c. Braided or foil shielded.
 d. PVC jacket.
 e. NFPA 262 includes the standard flame-resistance test criteria in common use for cables and conductors.

C. TIA-485A Network Cabling:
1. Plenum-Rated Cable: NFPA 70, Type CMP.
 a. Paired, one pair, No. 22 AWG, stranded (7x30) tinned-copper conductors.
 b. Fluorinated ethylene propylene insulation.
 c. Unshielded.
 d. Fluorinated ethylene propylene jacket.
 e. NFPA 262 includes the standard flame-resistance test criteria in common use for cables and conductors.

 1. Description: Four pair, balanced-twisted pair cable, certified to meet transmission characteristics of category cable indicated.
 2. Conductor: 100 ohm, 23 AWG solid copper.
 4. Cable Rating: By application.
 5. Jacket: Blue thermoplastic.

E. Comply with requirements in Section 260533 "Raceways and Boxes for Electrical Systems" for control wiring and cable raceways.

2.16 MATERIALS

A. Steel:
 1. ASTM A36/A36M for carbon structural steel.
 2. ASTM A568/A568M for steel sheet.

B. Stainless Steel:
1. Manufacturer’s standard grade for casing.
2. Manufacturer’s standard type, ASTM A240/A240M for bare steel exposed to airstream or moisture.

C. Galvanized Steel: ASTM A653/A653M.

E. Corrosion-Resistant Coating: Coat with a corrosion-resistant coating capable of withstanding a 3000-hour salt-spray test according to ASTM B117.

1. Standards:
 a. ASTM B117 for salt spray.
 b. ASTM D2794 for minimum impact resistance of 100 in-lb.
 c. ASTM B3359 for cross-hatch adhesion of 5B.

3. Thickness: 1 mil.
4. Gloss: Minimum gloss of 60 on a 60-degree meter.

2.17 SOURCE QUALITY CONTROL

A. Factory Tests: Test and inspect factory-assembled equipment.

B. Equipment will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports for historical record. Submit reports only if requested.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine products before installation. Reject products that are wet, moisture damaged, or mold damaged.

C. Examine roughing-in for piping and tubing to verify actual locations of connections before equipment installation.

D. Examine roughing-in for ductwork to verify actual locations of connections before equipment installation.

E. Examine roughing-in for wiring and conduit to verify actual locations of connections before equipment installation.
F. Examine walls, floors, roofs, and outdoor pads for suitable conditions where equipment will be installed.

G. Prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.

H. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 EQUIPMENT INSTALLATION, GENERAL

A. Clearance:
 1. Maintain manufacturer's recommended clearances for service and maintenance.
 2. Maintain clearances required by governing code.

B. Loose Components: Install components, devices, and accessories furnished by manufacturer, with equipment, that are not factory mounted.
 1. Loose components shall be installed by system installer under supervision of manufacturer's service representative.

3.3 INSTALLATION OF INDOOR UNITS

A. Install units to be level and plumb while providing a neat and finished appearance.

B. Unless otherwise required by VRF HVAC system manufacturer, support ceiling-mounted units from structure above using threaded rods; minimum rod size of 3/8 inch.

C. Adjust supports of exposed and recessed units to draw units tight to adjoining surfaces.

D. Protect finished surfaces of ceilings, floors, and walls that come in direct contact with units. Refinish or replace damaged areas after units are installed.

E. In rooms with ceilings, conceal piping and tubing, controls, and electrical power serving units above ceilings.

F. In rooms without ceiling, arrange piping and tubing, controls, and electrical power serving units to provide a neat and finished appearance.

G. Provide lateral bracing if needed to limit movement of suspended units to not more than 0.25 inch.

H. For floor- and wall-mounted units that are exposed, conceal piping and tubing, controls, and electrical power serving units within walls.

I. For ceiling mounted units that are exposed, route piping and tubing, controls, and electrical power serving the units tight to the deck above and structure. Paint piping, tubing, and conduit to match the deck.

J. Install floor-mounted units on support structure indicated on Drawings.
K. Attachment: Install hardware for proper attachment to supported equipment.
L. Grouting: Place grout under equipment supports and make bearing surface smooth.

3.4 INSTALLATION OF OUTDOOR UNITS
A. Install units to be level and plumb while providing a neat and finished appearance.
B. Install outdoor units on support structures indicated on Drawings.

3.5 GENERAL REQUIREMENTS FOR PIPING INSTALLATION
A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping and tubing systems. Install piping and tubing as indicated unless deviations to layout are approved on coordination drawings.
B. Install piping and tubing in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
C. Install piping and tubing at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
D. Install piping and tubing above accessible ceilings to allow sufficient space for ceiling panel removal.
E. Install piping and tubing to permit valve servicing.
F. Install piping and tubing at indicated slopes.
G. Install piping and tubing free of sags.
H. Install fittings for changes in direction and branch connections.
I. Install piping and tubing to allow application of insulation.
J. Install groups of pipes and tubing parallel to each other, spaced to permit applying insulation with service access between insulated piping and tubing.
K. Install sleeves for piping and tubing penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 23 05 17 "Sleeves and Sleeve Seals for HVAC Piping."
L. Install escutcheons for piping and tubing penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 23 05 18 "Escutcheons for HVAC Piping."

3.6 INSTALLATION OF SYSTEM CONDENSATE DRAIN PIPING
A. General Requirements for Drain Piping and Tubing:
1. Install a union in piping at each threaded unit connection.
2. Install an adjustable stainless-steel hose clamp with adjustable gear operator on unit hose connections. Tighten clamp to provide a leak-free installation.
3. If required for unit installation, provide a trap assembly in drain piping to prevent air circulated through unit from passing through drain piping. Comply with more stringent of the following:
 a. Details indicated on Drawings.
 b. Manufacturer's requirements.
 c. Governing codes.
 d. In the absence of requirements, comply with requirements of ASHRAE handbooks.
4. Extend drain piping from units with drain connections to drain receptors as indicated on Drawings. If not indicated on Drawings, terminate drain connection at nearest accessible location that is not exposed to view by occupants.
5. Provide each 90-degree change in direction with a Y- or T-fitting. Install a threaded plug connection in the dormant side of fitting or future use as a service cleanout.

B. Gravity Drains:
1. Slope piping from unit connection toward drain termination at a constant slope of not less than one percent.

C. Pumped Drains:
1. If unit condensate pump or lift mechanism is not included with an integral check valve, install a full-size check valve in each branch pipe near unit connection to prevent backflow into unit.

3.7 INSTALLATION OF REFRIGERANT PIPING
A. Install refrigerant piping according to ASHRAE 15 and governing codes.
B. Select system components with pressure rating equal to or greater than system operating pressure.
C. Install piping as short and direct as possible, with a minimum number of joints and fittings.
D. Arrange piping to allow inspection and service of equipment. Install valves and specialties in accessible locations to allow for service and inspection. Install access doors or panels as specified in Section 08 31 13 "Access Doors and Frames" if valves or equipment requiring maintenance is concealed behind finished surfaces.
E. Install refrigerant piping and tubing in protective conduit where installed belowground.
F. Install refrigerant piping and tubing in rigid or flexible conduit in locations where exposed to mechanical damage.
G. Unless otherwise required by VRF HVAC system manufacturer, slope refrigerant piping and tubing as follows:

1. Install horizontal hot-gas discharge piping and tubing with a uniform slope downward away from compressor.
2. Install horizontal suction lines with a uniform slope downward to compressor.
3. Install traps to entrain oil in vertical runs.
4. Liquid lines may be installed level.

H. When brazing, remove or protect components that could be damaged by heat.

I. Before installation, clean piping, tubing, and fittings to cleanliness level required by VRF HVAC system manufacturer.

3.8 INSTALLATION OF METAL HANGERS AND SUPPORTS
A. Comply with requirements in Section 23 05 48.13 "Vibration Controls for HVAC"

3.9 INSTALLATION OF DUCT, ACCESSORIES, AND AIR OUTLETS
A. Where installing ductwork adjacent to equipment, allow space for service and maintenance.
B. Comply with requirements for metal ducts specified in Section 23 31 13 "Metal Ducts."
C. Comply with requirements for nonmetal ducts specified in Section 23 31 16 "Nonmetal Ducts."
D. Comply with requirements for air duct accessories specified in Section 23 33 00 "Air Duct Accessories."
E. Comply with requirements for flexible ducts specified in Section 23 33 46 "Flexible Ducts."
F. Comply with requirements for air diffusers specified in Section 23 37 13.13 "Air Diffusers."
G. Comply with requirements for registers and grilles specified in Section 23 37 13.23 "Registers and Grilles."

3.10 ELECTRICAL INSTALLATION
A. Comply with requirements indicated on Drawings and in applicable Division 26 Sections.
B. To extent electrical power is required for system equipment, components, and controls, and is not indicated on Drawings and addressed in the Specifications, the design for such electrical power shall be delegated to VRF HVAC system provider.

1. Delegated design of electrical power to equipment, components and controls, and associated installation shall be included at no additional cost to Owner.
C. Connect field electrical power source to each separate electrical device requiring field electrical power. Coordinate termination point and connection type with Installer.
D. Comply with requirements in Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables" for wiring connections.

E. Comply with requirements in Section 26 05 26 "Grounding and Bonding for Electrical Systems" for grounding connections.

F. Install nameplate or acrylic label with self-adhesive back for each electrical connection indicating electrical equipment designation and circuit number feeding connection.
 1. Nameplate shall be laminated phenolic layers of black with engraved white letters. Letters at least 1/2 inch high.
 2. Locate nameplate or label where easily visible.

G. Comply with requirements in Section 26 05 33 "Raceways and Boxes for Electrical Systems" for raceway selection and installation requirements for boxes, conduits, and wireways as supplemented or revised in this Section.
 1. Outlet boxes for cables shall be no smaller than 4 inches square by 2-1/8 inches deep with extension ring sized to bring edge of ring to within 1/8 inch of the finished wall surface.
 2. Flexible metal conduit shall not be used.

H. Comply with TIA-569-D for pull-box sizing and length of conduit and number of bends between pull points.

I. Install manufactured conduit sweeps and long-radius elbows if possible.

J. Install metal conduits with grounding bushings and connect with grounding conductor to grounding system.

3.11 SOFTWARE

A. Cybersecurity:
 1. Software:
 a. Coordinate security requirements with IT department.
 b. Ensure that latest stable software release is installed and properly operating.
 c. Disable or change default passwords to password using a combination of uppercase and lower letters, numbers, and symbols at least eight characters in length. Record passwords and turn over to party responsible for system operation and administration.
 2. Hardware:
 a. Coordinate location and access requirements with IT department.
 b. Enable highest level of wireless encryption that is compatible with Owner's ICT network.
 c. Disable dual network connections.
3.12 INSTALLATION OF SYSTEM CONTROL CABLE

A. Comply with NECA 1.

B. Installation Method:

1. Install cables in raceways except as follows:
 a. Within equipment and associated control enclosures.
 b. In accessible ceiling spaces where open cable installation method may be used.
 c. In gypsum board partitions where cable may be enclosed within wall cavity.

2. Conceal raceway and cables except in unfinished spaces.

C. General Requirements for Cabling:

2. Comply with BICSI ITSIMM, Ch. 5, "Copper Structured Cabling Systems."
3. Terminate all conductors; no cable shall contain unterminated elements. Make terminations only at indicated outlets, terminals, and cross-connect and patch panels.
4. Cables may not be spliced and shall be continuous from terminal to terminal. Do not splice cable.
5. Cables serving a common system may be grouped in a common raceway. Install control cable in separate raceway from power wiring. Do not group conductors from different systems or different voltages.
6. Secure and support cables at intervals not exceeding 30 inches and not more than 6 inches from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
7. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii. But not less than radii specified in BICSI ITSIMM, Ch. 5, "Copper Structured Cabling Systems." Install lacing bars and distribution spools.
8. Do not install bruised, kinked, scored, deformed, or abraded cable. Remove and discard cable if damaged during installation and replace it with new cable.
11. Support: Do not allow cables to lie on removable ceiling tiles or access panels.
12. Secure: Fasten securely in place with hardware specifically designed and installed so as to not damage cables.
13. Provide strain relief.
15. Do not bend cables in a radius less than 10 times the cable OD.
16. Use sleeves or grommets to protect cables from vibration at points where they pass around sharp corners and through penetrations.
17. Ground wire shall be copper, and grounding methods shall comply with IEEE C2. Demonstrate ground resistance.

D. Balanced Twisted-Pair Cable Installation:

2. Do not untwist balanced twisted-pair cables more than 1/2 inch at the point of termination to maintain cable geometry.

E. Open-Cable Installation:
 1. Suspend copper cable not in a wireway or pathway a minimum of 8 inches above ceilings by cable supports not more than 30 inches apart.
 2. Cable shall not be run through or on structural members or in contact with pipes, ducts, or other potentially damaging items. Do not run cables between structural members and corrugated panels.

F. Separation from EMI Sources: Comply with BICSI TDMM and TIA-569-D recommendations for separating unshielded cable from potential EMI sources including electrical power wiring and equipment.

3.13 FIRESTOPPING
 A. Comply with requirements in Section 07 84 13 "Penetration Firestopping."
 B. Comply with TIA-569-D, Annex A, "Firestopping."
 C. Comply with BICSI TDMM, "Firestopping" Chapter.

3.14 GROUNDING INSTALLATION
 A. For data communication wiring, comply with TIA-607-B and with BICSI TDMM, "Bonding and Grounding (Earthing)" Chapter.
 B. For low-voltage control cabling, comply with requirements in Section 26 05 26 "Grounding and Bonding for Electrical Systems."

3.15 IDENTIFICATION
 A. Identify system equipment, piping, tubing, and valves. Comply with requirements for identification specified in Section 23 05 53 "Identification for HVAC Piping and Equipment."
 B. Identify system electrical and controls components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."

 1. Identify each control cable on each end and at each terminal with a number-coded identification tag. Each cable shall have a unique tag.

3.16 FIELD QUALITY CONTROL
 A. Manufacturer's Field Service: Engage VRF HVAC system manufacturer's service representative to advise and assist installers; witness testing; and observe and inspect components, assemblies, and equipment installations, including controls and connections.
1. Field service shall be performed by an employee or a factory-trained and Authorized service representative of VRF HVAC system manufacturer whose primary job responsibilities are to provide direct technical support of its products.
 a. Additional factory-authorized representatives may assist with completion of certain activities only if supervised by manufacturer's employee. A factory-authorized representative shall not provide assistance without manufacturer's employee supervision.

2. Manufacturer shall provide on-site visits during the course of construction at installation milestones indicated. System Installer shall coordinate each visit in advance to give manufacturer sufficient notice to plan the visit.
 a. First Visit: Kick-off meeting.
 b. Second Visit: At approximately 75 percent completion of system(s).
 c. Third Visit: Final inspection before system startup.

3. Kick-off Meeting:
 a. Meeting shall include system Installer and other related trades with sole purpose of reviewing VRF HVAC system installation requirements and close coordination required to make a successful installation.
 b. Meeting shall be held at Project site and scheduled at a mutually agreed to time that occurs before the start of any part of system installation.
 c. Meeting shall cover the following as a minimum requirement:
 1) Review of latest issue of Contract Documents, Drawings, and Specifications, relevant to VRF HVAC systems.
 2) Manufacturer's installation requirements specific to systems being installed.
 3) Review of all relevant VRF HVAC system submittals, including delegated-design submittals.
 4) Required field activities related installation of VRF HVAC system.
 5) Project team communication protocol, contact information, and exchange of responsibilities for each party involved, including manufacturer, supplier, system Installer, and other related trades.

4. Site Visits: Activities for each site visit shall include the following:
 a. Meet with VRF HVAC system Installer to discuss field activities, issues, and suggested methods to result in a successful installation.
 b. Offer technical support to Installer and related trades as related to VRF system(s) being installed.
 c. Review progress of VRF HVAC system(s) installation for strict compliance with manufacturer's requirements.
 d. Advise and if necessary assist Installer with updating related refrigerant calculations and system documentation.
 e. Issue a report for each visit, documenting the visit.
 1) Report to include name and contact information of individual making the visit.
 2) Date(s) and time frames while on-site.
5. Final Inspection before Startup:

 a. Before inspection, Installer to provide written request to manufacturer stating the system is fully installed according manufacturer's requirements and ready for final inspection.
 b. All system equipment and operating components shall be inspected. If components are inaccessible for inspection, they shall be made accessible before the final inspection can be completed.
 c. Manufacturer shall provide a comprehensive inspection of all equipment and each operating component that comprise the complete system(s). Inspection shall follow a detailed checklist specific to each equipment and operating component.
 d. Inspection reports for indoor units shall include, but not be limited to, the following:

 1) Unit designation on Drawings.
 2) Manufacturer model number.
 3) Serial number.
 4) Network address, if applicable.
 5) Each equipment setting.
 6) Mounting, supports, and restraints properly installed.
 7) Proper service clearance provided.
 8) Wiring and power connections correct.
 9) Line-voltage reading(s) within acceptable range.
 10) Wiring and controls connections correct.
 11) Low-voltage reading(s) within an acceptable range.
 12) Controller type and model controlling unit.
 13) Controller location.
 14) Temperature settings and readings within an acceptable range.
 15) Humidity settings and readings within an acceptable range.
 16) Condensate removal acceptable.
 17) Fan settings and readings within an acceptable range.
 18) Unit airflow direction within an acceptable range.
 19) If applicable, fan external static pressure setting.
 20) Filter type and condition acceptable.
 21) Noise level within an acceptable range.
 22) Refrigerant piping properly connected and insulated.
 23) Condensate drain piping properly connected and insulated.
 24) If applicable, ductwork properly connected.
 25) If applicable, external interlocks properly connected.
 26) Remarks.

 e. Inspection reports for outdoor units shall include, but not be limited to, the following:
1) Unit designation on Drawings.
2) Manufacturer model number.
3) Serial number.
4) Network address, if applicable.
5) Each equipment setting.
6) Mounting, supports, and restraints properly installed.
7) Proper service clearance provided.
8) Wiring and power connections correct.
9) Line-voltage reading(s) within acceptable range.
10) Wiring and controls connections correct.
11) Low-voltage reading(s) within an acceptable range.
12) Condensate removal acceptable.
13) Noise level within an acceptable range.
14) Refrigerant piping properly connected and insulated.
15) Condensate drain piping properly connected and insulated.
16) Remarks.

f. Installer shall provide manufacturer with the requested documentation and technical support during inspection.
g. Installer shall correct observed deficiencies found by the inspection.
h. Upon completing the on-site inspection, manufacturer shall provide a written report with complete documentation describing each inspection step, the result, and any corrective action required.
i. If corrective action is required by Installer that cannot be completed during the same visit, provide additional visits as required, until deficiencies are resolved and systems are deemed ready for startup.
j. Final report shall indicate the system(s) inspected are installed according to manufacturer's requirements and are ready for startup.

B. Perform the following tests and inspections with the assistance of manufacturer's service representative:

1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
2. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

C. Refrigerant Tubing Positive Pressure Testing:

1. Comply with more stringent of VRF HVAC system manufacturer's requirements and requirements indicated.
2. After completion of tubing installation, pressurize tubing systems to a test pressure of not less than 1.5 times VRF HVAC system operating pressure, but not less than 600 psig, using dry nitrogen.
3. Successful testing shall maintain a test pressure for a continuous and uninterrupted period of 24 hours. Allowance for pressure changes attributed to changes in ambient temperature are acceptable.
4. Prepare test report to record the following information for each test:
 a. Name of person starting test, company name, phone number, and e-mail address.
 b. Name of manufacturer's service representative witnessing test, company name, phone number, and e-mail address.
 c. Detailed description of extent of tubing tested.
 d. Date and time at start of test.
 e. Test pressure at start of test.
 f. Outdoor temperature at start of test.
 g. Name of person ending test, company name, phone number, and e-mail address.
 h. Date and time at end of test.
 i. Test pressure at end of test.
 j. Outdoor temperature at end of test.
 k. Remarks:

5. Submit test reports for Project record.

D. Refrigerant Tubing Evacuation Testing:

1. Comply with more stringent of VRF HVAC system manufacturer's requirements and requirements indicated.
2. After completion of tubing positive-pressure testing, evacuate tubing systems to a pressure of 500 microns.
3. Successful testing shall maintain a test pressure for a continuous and uninterrupted period of one hour(s) with no change.
4. Prepare test report to record the following information for each test:
 a. Name of person starting test, company name, phone number, and e-mail address.
 b. Name of manufacturer's service representative witnessing test, company name, phone number, and e-mail address.
 c. Detailed description of extent of tubing tested.
 d. Date and time at start of test.
 e. Test pressure at start of test.
 f. Outdoor temperature at start of test.
 g. Name of person ending test, company name, phone number, and e-mail address.
 h. Date and time at end of test.
 i. Test pressure at end of test.
 j. Outdoor temperature at end of test.
 k. Remarks:

5. Submit test reports for Project record.
6. Upon successful completion of evacuation testing, system shall be charged with refrigerant.

E. System Refrigerant Charge:

1. Using information collected from the refrigerant tubing evacuation testing, system Installer shall consult variable refrigerant system manufacturer to determine the correct system refrigerant charge.
2. Installer shall charge system following VRF HVAC system manufacturer's written instructions.
3. System refrigerant charging shall be witnessed by system manufacturer's representative.
4. Total refrigerant charge shall be recorded and permanently displayed at the system's outdoor unit.

F. Products will be considered defective if they do not pass tests and inspections.

G. Prepare test and inspection reports.

3.17 STARTUP SERVICE

A. Engage a VRF HVAC system manufacturer's service representative to perform system(s) startup service.
 1. Service representative shall be an employee or a factory-trained and authorized service representative of VRF HVAC system manufacturer.
 2. Complete startup service of each separate system.
 3. Complete system startup service according to manufacturer's written instructions.

B. Startup checks shall include, but not be limited to, the following:
 1. Check control communications of equipment and each operating component in system(s).
 2. Check each indoor unit's response to demand for cooling and heating.
 3. Check each indoor unit's response to changes in airflow settings.
 4. Check each indoor unit and outdoor unit for proper condensate removal.
 5. Check sound levels of each indoor and outdoor unit.

C. Installer shall accompany manufacturer's service representative during startup service and provide manufacturer's service representative with requested documentation and technical support during startup service.
 1. Installer shall correct deficiencies found during startup service for reverification.

D. System Operation Report:
 1. After completion of startup service, manufacturer shall issue a report for each separate system.
 2. Report shall include complete documentation describing each startup check, the result, and any corrective action required.
 3. Manufacturer shall electronically record not less than two hours of continuous operation of each system and submit with report for historical reference.
 a. All available system operating parameters shall be included in the information submitted.

3.18 ADJUSTING

A. Adjust equipment and components to function smoothly, and lubricate as recommended by manufacturer.
B. Adjust initial temperature and humidity set points. Adjust initial airflow settings and discharge airflow patterns.

C. Set field-adjustable switches and circuit-breaker trip ranges according to VRF HVAC system manufacturer's written instructions, and as indicated.

3.19 PREVENTATIVE MAINTENANCE

A. Provide a one-year preventative maintenance agreement with the manufacturer's service representative. Agreement shall include 4 visits, one per quarter, to check on operation of VRF system and address owner control questions and issues. Service representative shall make programming adjustments to improve performance and resolve owner issues and complaints.

B. Filter changes are excluded from the preventative maintenance agreement.

C. Two of the four service visits shall also include preventive maintenance, repair or replacement of worn or defective components, lubrication, cleaning, and adjusting as required for proper equipment and system operation. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.

3.20 PROTECTION

A. Protect products from moisture and water damage. Remove and replace products that are wet, moisture damaged, or mold damaged.

B. Protect equipment from physical damage. Replace equipment with physical damage that cannot be repaired to new condition. Observable surface imperfections shall be grounds for removal and replacement.

C. Protect equipment from electrical damage. Replace equipment suffering electrical damage.

D. Cover and seal openings of equipment to keep inside of equipment clean. Do not remove covers until finish work is complete.

3.21 SOFTWARE SERVICE AGREEMENT

A. Technical Support: Beginning at Substantial Completion, service agreement shall include software support for two years.

B. Upgrade Service: At Substantial Completion, update software to latest version. Install and program software upgrades that become available within two years from date of Substantial Completion. Upgrading software shall include operating system and new or revised licenses for using software.

1. Upgrade Notice: At least 30 days to allow Owner to schedule and access the system and to upgrade computer equipment if necessary.
3.22 DEMONSTRATION

A. Engage a VRF HVAC system manufacturer's employed training instructor or factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain entire system.

B. Instructor:
 1. Instructor shall be factory trained and certified by VRF HVAC system manufacturer with current training on the system(s), equipment, and controls that are installed.
 2. Instructor's credentials shall be submitted for review by Architect before scheduling training.
 3. Instructor(s) primary job responsibility shall be Owner training.
 4. Instructor(s) shall have not less than three years of training experience with VRF HVAC system manufacturer and past training experience on at least three projects of comparable size and complexity.

C. Schedule and Duration:
 1. Schedule training with Owner at least 20 business days before first training session.
 2. Training shall occur before Owner occupancy.
 3. Training shall be held at mutually agreed date and time during normal business hours.
 4. Each training day shall not exceed eight hours of training. Daily training schedule shall allow time for one-hour lunch period and 15-minute break after every two hours of training.
 5. Perform not less than 16 total hours of training.

D. Location: Owner shall provide a suitable on-site location to host classroom training.

E. Training Attendees: Assume three people.

F. Training Attendance: For record purposes, document training attendees at the start of each new training session. Record attendee's name, signature, phone number, and e-mail address.

G. Training Format: Individual training modules shall include classroom training followed by hands-on field demonstration and training.

H. Training Materials: Provide training materials in electronic format to each attendee.
 1. Include instructional videos showing general operation and maintenance that are coordinated with operation and maintenance manuals.
 2. Video record each classroom training session and submit an electronic copy to Owner before requesting Owner acceptance of training.

I. Acceptance: Obtain Architect or Owner written acceptance that training is complete and requirements indicated have been satisfied.

END OF SECTION 23 81 29
SECTION 23 82 39.13
CABINET UNIT HEATERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes cabinet unit heaters with centrifugal fans and electric-resistance heating coils.

1.3 DEFINITIONS

A. CWP: Cold working pressure.
B. DDC: Direct digital control.
C. PTFE: Polytetrafluoroethylene plastic.
D. TFE: Tetrafluoroethylene plastic.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include rated capacities, operating characteristics, furnished specialties, and accessories.
B. Shop Drawings:
 1. Include plans, elevations, sections, and details.
 2. Include location and size of each field connection.
 3. Include details of anchorages and attachments to structure and to supported equipment.
 4. Include equipment schedules to indicate rated capacities, operating characteristics, furnished specialties, and accessories.
 5. Indicate location and arrangement of integral controls.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For cabinet unit heaters to include in emergency, operation, and maintenance manuals.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. INDEECO.
 2. King
 3. Marley Engineered Products (Berko).
 4. Reznor
 5. Trane.

2.2 DESCRIPTION

A. Factory-assembled and -tested unit complying with AHRI 440.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Comply with UL 2021.

2.3 PERFORMANCE REQUIREMENTS

A. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and Startup."

B. ASHRAE/IESNA 90.1 Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6 - "Heating, Ventilating, and Air-Conditioning."

2.4 COIL SECTION INSULATION

A. Insulation Materials: ASTM C1071; surfaces exposed to airstream shall have aluminum-foil facing to prevent erosion of glass fibers.
 1. Thickness: 1/2 inch.
 2. Thermal Conductivity (k-Value): 0.26 Btu x in./h x sq. ft. at 75 deg F mean temperature.
 3. Fire-Hazard Classification: Maximum flame-spread index of 25 and smoke-developed index of 50 when tested according to ASTM E84.
 4. Adhesive: Comply with ASTM C916 and with NFPA 90A or NFPA 90B.
 5. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

2.5 COILS

A. Electric-Resistance Heating Coil: Nickel-chromium heating wire, free from expansion noise and hum, mounted in ceramic inserts in galvanized-steel housing; with fuses in terminal box for
overcurrent protection and limit controls for high-temperature protection. Terminate elements in stainless-steel machine-staked terminals secured with stainless-steel hardware.

2.6 INDUSTRIAL SUSPENDED HEATERS

A. Cabinet material: 18 and 20 gauge steel with epoxy/polyester powder paint, almond.

B. Horizontal Unit provided with wall or ceiling mounting brackets.

C. Adjustable louvers to direct airflow.

D. Fan: Forward curved, double width, centrifugal, directly connected to motor; thermoplastic or painted-steel wheels and aluminum, painted-steel, or galvanized-steel fan scroll.

E. Motor: Permanently lubricated, thermally protected.

F. Wiring Terminations: Connect motor to chassis wiring with plug connection.

G. Basic Unit Controls:
 1. Built-in, manually adjustable thermostat.

H. Electrical Connection: Factory-wired motors and controls for a single field connection.

2.7 CABINET SURFACE MOUNTED AND RECESSED HEATERS

A. Recessed Enclosure: Back box designed as a recessed rough-in box in masonry, T-bar, or frame ceiling. 20 gauge galvanized steel with knockouts. Enclosure shall be recessed a maximum of 8 inches into the ceiling space. Louvered faceplate of 20 gauge steel with baked enamel finish in color selected by architect.

B. Surface Mounted: The surface mounting plate shall be designed for duty as a rough-in box on masonry, T-Bar, or frame ceiling construction. The surface mounting plate shall be 20 gauge galvanized steel and shall contain knockouts through which field wiring leads are brought. Enclosure to extend a maximum of 6 inches into the heated space. The louvered surface wrapper shall be contoured aluminum extrusion and 20 gauge sheet metal combination with rounded corners. The surface wrapper shall be electrostatically painted by a baked enamel process, in a color selected by the architect.

C. Ceiling mounted unit with fan forced air capable of reaching the ground from a 12 feet high ceiling. Heater shall have adjustable airflow patterns, wide for lower ceilings, narrow for higher ceilings, and an asymmetrical pattern.

D. Motor: Permanently lubricated, thermally protected.

E. Wiring Terminations: Connect motor to chassis wiring with plug connection.

F. Basic Unit Controls:
 1. 24 V control relay. Coordinate with electrical contractor to provide low voltage power or provide factory transformer accessory.
2. Wall mounted temperature sensor: Temperature sensor only without adjustment or display. Honeywell TR20 or equal. Reference section 230923 “Direct Digital Control System for HVAC” and section 230923.27 “Temperature Instruments”

G. Electrical Connection: Factory-wired motors and controls for a single field connection.

2.8 CAPACITIES AND CHARACTERISTICS (refer to drawing schedules).

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas to receive cabinet unit heaters for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for electrical connections to verify actual locations before unit-heater installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install cabinet unit heaters to comply with NFPA 90A.

B. Install wall-mounted thermostats and switch controls in electrical outlet boxes at heights to match lighting controls. Verify location of thermostats and other exposed control sensors with Drawings and room details before installation.

C. Install suspended heater at minimum 8 feet above the ground.

3.3 CONNECTIONS

A. Comply with safety requirements in UL 1995.

B. Ground equipment according to Section 26 05 26 "Grounding and Bonding for Electrical Systems."

C. Connect wiring according to Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."

3.4 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
2. Operate electric heating elements through each stage to verify proper operation and electrical connections.
3. Test and adjust controls and safety devices. Replace damaged and malfunctioning controls and equipment.

B. Units will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

3.5 ADJUSTING

A. Adjust initial temperature set points.

3.6 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain cabinet unit heaters.

END OF SECTION 23 82 39.13
SECTION 26 00 00

GENERAL PROVISIONS – ELECTRICAL

PART 1 – GENERAL

1.1 RELATED DOCUMENTS

A. The general provisions of the Contract, including the Conditions of the Contract (General, Supplementary and other conditions, if any) and Division 1 as appropriate, apply to the work of this Section.

B. The specification or drawing and the design features or resulting construction disclosed, are the property of Furlow Associates, Inc., and shall not be reproduced without written permission.

1.2 DESCRIPTION OF WORK

A. Provide all materials, equipment, labor, services and all appurtenances required to completely install and satisfactorily operate the various systems. The items listed below are for general guidance only and do not necessarily include the entire requirements for the project.

1. Coordination with other trades
2. Electrical service
3. Interior feeders
4. Lighting and power panels
5. Lighting branch wiring
6. Power wiring
7. Lighting fixtures and lamps
8. Wiring devices
9. Connections for electrically operated equipment
10. Fire alarm and detection system
11. Telecommunications and Special Systems Raceway Systems
12. Lightning protection system
13. Related work as herein described or otherwise defined under the heading "Related Work”.

B. Wherever the term "provide" is used, it shall be understood to mean both "furnish" and "install".

1.3 RELATED WORK

A. Equipment specified in sections of Divisions 1 thru 23 that require electric power supply.

B. Work related to this trade as defined on the following contract drawings:
 Architectural/Structural
 HVAC
 Plumbing

1.4 SITE CONDITIONS

A. Attention of all bidders is called to the necessity for a careful inspection of the site, its present condition and encumbrances, the extent of the work, the protection to be afforded to adjacent...
properties or structure, availability of utilities, the extent and nature of the material required to be excavated and the amount of fill and removal. He shall also determine local or site limitations which will affect construction.

1.5 PERMITS, INSPECTIONS AND ORDINANCES

A. All work shall be executed and inspected in accordance with local and state ordinances, rules and regulations and the requirements of public utilities having jurisdiction. The contractor shall secure and pay for all permits, inspections and connections required.

B. The Electrical Contractor shall furnish a certificate of inspection to the Owner at the time of completion.

C. Requirements of the following organization shall be considered minimum:

1. National Electrical Code
3. OSHA
4. Local City and County Codes

D. Reference to technical societies, trade organizations and governmental agencies are in accordance with the following:

1. ANSI - American National Standards Institute
2. ASTM - American Society for Testing Materials
3. IEEE - Institute of Electrical and Electronics Engineers, Inc.
4. NEC - National Electrical Code
5. NEMA - National Electrical Manufacturer's Association
6. NFPA - National Fire Protection Association
7. MSS - Manufacturer's Standardization Society
8. IES - Illuminating Engineers Society
9. ETL - Engineering Testing Laboratories
10. EIA - Electronic Industries Association
11. OSHA - Occupational Safety and Health Administration
12. Federal Specifications
13. UL - Underwriters Laboratories, Inc.

1.6 QUALITY ASSURANCE

A. Provide adequate supervision of labor force to assure that all aspects of the contract documents are fulfilled.

B. Contractor to provide manufacturer’s written certification that the following equipment has been installed and will operate correctly and in accordance with the manufacturer’s warranty requirements.

Fire Alarm and Detection System

C. Testing:

1. After completion of the work, the entire wiring system shall test entirely free from grounds, short
circuits, opens, overloads and improper voltage.

2. The grounding system shall be tested for a resistance of 25 ohms or less.

3. Perform testing as follows: Arrange and pay for all tests, provide all equipment, materials and labor to perform test. Notify Engineer and Owner three (3) working days before tests are to be made. Conduct tests in the presence of the Engineer or authorized representative. Repeat tests after defects are corrected.

D. Special Engineering Services: In the instance of complex specialized electrical power and signaling systems, and other similar systems, the installation and final connections of these systems shall be made by and/or under the supervision of a competent installation and service engineer who shall be a representative of the respective equipment manufacturer. Any and all expenses of these installation and service engineers shall be borne by this Contractor.

1.7 COORDINATION

A. As a requirement of this project, the Electrical Contractor shall furnish coordination for his equipment and layouts with other subcontractors furnishing equipment and services for Divisions 1 thru 23. Any and all contractors who install their equipment or furnish services prior to coordination, any contractor who changes their equipment or services after coordination has occurred, without notifying associated subcontractors, shall be held responsible for making all required changes with no additional cost to the Owner. Or delay in construction time. This coordination will include conduit layout to allow access to equipment for maintenance.

B. The Mechanical, Plumbing and Electrical Contractors are responsible to coordinate all manufacturer's recommended circuit breakers, starters, disconnects and fuse sizes for all equipment. Submission of a shop drawing will certify that this has been completed.

C. The drawings and specifications reflect the type, number and size of services required for the equipment the design is based upon. Should the supplying subcontractor elect to furnish an alternate piece of equipment requiring different services and/or space conditions, he shall inform the subcontractor furnishing those services and be held responsible to pay for all required changes as part of this contract.

1.8 SUBMITTALS

A. Shop Drawings:

1. Shop drawings shall be submitted in accordance with Division 1 of these specifications except where herein modified.

NOTE: Submittals will only be reviewed once and resubmittals will be reviewed once. Any other submittals will be billed to the Contractor at the Engineer's standard rates.

2. Shop drawings comprising complete catalog cuts, performance test data for electrical equipment as required by other sections of Division 26 shall be submitted for review checking. The Contractor shall review these shop drawings for conformance to contract documents prior to submission and affix contractor's signature to each submittal certifying that this review has been done. By approving and submitting shop drawings, product data, wiring diagrams and similar
materials, the Electrical Contractor represents that he and/or his subcontractor has determined and verified materials, field measurements and field construction data that relates to the work, and has checked and coordinated this information with all of the Divisions 1 thru 23 subcontractors.

3. All shop drawing submittals shall have the following identification data, as applicable, contained therein or permanently adhered thereto:

a. Project name

b. Project number

c. Sub-Contractor's, Vendor's and/or manufacturer's name and address.

d. Product identification.

e. Identification of deviation from the contract documents.

f. Applicable contract drawings and specification section number.

g. Shop drawing title, drawing number, revision number, and date of drawing and revision.

h. Resubmit revised or additional shop drawings as requested.

i. Wherever shop drawings or vendor's standard data sheets indicate work to be done "by others", it shall be the responsibility of the Contractor making the submission to identify by name, the Contractor who is to do this work. If the Contractor named is other than the Contractor making the submission, the shop drawing submission must be reviewed by the named Contractor and bear his mark of approval, prior to submission to the Architect/Engineer.

j. Where equipment proposed differs from that shown on the drawings or specified, he shall submit for approval drawings showing the manner in which the layout is affected by the substitution.

k. The Contractor shall keep one copy of approved shop drawings at the job site, filed in a suitable metal container. The shop drawings shall be cataloged and kept in good repair, and shall be available for use by the Owner, Architect and Engineer.

l. No equipment shall be ordered, fabricated, etc., before approval of shop drawings.

1.9 SUBSTITUTIONS

A. Whenever a material, article, piece of equipment or system is identified in the following specification or indicated on the drawings by reference to manufacturers' or vendors' names, trade names, catalog numbers or the like, it is so identified for the purpose of establishing the basis of the Bid.

B. Substitution approval must be obtained and included as an addendum item prior to the submission of the bid. An approved substitution shall not be considered as an approval for the contractor or an equipment vendor to deviate from the written portion of the specifications unless so stated in the addendum.
C. The drawings illustrate the space allocated for equipment and the Contractor shall install the equipment accordingly. If changes are required in the building or arrangement due to substitution of equipment, the Contractor making the substitution must pay for the necessary modifications.

D. The listed equivalent or substituted manufacturers along with the bidding related contractor shall be completely responsible to comply with all requirements on all contract documents. This shall include, but shall not be limited to space requirements, code clearances, the type, horsepower, capacities, number and size of services required from other trades, including all required ancillary items furnished and installed by other trades. If the manufacturer or related bidding contractor does not comply with these requirements, then they shall be responsible for any and all additional costs associated with the changes required by other trades.

1.10 LUBRICATION
 A. Furnish, install and maintain all required lubrication of any equipment operated prior to acceptance by the Owner. Lubrication shall be as recommended by the equipment manufacturer.
 B. Provide one year's supply of lubricants to Owner at date of acceptance.
 C. Verify that required lubrication has taken place prior to any equipment start-up.

1.11 ADJUSTMENT & CLEANING
 A. Adjust and clean equipment to be placed in proper operation condition.

1.12 EQUIPMENT START-UP
 A. Verify proper installation by manufacturer or his representative.
 B. Advise General Contractor 2 days prior to actual start-up.
 C. Verify proper operation. Obtain signed statement by manufacturer or his representative that equipment is operating within warranty requirements. Submit statement to General Contractor.

1.13 OPERATION AND MAINTENANCE INSTRUCTIONS
 A. Properly and fully instruct Owner's personnel in the operation and maintenance of all systems and equipment.
 B. Insure that the Owner's personnel are familiar with all operations to carry on required activities.
 C. Such instruction shall be for each item of equipment and each system as a whole.
 D. Provide report that instruction has taken place. Include in the report the equipment and/or systems instructed, date, contractor, Owner's personnel, vendor, and that a complete operating and maintenance manual has been reviewed.
 E. Manual shall include all instructions on operation, maintenance, repair parts list, lubrication requirements, brochures, catalogue cuts, wiring diagrams, piping diagrams, control sequences, service
requirements, names and addresses of vendors, suppliers and emergency contacts.

F. Submit manuals for review prior to operating instruction period. Refer to Operating and Maintenance Manuals.

G. Training

1. Electrical Contractor shall be responsible for coordination of Owner training. Factory employed technician(s) shall provide training, including demonstration and education on the system capabilities, operation and maintenance. Training sessions shall be minimum 4 hours (maximum 8 hours), and shall be provided for each shift of workers. Scheduled training shall be coordinated at least two (2) weeks in advance with the Owner and the Commissioning Agent.

2. Video Documentation: Furnish three (3) copies of a professionally taped video and three (3) copies of professionally prepared drawings demonstrating the following:
 - Fire Alarm System
 - VFD’s

1.14 TOOLS

A. All equipment furnished by the Contractor which requires special tools or devices other than those normally available to the maintenance or operating staff shall be furnished in duplicate to the Owner, sufficiently marked, packed or boxed for staff usage. The tools provided shall be listed by the Contractor identified as to their use or the equipment applicable in a written transmittal to the Owner.

1.15 CLEANING AND FINISHING

A. After equipment start-up and all operating tests have been made and the system pronounced satisfactory, each respective Contractor shall go over the entire project, clean all equipment, etc., installed by him and leave in a clean and working condition. Any surfaces found marred after this final cleaning shall be refinished or replaced by each Contractor at no cost to the Owner.

1.16 OPERATING AND MAINTENANCE MANUALS

A. Complete sets of instructions containing the manufacturer’s operating and maintenance instructions for each piece of equipment shall be furnished to the Engineer for review. Each set shall be furnished before the contract is completed. The following identification shall be inscribed on the covers: the words “OPERATING AND MAINTENANCE INSTRUCTIONS”, the name and location of the building, the name of the Contractor and the name of the Architect and Engineer. Flysheet shall be placed before instructions covering each subject. The instruction sheets shall be approximately 8-1/2 by 11 inches, with large sheets of drawings folded in. The instructions shall include, but shall not be limited to, the following:

 Approved wiring and control diagrams, with data to explain the detailed operation and control of each component.

 A control sequence describing start-up, operation and shutdown.

 Operating and maintenance instructions for each piece of equipment, including lubrication
instructions.

Manufacturer's bulletins, cuts and descriptive data.

Parts lists and recommended spare parts.

B. If Operations and Maintenance Manuals are submitted electronically, they shall include all elements listed above in one PDF document. Document shall contain index and bookmarks to sections listed in the index. Separate documents and/or separate submittals for O&Ms will not be reviewed.

C. Provide copy of approved O&Ms to the Owner on both disk and hard copy. Confirm quantity with the Owner.

1.17 SERVICE INTERRUPTION

A. All service interruptions to the electric or related systems, whether during regular working hours or at any other time, must be coordinated with the Owner. All such interruptions shall be so scheduled and planned as to require a minimum of time and shall occur only during a mutually satisfactory period.

1.18 INTERPRETATION OF SYSTEMS

A. The interpretation of the Architect will be final in the event there is a lack of understanding of the full scope or requirements of the systems under this contract.

1.19 LAYOUTS

A. On small scale drawings, i.e., 1/8" - 1/4", the approximate location of the electrical branch circuit items such as receptacle, telephone, grounding and equipment outlets are shown to indicate their existence. The exact location of these items and their related raceways are governed by structural conditions, coordination with the work of other trades and the Architect's final decision. By accepting a contract, the Contractor agrees to install the work in accordance with the above statement and within the contract price.

PART 2 – PRODUCTS

2.1 MATERIAL

A. All materials shall be new and of good quality. Material shall conform to all accepted trade standards, codes, ordinances, regulations, or requirements governing same, and shall be approved before being installed.

B. The Architect reserves the right to require the Contractors to submit samples of any or all articles or materials to be used on the project.

C. Where any device or equipment is herein referred to in the singular number, such as "the panel", this reference shall be deemed to apply to as many such devices or equipment as are required to complete the installation as shown on the drawings or specified.

D. All materials and equipment used in the work shall comply with the standards of recognized authorities such as UL, NEMA, IEEE, ETL, IES and EIA in every instance where such standards have
been established for the particular type of materials to be installed.

E. All similar pieces of equipment or materials of the same type or classification used for the same purpose shall be of the same manufacturer.

F. All manufactured equipment shall have factory applied finishes.

2.2 CONCRETE

A. Concrete shall be in accordance with Section 03300, or ACI-613.

B. The 28-day minimum compressive strength shall be 3000 psi.

2.3 WARRANTY

A. Wherever in the specification sections of this division, reference is made to a specific warranty period, this warranty shall be in addition to and not a limitation of other rights the Owner may have against the Contractor under the contract documents.

PART 3 – EXECUTION

3.1 INSPECTION

A. Prior to performing the work, examine areas and conditions; check and verify all dimensions, under which the work is to be installed and notify the Architect in writing of conditions and dimensions detrimental to the proper and timely completion of the work. Do not proceed until authorization is given by the Architect.

3.2 LAYING OUT WORK

A. The Contractor is responsible for the accuracy of all lines, elevations, and measurements, grading and utilities and must exercise proper precaution to verify figures shown on drawings before laying out work and will be held responsible for any error resulting from his failure to exercise such precaution.

3.3 WORKMANSHIP

A. Install all work neat, trim, parallel and plumb with building lines in accordance with standard trade practice acceptable to the Architect.

3.4 PRODUCT DELIVERY, STORAGE AND HANDLING

A. Protect all equipment and materials from damage during transportation, storage and installation.

3.5 PROTECTION

A. Protect all work, equipment and materials during construction up to the time of acceptance by the Owner.

Arrange and design the protection to prevent damage from infiltration or dust, debris, moisture, chemicals and water. Cap or plug electrical raceways.
B. Protect all surfaces against damage from welding, cutting, burning, or similar construction functions. This protection shall be accomplished by care in operations, covering and shielding. Special care is directed to exposed finished masonry, metal or wood surfaces and painted surfaces. Corrective measures required shall be accomplished by the trade which made the original installation when and as directed by the Architect at the expense of the Contractor.

C. Cover and protect all lighting fixtures as may be necessary until completion of the work. Replace damaged fixtures or damaged fixture parts as directed by the Architect at no cost to the Owner.

D. Do not install devices, polished metal fittings or parts until adjoining tile or masonry work is completed.

E. Maintain and replace protective covering when so directed by the Architect until the work is ready for acceptance.

3.6 CUTTING & PATCHING

A. Furnish information to the General Contractor as to sizes and locations of recesses required to install panel boxes and other equipment or devices. If the information is late or incorrect, this Contractor shall, at his own expense, have the trade which originally installed the work do the required cutting and patching.

B. Perform all cutting of concrete or other material for passage of raceways as required to install the work.

C. Close all such openings around raceways with material as specified under the heading "SEALING".

D. Install concealed work in place for the mason to wall-in as he carries up the walls; otherwise, this Contractor will be responsible as stated in the first paragraph.

3.7 SEALING

A. Where raceways pass through fire-rated walls and floors, seal opening with RTV foam.

B. Seal raceways entering the building to conform to the requirements of the NEC.

3.8 OFFSETS AND MODIFICATIONS

A. Furnish and install all offsets necessary to install the work and to provide clearance for the work of other trades.

B. Maintain adequate clearance as directed by the Architect/Engineer.

C. Incidental modifications necessary to the installation shall be made as necessary and at the direction and/or approval of the Architect.

3.9 SLEEVES

A. Furnish and install sleeves for all raceways passing through floors and walls. Sleeves shall be Schedule 40 galvanized steel pipe and shall extend 1" above finished floor surface. Where sleeves are...
set in interior walls, they shall finish flush with the wall.

B. Furnish and install watertight sleeves for all raceways extending through foundation walls into crawl spaces, mechanical rooms or basement areas from building exterior or from unexcavated areas to building interior. Sleeve shall consist of extra heavy pipe sleeve with anchor flange. Space between raceway and the sleeve shall be sealed with modular wall and casing seal similar to Thunderline Corporation "Link-Seal", Metraseal or approved substitute. Install seal in strict accordance with the manufacturer's recommendations.

3.10 EXCAVATION

A. The excavation shall be of the open-trench method and to the depths and widths as may be necessary. The Contractor shall do all excavation required in connection with his work. Bottoms of trenches shall be excavated to a uniform grade. All materials excavated shall be deposited on the side of the trenches and beyond the reach of slides. Excavated material shall not be piled where it will interfere with traffic.

B. No conduits shall be bedded directly on rock. They shall be cushioned by a 6-inch layer of crushed stone or gravel of selected grade, of size to pass through a 3/4" mesh sieve. Not less than 30% shall be fine which will pass through a 3/8" mesh sieve.

C. Where excavation is required through tree root areas, roots shall be saw cut, treated with pruning paint and covered with burlap. Burlap shall be wet and shall be protected and maintained in a moist condition during entire period of exposure. Backfill shall be carefully placed and hand-tamped to a minimum of 6" above roots.

D. Bidder shall base his estimate upon the presumption that all excavation required in the performance of this Contract will be earth. If rock is encountered, Contractor will be reimbursed for the additional work required to remove same based upon the unit cost established in the proposal.

E. All detached boulders or loose stone not exceeding 1 cubic yard, all topsoil, sand, gravel, clay, rubbish, walls or other subgrade construction, and all other materials of every name and nature which can be removed without breaking up with pneumatic breakers or explosives shall be considered earth excavation.

F. All rocks, attached boulders, boulders exceeding 1 cubic yard, walls or other subgrade construction and materials which cannot be removed without breaking up with pneumatic equipment or explosives shall be considered rock excavation.

G. Before commencing any rock excavation for which extra compensation is to be paid, a rock contour drawing shall be prepared by the Contractor and checked by the Architect. The width shall be based on 2'-0". This rock contour drawing and width allowance will be used to compute the quantity of rock for which the Contractor will be reimbursed at the unit price established.

3.11 SHORING AND PUMPING

A. The Contractor shall provide all shoring, bracing or sheet piling necessary to maintain the banks of his excavation and shall take out same as the work progresses and filling in has been accomplished. Shoring shall be in accordance with OSHA Standards.
B. The arrangement of shoring must be such as to prevent any movement of the trench banks and consequent strains on the conduits. Shoring shall be provided to prevent damage to work installed by other trades.

C. The Contractor shall do all pumping required to keep his excavations free of water. The water shall be conveyed in piping or watertight troughs a sufficient distance that it will flow from the site and not affect other work being performed.

3.12 BACKFILLING

A. After work in trenches has been completed, they shall be filled with good, clean, fine earth in 8" layers and shall be pneumatically tamped before the next layer of material has been filled in. The backfill shall be free of excavated rock, cinders, stones, brickbats or other debris.

B. Wherever rock is removed, the Contractor shall secure and fill select clean earth to a minimum depth of 3'-0" above the top of the conduit. Unless otherwise indicated, no rock shall be deposited in the trench fill. This clean earth fill shall be procured other than from the site unless permission for earth borrow from the site is granted by the Architect. If site borrow is permitted, the topsoil removal, relocation and finished grading will be accomplished as directed by the Architect.

C. Under no circumstances shall excavated material be left where it will interfere with the Owner's or other Contractor's operations.

D. All earth and other materials taken from the trenches and not required for backfilling shall be deposited where directed, or removed from the premises as directed by the Architect.

E. Any rock removed from the excavation shall be removed from the project site by the Contractor.

F. Trenches which pass under wall footings or within 18" of column footings shall be backfilled with clean concrete. To secure adequate foundation support, the method and depositing of the concrete fill shall be as directed by the Architect. To prevent the concrete from adhering to the conduits, necessary conduit protection shall be applied.

3.13 FOUNDATIONS FOR EQUIPMENT/HOUSEKEEPING PADS

A. Provide all foundations for equipment installed under this specification Division and/or as indicated on plans.

B. Construct concrete foundations on structural floor slabs or on grade in the manner or as required by the approved shop drawing details of the manufacturer or the utility company.

C. Provide and install concrete.

D. Metal reinforcement shall be deformed steel bars or cold drawn steel wire, or fabricated forms of these materials as required.

E. Furnish anchors of size and number noted, with bottom plates and sleeves.

F. Forms shall conform to the shape, lines, grades, and dimensions of the concrete, required by the approved shop drawing details of the equipment manufacturers, or approved on the Contractor's
Equipment room layouts. They shall be sufficiently tight to prevent leakage of mortar and shall be braced or tied together to maintain position and shape. Forms shall be moved in such manner as to insure the complete safety of the structure.

G. All exposed corners or edges shall be chamfered. All burrs, fins, irregularities of forming or spillage shall be removed and the surface float or trowel finished to a smooth, straight surface.

H. Housekeeping Pads: Provide 4” thick, and size as required by approved shop drawings, concrete pad for all equipment installed on floor. Pad shall be steel reinforced with all edges and surfaces finished as described above. When installing over existing concrete, surface of existing pad shall be prepped using a bushing tool to rough in entire surface. Whether pouring over new or existing concrete, provide U-shaped rebar anchors set in epoxy to secure pad to pad.

3.14 ITEMS RECESSED IN MASONRY CONSTRUCTION

A. Wherever boxes, electric panels, equipment, devices, access panels, and similar items of electrical construction are installed in exposed masonry construction, the Contractor shall utilize and submit for approval items of such size, height, and arrangement to conform to the corresponding masonry unit. The Contractor shall include as part of this contract, the necessary offsets, adjustments and relocations necessary to conform with the instructions of the Architect as to the final location of the equipment item in the exposed masonry.

B. As part of his contract and before the purchase of the items hereinbefore mentioned, the Contractor shall notify the Architect of such modifications in the building arrangement that will be necessary to accommodate the proposed equipment.

3.15 ROOF FLASHINGS

A. All conduit extending through roof shall be provided with watertight flashing and counterflashing as hereinafter described.

B. Furnish and install standard counterflashing fittings on the conduit or properly designed clamped counterflashing with caulking as directed by the Architect/Engineer.

3.16 PAINTING

A. Refinish all factory applied finishes that have been damaged to match the original finish as directed by the Architect.

B. Prime coat all steel furnished under this Division with material and methods as described in another Section under the heading "PAINTING".

3.17 EQUIPMENT CONNECTIONS

A. Provide required wiring, raceways and final connections for all equipment provided by this Division and Divisions 1 thru 23.

B. Make final connections in accordance with wiring diagrams obtained from equipment manufacturer.

C. Rough-in in accordance with approved shop drawings from the manufacturer or supplier of the

Tetra Tech

GENERAL PROVISIONS – ELECTRICAL

26 00 00-12
equipment. Rough-in prior to shop drawing approval will be subject to change without adjustment to contract cost.

3.18 BALANCING

A. The system of feeder and branch circuits for power and lighting shall be connected to panel busses in such a manner as to electrically balance the connected load as close as is practicable. Should the Owner disclose any unfavorable conditions reacting on the service, this Contractor shall make such changes as may be suggested to balance the load.

3.19 GUARANTEE

A. All work shall be guaranteed to be free from defects for a period of one year of operation from date of acceptance by the Owner unless otherwise specified in Division 1.

B. Guarantee shall be extended on an equal time basis for all non-operational periods due to failure within the guarantee period.

END OF SECTION 26 00 00
SECTION 26 00 55
ELECTRICAL IDENTIFICATION

PART 1 – GENERAL

1.1 RELATED DOCUMENTS
A. This section is a Division 26 Basic Materials and Methods Section, and is part of each Division 26 Section making reference to electrical identification specified herein.

1.2 DESCRIPTION OF WORK
A. Types of electrical identification specified in this section include the following:
 - Cable conductor identification.
 - Operational instructions and warnings.
 - Danger signs.
 - Equipment/system identification signs.

PART 2 – PRODUCTS

2.1 MANUFACTURERS
A. Subject to compliance with requirements, provide products of one of the following (for each type of marker):
 - W. H. Brady Co.
 - Ideal Industries, Inc.
 - Seton Name Plate Co.
 - 3M Electrical Products

2.2 ELECTRICAL IDENTIFICATION MATERIALS
A. Provide manufacturer's standard products of categories and types required for each application. Where more than a single type is specified for an application, selection is Installer's option, but provide single selection for each application.

2.3 COLOR-CODED PLASTIC TAPE
A. Provide manufacturer's standard vinyl tape not less than 7 mils thick by 3/4” wide.
B. Colors: Unless otherwise indicated or required by governing regulations, provide tape color as indicated in Paragraph 3.2.B.
C. Tape shall be of Type 3M Scotch 35 for color coding, Scotch Super 33+ for splices and Tem Flex 1700 for general use.
2.4 CABLE/CONDUCTOR IDENTIFICATION BANDS
 A. Provide manufacturer's standard vinyl cloth, self-adhesive cable/conductor markers of wrap-around type; either pre-numbered, plastic-coated type, or write-on type with clear plastic, self-adhesive cover flap; numbered to show circuit identification.

2.5 BAKED ENAMEL DANGER SIGNS
 A. Provide manufacturer's standard "DANGER" signs of baked enamel finish on 20-gage steel; of standard red, black and white graphics; 14" x 10" size except where 10"x 7" is the largest size which can be applied where needed, and except where larger size is needed for adequate vision; with recognized standard explanation wording (as examples: HIGH VOLTAGE, KEEP AWAY, BURIED CABLE, DO NOT TOUCH SWITCH).

2.6 ENGRAVED PLASTIC-LAMINATE SIGNS
 A. Provide engraved stock melamine plastic laminate, in sizes and thicknesses indicated, engraved with engraver's standard letter style of sizes and wording indicated, punched for mechanical fastening except where adhesive mounting is necessary because of substrate.
 B. Thickness: 1/16" for units up to 20 sq. in. or 8" length; 1/8" for larger units.
 C. Fasteners: Self-tapping stainless steel screws, except contact-type permanent adhesive where screws cannot or should not penetrate substrate.

2.7 LETTERING AND GRAPHICS
 A. Coordinate names, abbreviations and other designations used in electrical identification work, with corresponding designations shown, specified or scheduled. Provide numbers, lettering and wording as indicated or, if not otherwise specified, as recommended by manufacturers or as required for proper identification and operation/maintenance of electrical systems and equipment.

PART 3 – EXECUTION

3.1 APPLICATION AND INSTALLATION
 A. Coordination: Where identification is to be applied to surfaces which require finish, install identification after completion of painting.
 B. Regulations: Comply with governing regulations and requests of governing authorities for identification of electrical work.

3.2 CABLE/CONDUCTOR IDENTIFICATION
 A. Apply cable/conductor identification on each cable and conductor in each box/enclosure/cabinet where wires of more than one circuit or communication/signal system are present. Match identification with marking system used in panelboards, shop drawings, contract documents, and similar previously established identification for project electrical work.
B. Conductor Color Coding:

1. All conductors used in all systems shall have insulation that is inherently colored. All conductors of a system performing the same function shall be colored alike throughout the project.

2. Equipment Grounding Conductors:
 a. Standard and/or general feeders or circuits shall be green.
 b. Isolated feeders or circuits shall be green with yellow stripe.

3. On larger conductors, where colored insulation is not available, colored tape adhesive vinyl bands 3/4" width may be installed 6" maximum from the end of the conductors. Where passing through pull boxes without splice, each conductor shall be banded.

4. Power system conductor colors shall be as follows:
 a. 120/208 Volt System
 Phase A - Black
 Phase B - Red
 Phase C - Blue
 Neutral - White or Gray
 b. 277/480 Volt System
 Phase A - Brown
 Phase B - Orange
 Phase C - Yellow
 Neutral - White or Gray

3.3 DANGER SIGNS

A. In addition to installation of danger signs required by governing regulations and authorities, install appropriate danger signs at locations indicated and at locations subsequently identified by Installer of electrical work as constituting similar dangers for persons in or about project.

B. High Voltage: Install danger signs wherever it is possible, under any circumstances, for persons to come into contact with electrical power voltages higher than 110-120 volts.

3.4 EQUIPMENT/SYSTEM IDENTIFICATION

A. Install engraved, plastic laminate sign on each major unit of electrical equipment in building, including central or master unit of each electrical system including communication/signal systems, unless unit is specified with its own self-explanatory identification or signal system. Except as otherwise indicated, provide single line of text, 1/2" high lettering on 1-1/2" high sign (2" high where 2 lines are required), white lettering in black field. Provide text matching terminology and numbering of the contract documents and shop drawing. Provide signs for each unit of the following categories of electrical work:
1. Panelboards, electrical cabinets and enclosures.
2. Access panel/doors to electrical facilities.
3. Major electrical switchgear, main and feeder circuit breakers and/or disconnects.
4. Power transfer equipment.
5. Fire Alarm Master Station and Annunciator.

B. Install signs at locations for best convenience of viewing without interference with operation and maintenance of equipment. Secure to substrate with fasteners, except use adhesive where fasteners should not or cannot penetrate the substrate.

3.5 JUNCTION AND PULL BOX IDENTIFICATION

A. Emergency Systems: Each junction and pull box cover shall be painted orange. Use black indelible liquid marker to label "EMERG." in 3/8" letters minimum.

B. Fire Alarm System: Each junction and pull box cover shall be painted red. Use black indelible liquid marker to label "F.A." in 3/8" letters minimum.

C. Feeders Shown on Single Line Diagram: Each junction and pull box shall be marked with black indelible liquid marker with the assigned feeder number "FDR #38" in 3/8" letters minimum.

END OF SECTION 2600.5
SECTION 26 01 10

RACEWAYS

PART 1 – GENERAL

1.1 RELATED DOCUMENTS

A. The general provisions of the Contract, including the Conditions of the Contract (General, Supplementary and other conditions, if any) and Division 1 as appropriate, apply to the Work specified in this Section.

B. Refer to Section 260000 for General Provisions – Electrical.

1.2 DESCRIPTION OF WORK

A. Types of raceways in this section include the following:

- Rigid metal conduit
- Intermediate metal conduit
- Electrical metallic tubing
- Polyvinyl chloride conduit (Exterior Underground Only)
- Flexible metal conduit
- Liquid-tight flexible metal conduit
- Surface raceway
- Wireways

1.3 REFERENCE STANDARDS

A. Refer to Section 260000 for a general description of requirements applying to this Section.

1.4 QUALITY ASSURANCE

A. Refer to Section 260000 for a general description of requirements applying to this Section.

1.5 WARRANTY/GUARANTEE

A. All work and materials are subject to the general warranty as described in the General Conditions of the Contract and in Division 1, GENERAL REQUIREMENTS.

1.6 COORDINATION

A. The drawings and details there upon are scheme and/or diagrammatic in nature, and indicate the need and intent of the design. These are to be used for general guidance only. It shall be the responsibility of the Electrical Contractor to coordinate, with other Division Subcontractors, the installation of all raceways, raceway supports, junction boxes and required fittings. This coordination will include conduit layout to allow access to equipment for maintenance.
B. This coordination shall be carried out prior to actual installation; this shall be done to eliminate the possibility of conflicts between trades on items such as access, clearances and maintenance issues that may arise after completion of construction.

C. Should the coordination not be carried out prior to installation, and a conflict exists, the installing contractor shall remove and reinstall the equipment as required to clear the conflict at no additional cost to the Owner and no delay in project completion.

PART 2 – PRODUCTS

2.1 MATERIALS AND EQUIPMENT

A. Rigid Metal Conduit:

1. Raceway: Full weight, heavy wall rigid steel with zinc coating conforming to ANSI-C80.1.

2. Fittings: Cast malleable iron fittings with threaded hubs, insulated throat and zinc protective coating.

3. Subject to compliance with requirements, provide products of one of the following:
 Allied Tube and Conduit Corporation
 LTV Steel Tubular Products Co.
 Wheatland Tube

B. Intermediate Metal Conduit:

1. Raceway: Light weight, rigid steel, hot dipped galvanized manufactured in accordance with UL1242.

2. Fittings: Cast malleable iron fittings with threaded hubs, insulated throat and zinc protective coating.

3. Subject to compliance with requirements, provide products of one of the following:
 Allied Tube and Conduit Corporation
 LTV Steel Tubular Products Co.
 Wheatland Tube

C. Electrical Metallic Tubing:

1. Raceway: Light weight, thin wall, rigid steel, hot dipped galvanized manufactured in accordance with ANSI C80.3.

2. Fittings: Raintight, insulated throat, compression type with zinc protective coating.

3. Subject to compliance with requirements, provide products of one of the following:
 Allied Tube and Conduit Corp.
D. **Polyvinyl Chloride Conduit:**

1. **Raceway:** Heavy wall, rigid non-metallic, schedule 40 with bell type end, designed for above ground exposed applications, direct earth burial, and concrete encasement.

2. **Fittings:** Polyvinyl chloride, heavy duty, glue type, designed for Schedule 40 application.

3. Subject to compliance with requirements, provide products of one of the following:

 - Allied Tube & Conduit
 - Carlon
 - Queen City Plastics, Inc.
 - Scepter Electric Systems

E. **Flexible Metal Conduit:**

1. **Raceway:** Construct of single strip, flexible, continuous, interlocked, and double-wrapped steel, galvanized inside and outside.

2. **Fittings:** Steel, insulated throat, with zinc protective coating.

3. Subject to compliance with requirements, provide products of one of the following:

 - AFC
 - Alflex Corp.
 - Electri-Flex Company

F. **Liquid-Tight Flexible Metal Conduit:**

1. **Raceway:** Construct of single strip, flexible, continuous, interlocked, and double-wrapped, galvanized inside and outside, coat with liquid-tight jacket of flexible polyvinyl chloride.

2. **Fittings:** Steel, water and oil tight, insulated throat, with zinc protective coating.

3. Subject to compliance with requirements, provide products of one of the following:

 - AFC
 - Alflex Corp.
 - Electri-Flex Company

G. **Dual Surface Raceway:**

1. **Dual Service Raceway:** Two-piece wireway, base to be 0.050" galvanized steel, cover to be .040" galvanized steel. Complete unit shall have a cross sectional area of 7.2 square inches. Finish shall be color as selected by Architect. Wireway to be similar to Wiremold Series 4000, Cat #V4000B and V4000C.
2. Fittings: Wireway shall be provided with a complete line of, but shall not necessarily be limited to, couplings, offsets, elbows, adapters, hold-down clips, end-caps and other components and accessories as needed for a completed system.

3. Subject to compliance with requirements, provide products of one of the following:
 - Wiremold Co.
 - Walker, Butler Manufacturing Co.
 - Hubbell

H. Single Service Raceway:

1. Single Service Raceway: Two-piece wireway, base and cover, to be 0.040” galvanized steel. Complete unit shall have a cross sectional area of 0.90 square inches. Finish shall be color as selected by Architect. Wireway to be similar to Wiremold Series 2000.

2. Fittings: Wireway shall be provided with a complete line of, but shall not necessarily be limited to, couplings, offsets, elbows, adapters, hold-down clips, end-caps and other components and accessories as needed for a completed system.

3. Subject to compliance with requirements, provide products of one of the following:
 - Wiremold Co.
 - Walker, Butler Manufacturing Co.
 - Hubbell

I. For Installations on existing walls, surface raceway to be small channel, Hubbell 2400D divided raceway and deep boxes, or approved equal.

J. Wireways:

1. Furnish electrical wireways of the type, size, and style for each service indicated. Wireway shall be a complete assembly including but not necessarily limited to, couplings, offsets, elbows, adapters, hold-down clips, end-caps and other components and accessories as needed for a complete system.

2. System shall fulfill wiring requirements as indicated in contract documents, and shall comply with applicable portions of Article 362 of the National Electrical Code.

3. Subject to compliance with requirements, provide products of one of the following:
 - Circle AW Products Co.
 - The EMF Company, Inc.
 - Hoffman Engineering Company
 - Square "D" Company
K. The above items shall include the statement "Approved Equal" and/or "Approved Substitute". This statement requires that the product or item be in compliance with the written intent of this specification and the submission meets the requirements of Section 260000.

PART 3 – EXECUTION

3.1 INSTALLATION OF ELECTRICAL RACEWAYS

A. Install electrical raceways in accordance with manufacturer's written instructions, applicable requirements of NEC and NECA "Standard of Installation", and complying with recognized industry practices.

B. Coordinate with other work as necessary to interface installation of electrical raceways, wireways and required components.

C. Raceways used for distribution, feeders, or branch circuits shall be a minimum size of 3/4" or equal equivalent cross-sectional area. Raceways used for control and signal shall be a minimum size of 1/2" or equal equivalent cross-sectional area.

D. All raceways shall be concealed within the building construction, where indicated on the floor plans surface raceway shall be installed. Should it be impossible or impracticable to install a raceway concealed and surface raceway is not indicated, the Contractor shall consult with the Architect or Engineer for approval prior to installation.

E. In locations where surface raceway is installed, vertical runs shall be minimized. In locations wherever possible, shall be from the ceiling below instead of from the ceiling above. Locations of vertical drops from ceilings above to be approved by the Engineer and Architect, prior to installation.

F. All raceways installed in ceiling cavities and exposed within mechanical spaces shall be run parallel with building lines and installed level and square at the proper elevation/height.

G. Complete the installation of electrical raceways before starting the installation of cables/wires within the raceway.

H. Furnish and install one (1) nylon or fiberglass pull cord in each empty raceway. Each empty raceway shall be cleaned, capped, and tagged as to its termination location.

I. Install liquid-tight flexible metal conduit for connections to motors and for other electrical equipment when subject to movement and vibration, and also where subjected to one or more of the following conditions:

1. Exterior locations.
2. Moist or humid atmosphere when condensation can be expected to accumulate.
3. Corrosive atmosphere.
4. Subjected to water spray.
5. Subjected to dripping oil, grease or water.

J. Install Electrical Metallic Tubing for building interior electrical work except:
1. Underground
2. In gravel, cinder, concrete or other sub-base floor construction.
3. Horizontal runs in concrete floor slabs.
4. Where exposed to the elements.
5. In masonry construction below finished grade.

K. Refer to Section 260000 for excavation, shoring and pumping, concrete and backfilling requirements.

L. Where and whenever possible, install horizontal electrical raceways as tight to building construction as possible and above water, drain and steam piping. A separation of at least six (6) inches shall be maintained between electrical conduits and hot water and steam piping.

M. In accordance with NEC requirements, install Rigid or Intermediate Metal Conduit where Electrical Metallic Tubing is not permitted.

N. In all instances where recessed type panelboards are installed, furnish and install one (1) one inch raceway for each two (2) future circuits for which "space" or "spare" provisions have been made in the panelboard. These raceways shall extend between the panelboard cabinet and a convenient location above an access panel or a removable tile ceiling construction and capped.

3.2 CLEANING

A. Upon completion of installation of raceways, inspect interiors of raceways; remove burrs, dirt and construction debris.

END OF SECTION 26 01 10
PART 1 – GENERAL

1.1 RELATED DOCUMENTS

A. This section is a Division 26 Basic Materials and Methods section and is part of each Division 26 Section making reference to wires and cables specified herein.

1.2 DESCRIPTION OF WORK

A. Electrical wire and electrical cable work is indicated by drawings and specifications.

B. Types of wire, cable and connectors in this section include, but not limited to the following:

- Copper conductors.
- Tap type connectors.
- Split-bolt connectors.

C. Refer to other sections of Division 26 for, but not limited to, raceways, connections used in conjunction with wire and cable work.

D. Applications for wire, cable and connectors required for project are as follows unless otherwise indicated:

1. Power Distribution Circuitry.
2. Appliance and Equipment Circuitry.
4. Control Circuitry.
5. Signal/Communication Circuitry.

PART 2 – PRODUCTS

2.1 MANUFACTURERS

A. Wire and Cable

- Anconda Wire and Cable Co.
- Advance Wire and Cable, Inc.
- American
- Cerro Wire and Cable Co.
- Electrical Conductors, Inc.
- General Cable Corp.
- Hitemp Wires, Inc.
- Rome Cable Corp.
- Southwire Company
- Triangle PWC., Inc.
The Okonite Co.
General Electric Co.

Connectors
Burndy Corp.
Eagle Electric Mfg. Co., Inc.
Gould, Inc.
Ideal Industries, Inc
Joslyn Mfg. and Supply Co.
O-Z/Gedney Co.
Pyle National Co.
Thomas and Betts Co.

2.2 WIRE, CABLE AND CONNECTIONS

A. Except as otherwise indicated, provide wire, cable and connectors of manufacturer's standard materials, as indicated by published product information; designed and constructed as recommended by manufacturer, and as required for the installation. Minimum wire and cable size is #12 AWG for power and branch circuits and #14 AWG for control and signal/communication circuits unless otherwise indicated.

B. Wire: Provide factory fabricated wire of sizes, ratings, materials and types indicated for each service. Where not indicated, provide proper selection as determined by Installer to comply with project's installation requirements and NEC standards. Select from the following types, materials, conductor configurations, insulation and coverings:

UL Type: THHN
UL Type: TW
UL Type: THW
UL Type: THWN
UL Type: TF
UL Type: XHHW
UL Type: MC (Metal Clad)

Material: Aluminum (Service Entrance Only)
Copper

Conductor: Solid (AWG 14 to AWG 10 only).
Conductor: Concentric-lay-stranded (standard flexibility)

Outer Covering: Nylon
Outer Covering: Thermoplastic

C. Connectors: Provide factory fabricated metal connectors of sizes, ratings, materials, types and classes as required for each service. Where not indicated, provide proper selection as determined by Installer to comply with installation requirements and NEC standards. Select from the following types, classes, kinds and styles.
Type: Pressure
Type: Crimp
Type: Threaded

Class: Insulated
Class: Non-insulated

Kind: Copper (for CU to Cu connection).

Style: Butt connection
Style: Elbow connection
Style: Combined "T" and straight connection
Style: "T" connection.
Style: Split-bolt parallel connection
Style: Tap connection
Style: Pigtail connection

PART 3 – EXECUTION

3.1 INSTALLATION

A. Install electrical cables, wires and connectors, in compliance with manufacturer's written instructions, applicable requirements of NEC and NECA's "Standard of Installation", and in accordance with recognized industry practices.

B. Coordinate cable and wire installation work with electrical raceway and equipment installation work, as necessary for proper interface. Pull conductors together where more than one is being installed in a raceway. Use pulling compound or lubricate, where necessary; compound must not deteriorate conductor or insulation. Use pulling means including fish tape, cable or rope which cannot damage raceway. Rope must be used as pulling means when pulling wires or cables into plastic conduit and duct. Keep conductor splices to a minimum and install in junction boxes only. No splices shall be permitted within conduit. Install splices and tapes which have mechanical strength and insulation rating equivalent or better than conductor. Use splice and tape connectors which are compatible with conductor material.

3.2 FIELD QUALITY CONTROL

A. Prior to energization, test cable and wire for continuity of circuitry and also for short circuits. Correct malfunctions when detected.

B. Subsequent to wire and cable hook-ups, energize circuitry and demonstrate functioning in accordance with requirements.

END OF SECTION 26 01 20
SECTION 26 01 21

WIRE CONNECTIONS AND DEVICES

PART 1 – GENERAL

1.1 RELATED DOCUMENTS

A. This section is a Division 26 Basic Materials and Methods Section and is part of each Division 26 Section making reference to connectors and termination devices specified herein.

1.2 DESCRIPTION OF WORK

A. Extent of electrical connectors and termination work is indicated by drawings and specifications.

B. Types of connectors and termination devices in this section include, but are not limited to the following:

1. Tap type connectors.
2. Split-bolt connectors.

C. Refer to other sections of Division 26 for, but not limited to, raceways, wires and cables used in conjunction with connectors and termination devices.

D. Applications for connectors and termination devices required for project are as follows unless otherwise indicated:

1. Branch circuitry
2. Equipment circuitry
3. Control circuitry

1.3 SUBMITTALS

A. Product Data: Submit manufacturer's data on electrical connectors, high voltage termination to the Engineer.

PART 2 – PRODUCTS

2.1 MANUFACTURERS

A. Subject to compliance with requirements, provide connectors, high voltage terminations of one of the following manufacturers for each item used:

 Burndy Corp.
 Eagle Electric Mfg. Co., Inc.
 Gould, Inc.
 Ideal Industries, Inc.
 Joslyn Mfg. and Supply Co.
 O-Z/Gedney Co.
 Pyle National Co.
2.2 CONNECTORS

A. Provide factory fabricated metal connectors of sizes, ratings, materials, types and classes as indicated for each service. Where not indicated, provide proper selection as determined by Installer to comply with installation requirements and NEC standards.

Type: Pressure
Crimp
Threaded

Class: Insulated
Non-Insulated

Kind: Copper (for CU to Cu connection).

Style: Butt Connection
Elbow connection
Combined "T" and straight connection
"T" connection
Split-bolt parallel connection
Tap connection
Pigtail connection

PART 3 – EXECUTION

3.1 600 VOLT CABLE CONNECTOR INSTALLATION

A. Install electrical connectors, in compliance with manufacturer’s written instructions, applicable requirements of NEC and NECA’s "Standard of Installation", and in accordance with recognized industry practices.

B. Coordinate cable, wire and connector installation work with electrical raceway and equipment installation work, as necessary for proper interface. Pull conductors together where more than one is being installed in a raceway. Use pulling compound or lubricate, where necessary, compound must not deteriorate conductor of insulation, and must be in accordance with wire and cable manufacturer’s recommendations. Use pulling means including fish tape, cable or rope which shall not damage raceways including plastic conduits and ducts.

3.2 FIELD QUALITY CONTROL

A. Prior to energization, test cable and wire for continuity of circuitry and also for short circuits. Correct malfunctions when detected.

B. Subsequent to wire and cable hook-ups, energize circuitry and demonstrate functioning in accordance with requirements.

END OF SECTION 26 01 21
SECTION 26 01 30

MANHOLES

PART 1 – GENERAL

1.1 DESCRIPTION OF WORK

A. Extent of manholes and manhole installation work is indicated by drawings and specifications.

B. Types of manholes in this section shall include the following:

1. Precast concrete
2. Poured in place
3. Polymer Concrete

1.2 SUBMITTALS

A. Submit manufacturer's data on manholes including, but not limited to, roughing-in drawings, construction details and structural support data.

PART 2 – PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS

A. Subject to compliance with requirements, provide manholes with frame and cover, and cable accessories of one of the following:

1. Manholes - A.C. Miller Concrete Products, Inc.
 - Gillespie Precast, LLC
 - Quazite

2. Frame and Cover - Neenah Foundry Co.
 - Quazite

2.2 STANDARD MANHOLES

A. Manholes shall be a precast concrete box with interior dimensions of 48” wide x 48” long x 48” deep with 6” walls, floor and top.

B. Floor shall be provided with a ground rod hole, pulling irons and a 12” diameter x 12” deep sump.

C. Top shall be a precast 6” slab with a circular opening suitable for a manhole frame opening of 32-1/2.

D. The precast 6” top slab shall be sealed where it joins the manhole. The entire exterior surface of the manhole shall be coated with a bitumastic type waterproof coating prior to installation.
2.3 MANHOLE FRAME AND COVER

A. Frame and cover shall be a round, heavy duty, cast iron frame and solid cover with machined horizontal bearing surfaces. Total weight to be approximately 365 pounds.

B. Frame and cover dimensions shall be as follows:
 1. Overall frame size = 38-1/2"
 2. Clear opening size = 32-1/2"
 3. Overall frame height = 4"

C. Cover shall have the word, "Electric", cast into it.

D. Frame and cover shall be similar in manufacture to Neenah Foundry Company Model No. R-1792-HL.

2.4 GROUND ROD AND CLAMP

A. Ground rod shall be a rigid steel rod with a heavy duty, uniform, non-porous copper coating. Rod to be 3/4" dia. x 10'-0" long. Clamp to be cast of high copper content bronze alloy.

B. Ground rod assembly to consist of the following:
 1. Ground rod - Blackburn Cat. No. W5810
 2. Ground Clamp - Blackburn Cat. No. J-JR.

PART 3 – EXECUTION

3.1 INSTALLATION OF MANHOLES

A. Install manhole in accordance with manufacturer's written instructions and complying with applicable portions of NEC and NECA's "Standard of Installation."

B. Manholes shall be oriented in accordance with duct bank requirements as indicated on the electrical site plan. The depth of the manhole shall be as required to allow the frame and cover to set level with finished grade.

C. Manholes shall not be set in an area or at an elevation which will allow surface water or runoff to enter manhole through the cover. Should this occur, this Contractor will be required to raise the frame and cover and regrade the area.

3.2 FIELD QUALITY CONTROL

A. Contractor shall inspect the conduit entrances into the manhole looking for broken ducts and/or rough edges and repairing the findings. Contractor shall also check that conduit entrances are sealed to keep out ground water.

B. All manholes shall be cleaned of dirt and construction debris. All spare conduits shall have a nylon pull cord installed for future use.

END OF SECTION 26 01 30
SECTION 26 01 31
HANDHOLES

PART 1 – GENERAL

1.1 DESCRIPTION OF WORK

A. Extent of handholes and handhole installation work is indicated by drawings and specifications.

B. Types of handholes in this section shall include the following:

1. Precast concrete
2. Polymer Concrete

1.2 SUBMITTALS

A. Submit manufacturer's data on handholes including, but not limited to, roughing-in drawings, construction details and structural support data.

PART 2 – PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS

A. Subject to compliance with requirements, provide handholes with frame and cover, and cable accessories of one of the following:

1. Handholes - A.C. Miller Concrete Products, Inc.
 - Gillespie Precast, LLC
 - Quazite

2. Frame and Cover - Neenah Foundry Co.
 - Quazite

3. Cable Accessories - Midland Ross Corp.

2.2 HANDHOLES

A. Handholes shall be a precast concrete box with interior dimensions of 48" wide x 48" long x 72" deep with 6" walls, floor and top.

B. Floor shall be provided with a ground rod hole, pulling irons and a 12" x 12" X 4-1/2" deep sump.

C. Top shall be a precast 6" slab with a circular opening suitable for a handhole frame opening of 32-1/2".

D. The precast 6" top slab shall be sealed where it joins the handhole. The entire exterior surface of the handhole shall be coated with a bitumastic type waterproof coating prior to installation.
E. Handhole shall be similar in design to A.C. Miller Concrete Products, Inc. size 4'x4'x6'.

2.3 HANDHOLE FRAME AND COVER

A. Frame and cover shall be a round, heavy duty, cast iron frame and solid cover with machined horizontal bearing surfaces. Total weight to be approximately 365 pounds.

B. Frame and cover dimensions shall be as follows:
 1. Overall frame size = 38-1/2"
 2. Clear opening size = 32-1/2"
 3. Overall frame height = 4"

C. Cover shall have the word, "Electric", cast into it.

D. Frame and cover shall be similar in manufacture to Neenah Foundry Company Model No. R-1792-HL.

2.4 CABLE SUPPORT ASSEMBLY

A. Cable support assembly shall consist of a 24" long, 1-1/2" x 1-1/2" x 12 gauge PVC coated channel. On each channel provide three (3) procelain insulator clamps with PVC coated steel straps and bronze slotted hex head screw and nut.

B. In straight pull handholes, two (2) cable support assemblies shall be installed. In angle pull handholes, four (4) support assemblies shall be installed.

C. Cable support assembly shall consist of the following:
 1. Channel - Midland Ross (Kindorf) Cat. No. PB-905-10.
 3. PVC Coated Steel Strap - Midland Ross (Kindorf) Cat. No. PBC-105.

2.5 GROUND ROD AND CLAMP

A. Ground rod shall be a rigid steel rod with a heavy duty, uniform, non-porous copper coating. Rod to be 5/8" dia. x 10'-0" long. Clamp to be cast of high copper content bronze alloy.

B. Ground rod assembly to consist of the following:
 1. Ground Rod - Blackburn Cat. No. W5810
 2. Ground Clamp - Blackburn Cat. No. J-JR.

PART 3 – EXECUTION

3.1 INSTALLATION OF HANDHOLES

A. Install handholes in accordance with manufacturer's written instructions and complying with applicable portions of NEC and NECA's "Standard of Installation."
B. Handholes shall be oriented in accordance with duct bank requirements as indicated on the electrical site plan. The depth of the handhole shall be as required to allow the frame and cover to set level with finished grade.

C. Handholes shall not be set in an area or at an elevation which will allow surface water or runoff to enter handhole through the cover. Should this occur, this Contractor shall be required to raise the frame and cover and regrade the area.

D. Contractor shall properly install cables in the cable support assemblies and tag each cable as to voltage and phase. Where cable splices occur in handholes, all shield wiring shall be connected to ground rod along with circuit ground conductor.

3.2 FIELD QUALITY CONTROL

A. Contractor shall inspect the conduit entrances into the handhole looking for broken ducts and/or rough edges and repairing the findings. Contractor shall also check that conduit entrances are sealed to keep out ground water.

B. All handholes shall be cleaned of dirt and construction debris. All spare conduits shall have a nylon pull cord installed for future use.

END OF SECTION 26 01 31
SECTION 26 01 35
ELECTRICAL BOXES & FITTINGS

PART 1 – GENERAL

1.1 RELATED DOCUMENTS

A. This section is a Division 26 Basic Materials and Methods section, and is a part of each Division 26 section making reference to electrical wiring boxes and fittings specified herein.

1.2 DESCRIPTION OF WORK

A. Types of electrical boxes and fittings in this section include the following:

- Outlet boxes.
- Junction boxes.
- Pull boxes.
- Conduit bodies.
- Bushings.
- Locknuts.
- Knockout closures.

PART 2 – PRODUCTS

2.1 INTERIOR METALLIC OUTLET BOXES

A. Provide galvanized flat rolled sheet steel interior outlet non-gangable wiring boxes, of types, shapes and sizes, including box depths, to suit each respective location and installation; construct with stamped knockouts in back and sides and with threaded screw holes with corrosion-resistant screws for securing box covers and wiring devices.

B. Provide outlet box accessories as required for each installation, including mounting brackets, wallboard hangers, extension rings, fixture studs, cable clamps and metal straps for supporting outlet boxes, which are compatible with outlet boxes being used and fulfilling requirements of individual wiring situations. Choice of accessories is Installer's option.

C. Manufacturer: Subject to compliance with requirements, provide interior outlet boxes of one of the following:

- Appleton Electric Co.
- Bell Electric/Square D Co.
- Pass and Seymour, Inc.
- RACO, Inc.
- Steel City/Midland-Ross Corp.

2.2 INTERIOR NON-METALLIC OUTLET BOXES

A. Provide non-metallic electrical interior outlet non-gangable wiring boxes, of types, shapes and sizes,
including box depths, to suit each respective location and installation; construct with non-metallic, high impact strength polyvinyl chloride material with knockouts in sides and integral cable clamps.

B. Provide non-metallic outlet box accessories as required for each installation, including mounting brackets, wallboard hangers, extension rings, fixture studs, and metal straps for supporting outlet boxes, which are compatible with outlet boxes being used and fulfilling requirements of individual wiring situations.

C. Manufacturers: Subject to compliance with requirements, provide interior outlet boxes of one of the following:

- Carlon
- Sedco
- Certainteed
- Hoffman

2.3 WEATHERPROOF OUTLET BOXES

A. Provide corrosion resistant cast-metal weatherproof outlet wiring boxes, of types, shapes and sizes, including depth of boxes, with threaded conduit ends; cast-metal face plates with spring-hinged waterproof caps suitably configured for each application, including face plate gaskets and corrosion-resistant fasteners.

B. Manufacturer: Subject to compliance with requirements, provide weatherproof outlet boxes of one of the following:

- Bell Electric/Square D Co.
- Harvey Hubbell, Inc.
- O-Z/Gedney Co.
- Slater Electric Co.

C. Refer to Section 260140 – WIRING DEVICES for exterior receptacle outlet boxes.

2.4 JUNCTION PULL BOXES

A. Provide galvanized code-gauge sheet steel junction and pull boxes, with screw-on covers; of types, shapes and sizes, to suit each respective location and installation; with welded seams and equipped with stainless steel nuts, bolts, screws and washers.

B. Manufacturers: Subject to compliance with requirements, provide junction and pull boxes of one of the following:

- Adalet-PLM Div., Scott and Fetzer Co.
- Appleton Electric Co.
- Bell Electric/Square D Co.
- GTE Corporation
- Keystone Columbia, Inc.
2.5 CONDUIT BODIES

A. Provide galvanized cast-metal conduit bodies, of types, shapes, and sizes, to suit respective locations and installation, construct with threaded-conduit-entrance ends, removable covers, and corrosion-resistant screws.

B. Manufacturers: Subject to compliance with requirements, provide conduit bodies of one of the following:

- Appleton Electric Co.
- Crouse-Hinds Co.
- Gould, Inc.
- Killark Electric Mfg. Co.
- O-Z/Gedney Co.
- Spring City Elect. Mfg. Co.

2.6 BUSHINGS, KNOCKOUT CLOSURES AND LOCKNUTS

A. Provide corrosion-resistant punched-steel box knockout closures, conduit locknuts and insulated malleable iron conduit bushings, offset connectors, of types and sizes to suit respective uses and installation.

B. Manufacturers: Subject to compliance with requirements, provide bushings, knockout closures, locknuts and connectors of one of the following:

- Appleton Electric Co.
- Burndy Corp.
- Crouse-Hinds Co.
- Gould, Inc.
- O-Z/Gedney Co.
- RACO, Inc.
- Steel City/Midland-Ross Corp.
- Thomas and Betts Co., Inc.

PART 3 – EXECUTION

3.1 INSTALLATION OF ELECTRICAL BOXES AND FITTINGS

A. Install electrical boxes and fittings, complying with manufacturer's written instructions, applicable requirements of NEC and NECA's "Standard of Installation", and in compliance with recognized industry practices to ensure that products fulfill requirements.

B. Coordinate installation of electrical boxes and fittings with wire/cable and raceway installation work.

C. Provide weatherproof outlets for interior and exterior locations exposed to weather or moisture.
D. Provide knockout closures to cap unused knockout holes where blanks have been removed.

E. Install boxes and conduit bodies in those locations to ensure ready accessibility of electrical wiring.

F. Avoid using round boxes where conduit must enter box through side of box, which would result in difficult and insecure connections when fastened with locknut or bushing on rounded surface.

G. Fasten boxes rigidly to substrates or structural surfaces to which attached, or solidly embed electrical boxes in concrete or masonry.

H. Provide electrical connections for installed boxes.

I. Pull boxes and junction boxes shall be furnished and installed in all conduit runs at intervals not exceeding 100 feet maximum.

J. Identify each circuit in all pull boxes and junction boxes whether the box contains one or more circuits.

END OF SECTION 26 01 35
SECTION 26 01 40

WIRING DEVICES

PART 1 – GENERAL

1.1 DESCRIPTION OF WORK

A. The extent of wiring device work is indicated by drawings, schedules and specifications. Wiring devices are defined as single discrete units of the electrical distribution system which are intended to carry but not utilize electric energy.

B. Types of electrical wiring devices in this section include the following:
 - Receptacles.
 - Switches.
 - Device plates.
 - Surface Receptacle Strip
 - Lamp dimmers
 - Contactors
 - Fire-Rated Poke-Thru Floor Outlet
 - Energy Control Devices

1.2 SUBMITTALS

A. Product Data: Submit manufacturer’s data on electrical wiring devices.

PART 2 – PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products of one of the following (for each type of wiring device):

 - Legrand Co.
 - Hubbell, Inc.
 - Leviton Mfg. Co.
 - Lutron Electronics Co., Inc.
 - Cooper Wiring Devices
 - Square D Co.
 - Eaton Corp.
 - Siemens
 - Tork
 - Grasslin
 - Paragon
 - Wattstopper

2.2 FABRICATED WIRING DEVICES

A. Provide factory fabricated wiring devices, in types, styles, colors, and electrical ratings for applications...
indicated and complying with NEMA Standards Pub. No. WD 1. Where types and grades are not indicated, provide proper selection as determined by Installer to fulfill wiring requirements, and complying with NEC and NEMA Standards for wiring devices. Color selection to be verified by Contractor with Architect/Engineer.

2.3 RECEPTACLES

A. All simplex receptacles shall be extra heavy duty, 20 amperes, 125 volts, 2 pole, 3 wire grounding, with green hexagonal equipment ground screw, with metal plaster ears, side wiring, NEMA configuration 5-20R unless otherwise indicated. Hubbell Cat. #HBL5361, or approved substitute.

B. All duplex receptacles shall be extra heavy duty, 20 amperes, 125 volts, 2 pole, 3 wire grounding type with green hexagonal equipment ground screw, with metal plaster ears, side wiring, NEMA configuration 5-20R unless otherwise indicated. Hubbell Cat. #HBL5362, or approved substitute, HBL5362TR where tamperproof is required.

C. Special Purpose Receptacles: Provide polarized grounding type special purpose receptacles of the required amperage and voltage ratings, extra heavy duty. Device shall include a green hexagonal equipment ground screw.

D. All ground fault receptacles shall be extra heavy duty duplex, tamper resistant, 20 amperes, 125 volts, 2 pole, 3 wire grounding type with green hexagonal equipment ground screw, integral ground fault circuit interrupter, UL rated Class A, Group 1, with metal plaster ears, side wiring, NEMA Configuration 5-20R, self-testing with red and green LED indicator lights. Device shall include solid state ground-fault sensing and signalling, with a 5 milliampere ground fault trip level, plus or minus 1 milliampere. Hubbell Cat. #GFR5362SG, or approved substitute.

1. Whether indicated or not on the floor plans, the Electrical Contractor shall furnish and install GFI protected devices in kitchen areas on countertops near sinks, water coolers, refrigerators, on rooftop equipment, on exterior walls; and as indicated by the N.E.C., it shall be the discretion of the Electrical Contractor to provide GFI receptacles or GFI circuit breaker. Receptacles protected by GFI circuit breakers shall be permanently labeled on the faceplate as GFCI.

E. All Isolated Ground Duplex Receptacles shall be extra heavy duty, 20 amperes, 125 volts, 2 pole, 3 wire isolated ground with metal plaster ears, isolated from ground circuit, side wiring, NEMA configuration 5-20R unless otherwise indicated. Devices shall be color coded with an orange face and black triangle to identify all isolated ground devices. Hubbell Cat. #IG5362, or approved substitute.

F. All surge protection receptacles shall be extra heavy-duty duplex, 20 amperes, 125 volts, 2 pole, 3 wire with built-in surge protection, metal plaster ears. Devices shall include efficient 3-level MOV protection for phase to neutral, phase to ground and neutral to ground. Devices shall also include diagnostic LED indicator light to be on continuously when protection is active, and shall flash on and off when protection circuit is deactivated due to excessive transients. Hubbell Cat. #HBL5362SA, or approved substitute. Devices to be red when fed from emergency power.

G. All isolated ground, surge protection receptacles shall be extra heavy-duty duplex, 20 amperes, 125 volts, 2 pole, 3 wire isolated ground with built-in surge protection with metal plaster ears isolated from ground circuit. Device shall include efficient 3-level MOV protection for phase to neutral, phase to ground and neutral to ground. Device shall also include diagnostic LED indicator light to be on
continuously when protection is active, and shall flash on and off when protection circuit is deactivated due to excessive transients. Devices shall be blue with green dot and orange triangle, Hubbell Cat. #IG53625A, or approved substitute.

1. Whether indicated or not on the floor plans, the Electrical Contractor shall furnish and install one (1) isolated ground, surge protective receptacle next to each data outlet and connect to isolated ground panelboard, unless directed otherwise.

2.4 USB CHARGING DEVICES

A. All USB charging devices shall be heavy duty, 5VDC, 4.2A charging capacity, 3-wire grounding, with green hexagonal equipment ground screw, with metal plaster ears, quadruple charging outlet ports, Hubbell Cat. #USB4, or approved substitute.

B. All USB charging devices with receptacles shall be extra heavy duty, 20 amperes, 125 volts, 2 pole, 3 wire grounding, with green hexagonal equipment ground screw, with metal plaster ears, side wiring, NEMA configuration 5-20R, with two charging outlet ports, 5VDC, 3.8-amp charging capacity, Hubbell Cat. #USB20X2, or approved substitute.

2.5 SWITCHES

A. Toggle Switch: Provide extra heavy duty, industrial series flush toggle, 1 pole, 2 pole, 3-way, 4-way AC quiet switch rated 20 amperes @ 120/277 volts with green hexagonal equipment ground screw, metal plaster ears, and side wired screw terminals. Similar to Hubbell Series HBL Series or approved substitute.

B. Toggle Switch with Pilot Light: Provide extra heavy-duty industrial series, flush toggle, single pole, AC quiet switch rated 20 amperes @ 120 volts with green hexagonal equipment ground screw, metal plaster ears, side-wired screw terminals and 1/25 watts, 125-volt neon pilot light, designed to mount within a single gang outlet box. Similar to Hubbell HBL or approved substitute.

C. Three Position Switch: Provide extra heavy-duty industrial series, flush toggle, single pole, three position, momentary contact, center position OFF, AC quiet switch rated 20 amperes @ 120/277 volts, with green hexagonal equipment ground screw, metal plaster ears, and side-wired screw terminals. Similar to Hubbell Series HBL or approved substitute.

D. Key Switch: Provide extra heavy duty, industrial, 1 pole, 2 pole, 3-way, 4-way barrel key locking switch rated at 20 AMPS @ 120/277 volts with green grounding screw, metal plaster ears and side wired screw terminals. The tumbler shall be a six-point cylinder type. All project keyed switches to be keyed alike. Similar to Hubbell 122*RKL series.

2.6 DEVICE PLATES

A. Provide switch and receptacle outlet wall plates for wiring devices, of types, sizes, and with ganging and cut outs required by the devices being installed. Construct with metal screws for securing plates to devices; screw heads colored to match finish of plates; plates colored to match wiring devices to which attached. All emergency receptacles to have red coverplates. Provide device plates possessing the following additional construction features: Receptacle outlet plates to be permanently marked with panel designation and circuit number on back side of plate.
1. Provide metal plates in all areas. Metal Plates to be stainless steel of non-corrosive and non-magnetic 302 alloy, .032" nominal thickness. Plates shall have brushed satin finish.

B. Weatherproof device plates shall have spring-hinged waterproof cap suitably configured for each application, including face plate gaskets and corrosion-resistant fasteners. Boxes and devices shall be recessed, weatherproof with smoke gray opaque in-use covers. Intermatic Cat. #WP1000(H)GRC, or approved equivalent.

C. Existing mechanical spaces where concealed work is impractical, such as masonry or block walls, Provide 4” square boxes, surface mounted, with ½” deep surface mounted device plates consisting of same material for devices indicated on plans, whether single or double gang. Use of plaster flange and standard cover plate will not be acceptable.

2.7 LAMP DIMMERS

A. Low Voltage: Provide a solid-state A.C. wall dimmer with integrated linear slide control and separate rocker for ON/OFF switching at present lighting level. Device shall have a built-in RF interference filter and be rated 600 VA @ 120 volts, 60 Hertz. Dimmer control shall be similar to Leviton or approved equal.

B. LED: Provide solid state AC wall dimmer with integrated linear slide control and separate rocker for ON/OFF switching at present lighting level. Device shall have built-in RF interference filter and be rated to control load as required at 120/277V, 60, Hertz. Dimmer control and fixture driver shall be compatible in accordance with equipment manufacturer’s requirements. Provide all necessary wiring to provide complete operating system.

2.8 CONTACTORS

A. Electrically Held Power Lighting Contactor: Shall be rated 30 to 200 AMPs for 2 thru 5-pole versions and 300 to 800 AMPs for 2 and 3 pole versions, as indicated on the Floor Plan. Contactor shall have factory wired control and clearly marked termination points, designed for mixed load ratings with a UL listed short-circuit rating up to 100,000 amperes. Contactor shall be housed in a NEMA Type I, general purpose enclosure and be similar to Square D Company, Type "S", Class 8903 or approved substitute.

B. Mechanically Held Power Lighting Contactor: Shall be rated 30 to 200 AMPs for 2 thru 5 pole versions and 300 to 800 AMPs for 2 and 3 pole versions, as indicated on the Floor Plan. Contactor shall have factory wired control with coil clearing contacts and clearly marked termination points, designed for mixed load ratings with a UL listed short-circuit rating up to 100,000 amperes. Contactor shall be housed in a NEMA Type I, general purpose enclosure and be similar to Square D Company, Type "S", Class 8903 or approved substitute.

C. Multiple Lighting Contactor: Shall be an electrically or Mechanically held device with 2 thru 12 poles rated 30 AMPs ballast and 20 AMPs tungsten, as indicated. Mechanically held contactor shall have factory wired control with coil clearing contacts and clearly marked termination points. Contactor shall be housed in a NEMA Type I, general purpose enclosure and be similar to Square D Company Types "L" and "LX", Class 8903 or approved substitute.
D. General: All contactor control setups shall include all required interface relays needed to function with maintained or momentary contact switches, time clocks and photocell controls. Control circuits and coil voltages shall be 120 volts A.C. single phase. Where system voltage is 277/480 volts, a control power transformer shall be furnished and installed within the contactor enclosure. Transformer shall be sized to handle the contactor's coil load as well as all associated control devices.

2.9 FIRE-RATED POKE-THRU FLOOR OUTLET

A. Floor outlet shall be designed for a fire rating of a minimum of three (3) hours in floors employing steel units with concrete topping.

B. Floor thickness range shall be from 2-1/4” to 7” with a UL spacing of a minimum of two (2) feet on center and not more than one (1) unit per each 65 square feet of floor area.

C. Floor outlet shall be designed to fit a 4” diameter cored hole.

D. Floor outlet shall be equipped with four (4) NEMA 5 – 20R, 20 AMP, 125 volt receptacles and four (4) data/telephone outlets as indicated in contract documents.

E. Floor outlet shall be similar to Hubbell Cat. No. SIPT4X4BRS or approved substitute.

2.10 ENERGY CONTROL DEVICES (Occupancy Sensors)

A. Line Voltage:

1. Combination wall switch and sensor shall be Dual Technology Passive Infrared and Ultrasonic, designed for single gang outlet box installation, with a coverage of 180° for a maximum of 400 square feet. Device shall be suitable for 120/277 dual voltage operation, and have vandal resistant, hard sensor lens. Device shall be similar to Sensor Switch Cat. No. WSD-PDT or Wattstopper DW-100 Series, DW-103 Series for multi-way, DW-200 for dual relay, DW-203 for multi-way dual relay, or approved substitute.

2. Ceiling sensor shall be Dual Technology Passive Infrared and Ultrasonic 360° coverage, 1200 square feet maximum. Self Contained Relay Device shall be suitable for 120/277 Dual Voltage operation. Device shall be similar to Sensor Switch Cat. No. CMR-PDT, Wattstopper DT-355 or approved substitute.

B. Low Voltage:

1. Ceiling mounted sensor shall be Dual Technology Passive Infrared and Ultrasonic with 360° coverage up to 20 feet. Device accepts 12 to 24 volt AC or DC. Device shall be similar to Sensor Switch Cat. No. CM-PDT or approved substitute.

2. Sensor power pack shall be a low voltage power supply with an input of either 120 volts or 277 volts AC and an output of 24 volts DC @ 150 mA. Device shall contain a 20 AMP isolated load control relay. When relay is used, power supply output shall be reduced to 24 volts DC @ 114 mA. Device shall be similar to Sensor Switch PP-20 or approved substitute.
C. Photocontrol

1. Provide epoxy conformal coated cadmium sulphide photocell with Lexan impact and vandal resistant enclosure. Dome and base to be ultrasonically welded. Photocell shall respond to the light spectrum near to that of a human eye. Housing shall mount to \(\frac{1}{2} \)" conduit and have 180° swivel.

2. Photocell shall have on/off time delay, on at 1 to 5 FC, off at 3 to 15 FC. Tool free adjustment. Unit shall fail in the ON position.

3. Unit shall operate from -40°F to 140°F, with a minimum 5-year warranty.

4. Provide Tork 2001 series or approved equivalent.

PART 3 – EXECUTION

3.1 INSTALLATION OF WIRING AND CONTROL DEVICES

A. Install wiring devices as indicated, in compliance with manufacturer’s written instructions, applicable requirements of NEC and NECA’s "Standard of Installation", and in accordance with recognized industry practices to fulfill project requirements.

B. Coordinate with other work, including painting, electrical box and wiring work, as necessary to interface installation of wiring devices with other work.

C. Install wiring devices only in electrical boxes which are clean, free from building materials, dirt and debris.

D. Provide electrical connections for wiring and control devices.

E. Delay installation of all wiring and control devices until wiring work is completed.

F. Isolated Ground Receptacle Devices shall be connected to the system ground by way of an insulated ground conductor color coded green with a yellow stripe.

3.2 PROTECTION OF WALL PLATES AND RECEPTACLES

A. At time of Substantial Completion, replace those items which have been damaged, including those burned and scorched by faulty plugs.

3.3 GROUNDING

A. Provide electrically continuous, tight grounding connections for wiring and control devices.

3.4 TESTING AND COMMISSIONING

A. Prior to energizing circuitry, test wiring devices for electrical continuity and proper polarity connections. After energizing circuitry, test wiring devices to demonstrate compliance with requirements.
B. After energizing circuitry, the Electrical Contractor shall test and adjust all control devices to provide optimum operation and performance.

C. All areas where energy control devices are specified shall be verified for full coverage and accurate operation. If any area is determined by the Owner, Architect, or Engineer to have inadequate coverage or operation, Contractor shall provide additional energy control devices to remedy the coverage or operation issue. For bidding purposes, own 5 extra devices fully installed. After successful commissioning, uninstalled devices shall be handed over to the Owner for spare devices. Device types shall be as required for commissioning, or as selected by Owner for space devices as applicable.

END OF SECTION 26 01 40
SECTION 26 01 55
MOTOR STARTERS

PART 1 – GENERAL

1.1 DESCRIPTION OF WORK

A. Extent of motor starter work is indicated by drawings, schedules and specifications.

B. Refer to sections of other divisions of these specifications for driven equipment specified without motor starters. Motor starters for such equipment are the work of this section.

C. Types of motor starters in this section include the following:

 Manual.
 Magnetic Full Voltage, Non-Reversing.
 Combination Disconnect Switch and Magnetic Starter.
 Adjustable Frequency Drive (AFD)

1.2 SUBMITTALS

A. Product Data: Submit manufacturer's data on motor starters and accessories.

1.3 COORDINATION

A. The drawings and details there upon are scheme and/or diagrammatic in nature, and indicate the need and intent of the design. These are to be used for general guidance only. It shall be the responsibility of the Electrical Contractor to coordinate with other Division subcontractors, the installation of all motor starters, the need for control devices including the wiring and conduit, to and from the device.

B. This coordination shall be carried out prior to actual installation. This shall be done to eliminate the possibility of conflicts between trades on items such as access, clearances and maintenance issues that may arise after completion of coordination.

C. During the coordination phase of the project, the Electrical Contractor shall consult with Division 1 thru 23 subcontractors with regard to base design equipment characteristics. Any differences from the electrical plans and specifications shall be considered a change. The trade’s contractor making the change at no additional cost to the Owner or delay in project completion shall handle these additional costs.

PART 2 – PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products of one of the following (for each type and rating of motor starter):
Allen-Bradley Co.
Cutler Hammer Products
Furnas Electric Co.
Square D Co.
Siemens

2.2 MOTOR STARTERS

A. Provide motor starters and ancillary components; of types, sizes, ratings and electrical characteristics indicated which comply with manufacturer's standard materials, design and construction in accordance with published product information, and as required for complete installations.

B. Fractional HP Manual Motor Starters: Provide manual, single phase, fractional HP motor starters for each motor rated less than 1/2 HP, of types, ratings and electrical characteristics indicated. Equip unit with thermal overload relay for protection of 120 volt AC motors. Provide starters with quick-make, quick-break, trip free toggle mechanisms, selector switches for hand-off-automatic control; mount starter in NEMA Type 1 or Type 4 enclosure as indicated or required by the NEC.

C. Magnetic Motor Starter: Provide magnetic full voltage, non-reversing starters for each motor rated 1/2 HP and more of types, ratings and electrical characteristics indicated; equip with solid state overload relays, control transformers with 120V secondary, with one secondary fuse and one grounded secondary lead, two normally open and two normally closed auxiliary contacts, hand-off-automatic selector switch, red and green pilot lights wired and mounted through front of the enclosure. Mount starter in NEMA Type 1 or Type 4 enclosure as required by the NEC.

D. Combination Disconnect Switch Magnetic Starter: Provide full-voltage, non-reversing, combination non-fused disconnect switch and magnetic starter for each motor rated 1/2 horsepower and more, of types, ratings and electrical characteristics indicated; equip with solid state overload relays, control transformer with 120 volt secondary, one secondary fuse and one grounded secondary lead, two normally open and two normally closed auxiliary contacts, hand-off-automatic switch, red and green pilot lights wired and mounted through the front of the enclosure. Mount starter in NEMA Type 1 or Type 4 enclosure as required by the National Electrical Code (NEC).

E. Three (3) phase, full voltage, non-reversing magnetic motor starters, horsepower rating with minimum NEMA size #0 shall be as follows:

<table>
<thead>
<tr>
<th>NEMA Size</th>
<th>Continuous Rating</th>
<th>Maximum Horsepower</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>208 Volt</td>
</tr>
<tr>
<td>0</td>
<td>18 AMPs</td>
<td>3HP</td>
</tr>
<tr>
<td>1</td>
<td>27 AMPs</td>
<td>7-1/2HP</td>
</tr>
<tr>
<td>2</td>
<td>45 AMPs</td>
<td>10HP</td>
</tr>
<tr>
<td>3</td>
<td>90 AMPs</td>
<td>25HP</td>
</tr>
</tbody>
</table>
Motor full-load current shall not exceed continuous ampere rating of starter.

F. Adjustable Frequency Drive (AFD): The AFD shall convert the input AC main power to an adjustable frequency and voltage. The output frequency and voltage of the AFD shall be adjustable to maintain a constant voltage/hertz ratio throughout the operating range. The AFD shall be designed to operate from voltage indicated on plans, 60 hertz main supply that is within +10% or -10% of nominal line voltage. The AFD control technique shall employ the pulse width modulated (PWM) technology.

1. Ratings:
 a. The AFD shall be capable of supplying 120% of rated full load current for one minute at maximum ambient temperature.
 b. Unit shall be rated for installation in a power system capable of delivering up to 65,000 RMS symmetrical amperes.
 c. Minimum power factor shall be .95 throughout the entire speed range.
 d. The AFD efficiency shall be 98% at full speed.

2. Adjustments:
 a. The acceleration and deceleration ramp rates shall be adjustable from 1 to 60 seconds.
 b. The overload trip shall be adjustable from 0 to 100% of rated output current.
 c. The current limit shall be adjustable from 60 to 120% of rated output current to maximize starting torque.
 d. Voltage boost shall be adjustable from 100 to 400% of nominal voltage/hertz ratio at 1 hertz tapering to 100% at 20 Hertz.
 e. The drive shall provide a control for adjusting the minimum frequency setting up to 45 Hertz and a maximum operating frequency adjustable over a range of 40 to 60 Hertz.

3. Protection:
 a. A non-adjustable instantaneous overcurrent trip shall be set to 250% of rated output current.
 b. AFD protection shall be accomplished with fuseless electronic protective circuits, to protect from the following conditions:
 - Short circuit at AFD output.
 - Ground fault at AFD output.

<table>
<thead>
<tr>
<th></th>
<th>135 AMPs</th>
<th>40HP</th>
<th>100HP</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>270 AMPs</td>
<td>75HP</td>
<td>200HP</td>
</tr>
</tbody>
</table>
- Open circuit at AFD output.
- Input undervoltage.
- DC bus overvoltage.
- Loss of input phase.
- AC line switching transients.
- Instantaneous overload.
- Sustained overload exceeding 100% of rated current.
- Overtemperature.

4. Control:

a. All the following operator controls shall be mounted to the front panel which is integral to the AFD:

 - Hand-Off-Auto (HOA) switch. The AFD shall accept an input signal of 4 to 20 Ma. DC. as an automatic speed reference signal when the AFD is in the automatic mode of operation. The manual speed potentiometer shall control the AFD when the switch is in the manual mode.
 - The AFD shall be furnished with an isolated follower with a setpoint control of 4 to 20 Ma. DC with PI control from an isolated ground signal.

5. Operator Interface:

a. The AFD shall be furnished with an alphanumeric display and keypad to allow the operator access to drive modes, parameters and status conditions.

b. Operator control and setup functions shall include the following:

 1. Frequency setpoint
 2. Acceleration/Deceleration time
 3. Minimum/Maximum Output Frequencies
 4. Proportional Gain
 5. Integral Gain
 6. Setpoint
 7. Drive Reset
 8. Elapsed Time
 9. Enable PI (Setpoint) Control
 10. Auto Reference Source Select

Operating status information will consist of the following:

 1. Frequency Output
 2. Output Current
 3. Output Voltage
 4. Accel/Decel Ramp Time
 5. Forward/Reverse Direction
 6. Hand/Auto Local Indicator
 7. Elapsed Time
The diagnostic and fault conditions available via the operator interface will include the following:

1. Output Frequency
2. Output Current
3. Output Voltage
4. Shutdown Reference Status
5. Jog Status
6. Mode of Operation
7. Input Signal Levels
8. Faults
9. Overload Timer Activated
10. Motor Current Limit

6. Enclosure:

a. The enclosure shall be NEMA Type 1 with a dead front and back construction with all components and load, line and control terminations fully front accessible. The enclosure shall be self-ventilated and have provisions for top and bottom entry of conduit and wire.

PART 3 – EXECUTION

3.1 INSTALLATION OF MOTOR STARTERS

A. Install motor starters in accordance with manufacturer's written instructions, applicable requirements of NEC, NEMA Standards, and NECA's "Standard of Installation", and in compliance with recognized industry practices to ensure that products fulfill requirements.

B. The Electrical Contractor shall consult and cooperate with the Control Contractor in assisting him in making control connections to the automatic position of the selector switch and to the auxiliary contacts.

C. Motor Data: Before installing wiring for motors and starters, the Electrical Contractor shall consult the respective parties furnishing the equipment and obtain from them all data necessary to properly connect the apparatus, and for selection of thermal overload relays in accordance with motor nameplate. Any variance in loads or electrical characteristics from the contract drawings should be reported to the Engineer before proceeding with the work.

D. When packaged equipment is furnished, all unit starters shall be furnished, mounted and wired by the installing contractor. The Electrical Contractor shall furnish and install a disconnect switch, as specified in Section 260170, and wire between unit's main terminal block and the disconnect switch.

E. When packaged rooftop equipment is furnished, the unit disconnect switch and all starters shall be furnished, mounted and wired by the installing contractor. The Electrical Contractor shall wire between the line side of the disconnect switch and the building system.

F. Provide connections for motor starters.
3.2 ADJUST AND CLEAN

A. Inspect operating mechanisms for malfunctioning and where necessary adjust units for free mechanical movement.

B. Touch-up scratched or marred surfaces to match original finish.

3.3 FIELD QUALITY CONTROL

A. Subsequent to wire/cable hookup, energize motor starters and demonstrate functioning of equipment in accordance with requirements.

END OF SECTION 26 01 55
SECTION 26 01 60

PANELBOARDS

PART 1 – GENERAL

1.1 DESCRIPTION OF WORK

A. Extent of panelboard load-center and enclosure work, including cabinets and cutout boxes, is indicated by drawings and schedules.

B. Types of panelboards and enclosures in this section include the following:
 Lighting and Appliance Panelboards.
 Distribution Panelboards.

1.2 SUBMITTALS

A. Product Data: Submit manufacturer’s data including specifications, installation instructions and general recommendations, for each type of panelboard required. Include data substantiating that units comply with requirements.

B. Shop Drawings: Submit dimensioned drawings of panelboards and enclosures showing layouts of enclosures and required individual panelboard devices, including but not necessarily limited to, circuit breakers, contactors, and accessories, including wiring diagrams of contactors.

1.3 COORDINATION

A. The drawings are scheme and/or diagrammatic in nature, and indicate the need and intent of the design. These are to be used for general guidance only. It shall be the responsibility of the Electrical Contractor to coordinate, with other Division Subcontractors, the installation of all raceways, raceway supports, junction boxes and required fittings. This coordination will include conduit layout to allow access to equipment for maintenance.

B. This coordination shall be carried out prior to actual installation; this shall be done to eliminate the possibility of conflicts between trades on items such as access, clearances and maintenance issues that may arise after completion of construction.

C. Should the coordination not be carried out prior to installation, and a conflict exists, the installing contractor shall remove and reinstall the equipment as required to clear the conflict at no additional cost to the Owner and no delay in project completion.

PART 2 – PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products of one of the following (for each type of panelboard and enclosure):

NOT FOR BIDDING PURPOSES

Tetra Tech

PANELBOARDS

26 01 60-1
2.2 PANELBOARDS

A. General:

1. Panelboards shall comply with the following industry standards:
 a. UL Listing/Approval
 b. UL Standards:
 Panelboards - UL67
 Cabinet & Boxes - UL50
 c. National Electric Code
 d. NEMA Standard -PBI

2. Interiors:

 a. All interiors shall be completely factory assembled. They shall be so designed that switching
 and protective devices can be replaced without disturbing adjacent units and without
 removing the main bus connectors, so that circuits may be changed without machining,
 drilling and tapping.
 b. Branch circuits shall be arranged using double row construction. A nameplate shall be
 provided listing panel type and rating.
 c. Unless otherwise noted, full size insulated neutral bars shall be included. Bus bar taps for
 panels with single pole branch bars shall be arranged for sequence phasing of the branch circuit
 devices. Neutral bus bars shall have a suitable lug for each outgoing feeder requiring a
 neutral connection. A ground bus will be included in all panelboards.

3. Boxes: Boxes shall be a minimum 20 inches wide and manufactured from galvanized steel.
 Provide minimum gutter space in accordance with the National Electric Code.

4. Trim:

 a. Switching device handles shall be accessible. Panel access doors shall not uncover any live
 parts. Doors shall have flush type cylinder lock and catch except doors over 48” in height
 shall have auxiliary fastenings top and bottom of door in addition to the flush type cylinder
 lock and catch. Panelboard trim clamps shall be of the indicating type. Upon removal of
 screws behind door, the panel interiors become service accessible via piano hinged trim
 front.
 b. Panel access door hinges shall be concealed. All locks shall be keyed alike; directory frame
 shall be welded metal and having a transparent cover shall be furnished with each door.
 c. All exterior and interior steel surfaces of the trim shall be properly cleaned, primed with a
 rust inhibiting phosphatized coating and finish with a gray ANSI 61 paint. Trims for flush
 panels shall overlap the box for a least 3/4 inch all around. Surface trims shall have the same
width and height as the box. Trims shall be mountable by a screwdriver and without the need for special tools.

5. Main Bus and Branch Circuits: All main bus bars shall be full size copper, sized in accordance with U.L. standards to limit the temperature rise on any current carrying part to a maximum of 50 degrees C above an ambient of 40 degrees C maximum.

B. Distribution Panelboards:

1. Panels shall be provided with molded case circuit breakers tested and U.L. labeled per U.L. 489.
2. Circuit breakers 100 ampere through 400 ampere frame sizes shall be thermal magnetic trip with inverse time current characteristics.
3. Where multiple pole circuit breakers are indicated, provide with common trip so overload on one pole will trip all poles simultaneously. Molded case circuit breakers shall all have symmetrical RMS interrupting capacity at 240 volts per coordination study.

C. Lighting and Appliance Panelboards:

1. Provide switching and protective devices in quantities, ratings, types indicated, with anti-turn solderless pressure type lug connectors approved for copper conductors. Circuit breakers shall be the bolt-on, molded case, thermal magnetic type, with toggle handles that indicate when tripped. Where multiple pole circuit breakers are indicated, provide with common trip so overload on one pole will trip all poles simultaneously.
2. Panelboards for use at 240 volts AC maximum shall incorporate circuit breakers as shown rated at A.I.C. symmetrical at 240 volts, per coordination study.
3. Panelboards for use at 480/277 volts AC maximum shall incorporate circuit breakers as shown rated at A.I.C. symmetrical at 480 volts, per coordination study.

D. Electronic Grade Panelboard (CP Panels): Furnish a dead-front safety type panelboard with the following:

1. Poles with size, type, and number of circuit breakers as indicated on the floor plan.
2. Isolated ground bus
3. 200% rated copper neutral bus.
4. Equipment ground bus.
5. Transient voltage surge suppressor.
6. High frequency extended range tracking filter and high performance suppression system.
7. Full diagnostic test point.

E. TVSS Requirements:

1. TVSS shall be Listed in accordance with UL 1283 and 1449 Second Edition, including the highest fault current of Section 37.3. (UL Recognized for Integral.)
2. TVSS shall have a UL Listed Short Circuit Current Rating (SCCR), equal to or greater than the SCCR where connected, per NEC 2002, Article 285 (as noted on drawings). It shall not require the use of any upstream overcurrent protection to obtain said rating.

3. TVSS shall be marked, *Suitable for use on a Circuit Capable of Delivering Not More Than 65,000 rms symmetrical Amperes, 600 Volts Maximum*. This marking shall be equal to or greater than the available fault current and voltage of application.

4. TVSS suppression components shall have a maximum continuous operating voltage (MCOV) of not less than 115% of the nominal phase-to-neutral operating voltage.

5. TVSS Submittal information shall include UL 1449, 2nd Edition, Listing Classification Page, indicating per mode Suppressed Voltage Ratings and UL Listed SCCR, each model and voltage.

6. Panel extended TVSS shall be installed, UL Listed, and shipped from the TVSS equipment manufacturer’s factory using a UL recognized component listing, or shall be installed by the contractor following field installation instructions for a UL Recognized TVSS in a panel extension, per the drawings.

7. TVSS shall provide surge current diversion paths for all modes of protection; L-N, L-G, N-G in WYE systems, and L-L, L-G in DELTA systems.

8. TVSS shall be modular in design for Distribution. Module(s) shall be fused with surge rated fuses and incorporate thermal cutout devices capable of preventing thermal runaway of internal suppression components.

9. TVSS shall be provided with 1 set of NO/NC dry contacts for connection with a facility management system, and provide an audible alarm for notification of reduced or lost protection. Device shall have LED indicators to indicate the status of protection on each phase and/or mode.

10. TVSS shall meet or exceed the following criteria:

 a. Minimum per phase (L-N + L-G) surge capacity shall be (as noted on drawings):

 (1) Distribution panels: 160kA – High Exposure 120kA – Medium/Low
 (2) Branch panels: 120kA – High Exposure 80kA – Medium/Low

 b. UL 1449 Listed, and Recognized Component Suppressed Voltage Ratings shall not exceed the following:

<table>
<thead>
<tr>
<th>VOLTAGE</th>
<th>L-N</th>
<th>L-G</th>
<th>N-G</th>
</tr>
</thead>
<tbody>
<tr>
<td>208Y/120</td>
<td>400V</td>
<td>400V</td>
<td>400V</td>
</tr>
<tr>
<td>480Y/277</td>
<td>800V</td>
<td>800V</td>
<td>800V</td>
</tr>
</tbody>
</table>

11. TVSS shall have a minimum EMI/RFI filtering of -50dB at 100kHz.

12. TVSS shall be provided with 1 set of NO/NC dry contacts. (when specified)

13. TVSS shall be provided with surge counter, as noted on drawings. (when specified)
14. TVSS shall have a five-year warranty. Warranty shall be the responsibility of the electrical
distribution equipment manufacturer and shall be supported by their respective field service
division.

PART 3 – EXECUTION

3.1 INSTALLATION OF PANELBOARDS

A. Install panelboards and enclosures where indicated in contract documents and, in accordance with the
equipment manufacturer's written instructions, applicable requirements of NEC and NECA's "Standard of Installation", and in compliance with recognized industry practices to ensure that products fulfill requirements.

B. Anchor enclosures firmly to walls and structural surfaces, ensuring that they are permanently and mechanically secure.

C. Provide all required electrical and grounding connections within the panelboards and enclosures.

D. The Electrical Contractor shall furnish and install on the door within each enclosure, a circuit labeling identification system for all electrical panelboards. The system must satisfy the NEC Article No. 110-22. The directories shall be typed, NOT handwritten. Directories shall indicate room numbers as indicated on contract documents and room numbers as physically labeled in the field.

E. The Electrical Contractor shall provide directories compiled using a software program that is Windows compatible. Program shall handle multiple panels, calculate panel electrical loads from user supplied data, maintain a history of repairs and upgrades by circuit, and be capable of printing panel directories and summaries. Verify compatibility with Owner’s operating system.

F. Provide two discs to owner containing software and project panel directories and summaries.

END OF SECTION 26 01 60
SECTION 26 01 65
SWITCHBOARDS

PART 1 – GENERAL

1.1 DESCRIPTION OF WORK
A. Extent of switchgear and switchboards is indicated by drawings and schedules.
B. Types of switchgear and switchboards in this section include the following:
 Dead-Front Switchboards.

1.2 SUBMITTALS
A. Product Data: Submit manufacturer's data on switchgear and switchboards.
B. Shop Drawings: Submit dimensioned drawings of switchgear and switchboards showing accurately
 scaled basic sections including, but not necessarily limited to, auxiliary compartments, section
 components, and combination sections.

1.3 COORDINATION
A. The drawings are scheme and/or diagrammatic in nature, and indicate the need and intent of the
 design. These are to be used for general guidance only. It shall be the responsibility of the Electrical
 Contractor to coordinate, with other Division Subcontractors, the installation of housekeeping
 equipment pad, switchboard cabinet structures, feeders, branch circuits, switchboard hardware and
 required fittings. This coordination will include conduit layout to allow access to equipment for
 maintenance.
B. This coordination shall be carried out prior to actual installation; this shall be done to eliminate the
 possibility of conflicts between trades on items such as access, clearances and maintenance issues that
 may arise after completion of construction.
C. Should the coordination not be carried out prior to installation, and a conflict exists, the installing
 contractor shall remove and reinstall the equipment as required to clear the conflict at no additional
 cost to the Owner and no delay in project completion.

PART 2 – PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS
A. Manufacturers: Subject to compliance with requirements, provide products of one of the following:
 Dead-Front Switchboards:
 Cutler Hammer, Inc. (Eaton)
 Square D Co.
 Siemens
2.2 EQUIPMENT AND COMPONENTS

A. Furnish the service entrance switchboard as indicated in contract documents. The switchboard shall meet the latest requirements of Underwriters Laboratories' Standard No. 891, NEMA PB2 and the National Electric Code. The switchboard shall be furnished with an Underwriters Laboratories' label.

B. Enclosure Construction: The switchboard shall be deadfront with front accessibility required. The switchboard frame shall be of formed code gauge steel rigidly welded and bolted together to support all coverplates, bussing and component devices during shipment and installation. Steel base channels shall be bolted to the frame to rigidly support the entire shipping section for moving on rollers and floor mounting. Each switchboard section shall have an open bottom and an individually removable top plate for installation and termination of conduits. The switchboard enclosure shall be painted on all exterior and interior surfaces. The paint finish shall be a medium light gray, ANSI #49, applied by the electro-deposition process over an iron phosphate pre-treatment. All front covers shall be screwed on and removable and all doors shall be hinged with removable hinge pins. Top and bottom conduit areas shall be clearly indicated on shop drawings.

C. Bussing: The switchboard bussing shall be of a sufficient cross-sectional area to meet U.L. Standard 891 temperature rise. Through bus shall be extruded aluminum plated by the Alstan 70 process. The through bus shall have an ampacity where indicated on the single line riser diagram and shall be rated to withstand a short circuit current rating per coordination study. The through bus supports, connections and joints are to be bolted with hex-head bolts and belleville washers to minimize maintenance requirements and shall have provisions for the addition of future sections.

D. Short Circuit Current Rating: Each switchboard, as a complete unit, shall be given a single short circuit current rating by the manufacturer in accordance with U.L. specifications, on equipment constructed similarly to the subject switchboard.

E. Main Circuit Breaker: The service disconnect device shall be a molded case circuit breaker totally front accessible and front connectable. The circuit breaker shall be provided with ground fault protection.

F. Branch Circuit Breakers: Group mounted molded case circuit breakers shall be totally front accessible. The circuit breakers shall be mounted in the switchboard to permit installation, maintenance and testing without reaching over any line side bussing. The circuit breakers are to be removable by the disconnection of only the load side cable terminations and all line and load side connections are to be individual to each circuit breaker. No common mounting brackets or electrical bus connectors will be acceptable.

G. Main switchgear shall be furnished with a phase loss relay with a set of contacts to send a trouble alarm to existing security control panel. Unit shall be furnished, installed and wired by equipment manufacturer. All other wiring required for proper interface to security control panel shall be by the Electrical Contractor. Coordinate all work and provide all required wiring as directed by Owner’s local security system representative.
PART 3 – EXECUTION

3.1 INSTALLATION OF SWITCHGEAR AND SWITCHBOARDS

A. Install switchgear and switchboards where shown, in accordance with manufacturer’s written instructions, with recognized industry practices to ensure that switchgear and switchboards comply with requirements of NEMA and NEC Standards, and applicable portions of NECA’s "Standard of Installation".

B. Tighten electrical bus connections and mechanical fasteners.

C. Provide connections within switchboard.

3.2 ADJUST AND CLEAN

A. Adjust operating mechanisms for free mechanical movement.

B. Touch-up scratched or marred surfaces to match original finish.

3.3 FIELD QUALITY CONTROL

A. Prior to energization of switchboards, check with ground resistance tester phase-to-phase and phase-to-ground insulation resistance levels to ensure requirements are fulfilled.

B. Prior to energization, check switchboards for electrical continuity of circuits, and for short circuits.

C. Subsequent to wire and cable hook-ups, energize switchboards and demonstrate functioning in accordance with requirements.

END OF SECTION 26 01 65
SECTION 26 01 70

MOTOR AND CIRCUIT DISCONNECTS

PART 1 – GENERAL

1.1 DESCRIPTION OF WORK

A. Extent of motor and circuit disconnect switch work is indicated by drawings and schedules.

B. Types of motor and circuit disconnect switches in this section include the following:
 - Equipment disconnects.
 - Appliance disconnects.
 - Motor-circuit disconnects.

1.2 SUBMITTALS

A. Product Data: Submit manufacturer's data including specifications, installation instructions and general recommendations, for each type of motor and circuit disconnect switch required.

1.3 COORDINATION

A. The drawings are scheme and/or diagrammatic in nature, and indicate the need and intent of the design. These are to be used for general guidance only. It shall be the responsibility of the Electrical Contractor to coordinate, with other Division Subcontractors, the installation of all motor and circuit disconnect switches, supporting hardware, including wiring and conduit, to and from the equipment. This coordination will include conduit layout to allow access to equipment for maintenance.

B. This coordination shall be carried out prior to actual installation; this shall be done to eliminate the possibility of conflicts between trades on items such as access, clearances and maintenance issues that may arise after completion of construction.

C. Should the coordination not be carried out prior to installation, and a conflict exists, the installing contractor shall remove and reinstall the equipment as required to clear the conflict at no additional cost to the Owner and no delay in project completion.

PART 2 – PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS

A. Manufacturer: Subject to compliance with requirements, provide products of one of the following (for each type of switch):
 - Cutler-Hammer, Inc. (Eaton)
 - Square D Company
 - Siemens
2.2 FABRICATED SWITCHES

A. Safety Switches: Safety switches shall be of sizes noted on the drawings, fusible or non-fusible and contained in a general purpose enclosure. All switches shall be type HD and have quick-make, quick-break operation. All switches shall be of proper horsepower rating as applicable and have dual interlocks designed to interlock the switch box door with the switch operating mechanism. Unit shall be provided with a suitable means of interlock release. An arrangement shall be provided for locking the operating handle in the "ON" or "OFF" position. Safety switches shall have the proper type metal enclosure, i.e., standard, weatherproof, etc., to suit their specific location as required by the National Electrical Code.

B. Fuses: Provide fuses for safety switches, as recommended by switch manufacturer, of classes, types and ratings needed to fulfill electrical requirements for service indicated.

C. When packaged rooftop equipment is furnished, the unit disconnect switch shall be furnished, mounted and wired by the installing contractor.

D. When rooftop exhaust fans rated less than 1/2 HP at 120 volts, single phase, are furnished, except utility sets, the unit disconnect switch shall be furnished, mounted and wired by the installing contractor.

PART 3 – EXECUTION

3.1 INSTALLATION OF MOTOR AND CIRCUIT DISCONNECT SWITCHES

A. Install motor and circuit disconnect switches where indicated, complying with manufacturer's written instructions, applicable requirements of NEC, NEMA, and NECA's "Standard of Installation", and in accordance with recognized industry practices to ensure that products fulfill requirements.

B. Install disconnect switches used with motor-driven appliances, and motors and controllers within sight of controller position unless otherwise indicated.

C. Provide electrical connections for motor and circuit disconnect switches.

END OF SECTION 26 01 70
SECTION 26 01 80
OVERCURRENT PROTECTIVE DEVICES

PART 1 – GENERAL

1.1 DESCRIPTION OF WORK
A. Extent of overcurrent protective device work is indicated by drawing schedules and specifications.
B. Types of overcurrent protective devices in this section include the following:
 1. Service entrance rated disconnect.

1.2 SUBMITTALS
A. Product Data: Submit manufacturer's data on overcurrent protective devices, including: voltages and current ratings, interrupting ratings, current limitations, internal inductive and non-inductive loads, time-current trip characteristic curves, and mounting requirements.
B. Shop Drawings: Submit layout drawings of overcurrent protective devices, showing spatial relationships of units to associated electrical equipment, and connections to electrical power supplies.

PART 2 – PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS
A. Manufacturers: Subject to compliance with requirements, manufacturers offering products which may be incorporated in the work include the following:
 1. Circuit-Breakers
 Cutler-Hammer, Inc. (Eaton)
 Square D Co.
 Siemens

2.2 CIRCUIT BREAKERS
A. Except as otherwise indicated, provide circuit breakers and ancillary components, of types, sizes, ratings and electrical characteristics indicated, which comply with manufacturer's standard design, materials, components, and construction in accordance with published product information, as required for a complete installation.
B. Service Entrance Rated Disconnect: The service disconnect device shall be a molded-case circuit breaker totally front accessible and front connectable. The circuit breaker shall be a three pole device suitable for operation on a 480 volt, 60 Hertz system. Circuit breaker shall have
symmetrical amperes interrupting rating, as determined by coordination study, and shall be UL approved for Service Entrance equipment.

C. Molded-Case Circuit Breakers: Provide factory assembled, molded-cased circuit breakers of frame size indicated; 120/208 volts, and 277/480 volts 60 Hertz, one, two, or three poles with a short circuit symmetrical amperes interrupting rating as indicated by the panel schedule and/or as shown by the single line riser diagram. Provide circuit breakers with permanent thermal instantaneous magnetic trips in each pole with ampere ratings as indicated. Construct with overcenter, trip-free, toggle type operating mechanisms with quick-make, quick-break action and positive handle trip indication. Construct devices for mounting and operating in any physical position and operating in an ambient temperature of 40 degrees C. Provide circuit breakers with mechanical and operating in an ambient temperature of 40 degrees C. Provide circuit breakers with mechanical screw type connector lugs, AL/CU rated.

PART 3 – EXECUTION

3.1 INSTALLATION OF OVERCURRENT PROTECTIVE DEVICES

A. Install overcurrent protective devices as indicated in contract documents, in accordance with the manufacturer's written instructions and with recognized industry practices to ensure that protective devices comply with requirements. Comply with NEC Standards for Installation of overcurrent protective devices.

B. Coordinate with other work, including electrical wiring work, as necessary to interface installation of overcurrent protective devices with other work.

C. Fasten circuit breakers without causing mechanical stresses, twisting or misalignment being exerted by clamps, supports, or cabling.

3.2 ADJUST AND CLEAN

A. Inspect circuit-breaker operating mechanisms for malfunctioning and, where necessary, adjust units for free mechanical movement.

3.3 FIELD QUALITY CONTROL

A. Prior to energization of overcurrent protective devices, test devices for continuity of circuitry and for short circuits. Correct malfunctioning units, and then demonstrate compliance with requirements.

END OF SECTION 26 01 80
SECTION 26 01 90
SUPPORTING DEVICES

PART 1 – GENERAL

1.1 DESCRIPTION OF WORK

A. Types of supports, anchors, sleeves and seals specified in this section include the following:

- Hangers.
- Riser Clamps.
- C-clamps
- I-beam clamps.
- One-hole conduit straps.
- Two-hole conduit straps.
- Round steel rods.
- Lead expansion anchors.
- Toggle bolts.
- U-Channel Strut Systems.

PART 2 – PRODUCTS

2.1 MANUFACTURED SUPPORTING DEVICES

A. Provide supporting devices, complying with manufacturer's standard materials, design and construct in accordance with published product information, and as required for a complete installation, and as herein specified.

B. Supports: Provide supporting devices of types, sizes and materials having the following construction features:

- Hangers: For supporting EMT conduit, electro-galvanized steel, with 1/4" minimum diameter hole for round steel rod; approximately MSS types 5, 7, 9 or spring steel conduit clips.

- Reducing Couplings: Steel rod reducing coupling, 1/4" minimum black steel.

- C-Clamps: Black malleable iron, 1/4" minimum rod size.

- I-Beam Clamps: Black steel, 1-1/4" x 3/16" stock; 3/8" cross bolt; flange width 2"; approx. 52 pounds per 100 units.

- One-Hole Conduit Straps: For supporting EMT conduit, electro-galvanized steel.

- Two-Hole Conduit Straps: For supporting EMT conduit, electro-galvanized steel; 3/4" strap width; and 2-1/8" between center of screw holes.

- Hexagon Nuts: For 1/4" rod size; galvanized steel.
Round Steel Rod: Black steel; 1/4" min. dia.

Offset Conduit Clamps: For supporting rigid metal conduit; black steel.

C. Anchors: Provide anchors of types, sizes and materials indicated; and having the following construction features:

Lead Expansion Anchors: 1/4" - 20 Minimum.

Toggle Bolts: Springhead; 3/16 x 4".

D. Manufacturer: Subject to compliance with requirements, provide anchors of the following:

Ackerman Johnson Fastening Systems, Inc.
Elcen Metal Products Co.
Ideal Industries, Inc.
Rawlplug Co., Inc.
Star Expansion Co.
U.S. Expansion Bolt Co.
Erico Products, Inc. (Caddy)
Hilti, Inc.

E. U-Channel Strut Systems: Provide U-channel strut system for supporting electrical equipment, 16-gauge hot dip galvanized steel, construct with 9/16" dia. holes, 8" o.c. on top surface, with standard hot dip galvanized finish, and with the following fittings which mate and match with U-channel.

Beam clamps.
Thinwall conduit clamps.
Conduit hangers.
U-bolts.

F. Manufacturers: Subject to compliance with requirements, provide channel systems of one of the following:

B-Line Systems, Inc.
Elcen Metal Products Co.
Power Strut Div.; Van Huffel Tube Corp.
Unistrut Div.; GTE Products Corp.
Hilti, Inc.

PART 3 – EXECUTION

3.1 INSTALLATION OF SUPPORTING DEVICES

A. Install hangers and anchors in accordance with manufacturer's written instructions and with recognized industry practices to insure supporting devices comply with requirements. Comply with requirements of NECA, NEC and ANSI/NEMA for installation of supporting devices.
B. Install hangers, supports, clamps and attachments to support piping properly from building structure. Arrange for grouping of parallel runs of horizontal conduits to be supported together on trapeze type hangers where possible. Install supports with maximum spacings.

END OF SECTION 26 01 90
SECTION 26 01 95
POWER SYSTEM STUDIES

PART 1 – GENERAL

1.1 DESCRIPTION OF WORK

A. Short Circuit Coordination Study:
 1. Short circuit studies, protective device evaluation studies and protective device coordination studies shall be performed by the switchboard manufacturer. The studies shall be submitted to the Engineer prior to receiving final approval of the distribution equipment shop drawings and/or prior to release of equipment for manufacture.
 2. The studies shall include all portions of the electrical distribution system from the utility service equipment to all downstream distribution and branch panelboards, including normal and emergency equipment.

B. Arc Fault Calculations and Labeling:
 1. Complete arc fault available current calculations and labeling shall be provided by the Electrical Contractor. Calculations may be performed by a subcontractor such as the switchboard manufacturer. Calculations shall be submitted to the Engineer prior to manufacture of labels, for review and approval.
 2. Calculations shall include all portions of the electrical distribution system from the utility service equipment to all downstream distribution and branch panelboards; and from generator to all emergency distribution and transfer switches.
 3. Electrical Contractor shall provide permanent labels on all electrical distribution system equipment as listed above. Labels shall indicate maximum available arc fault current per NEC 2011, Article 110. In addition, labels shall indicate level of personal protective equipment appropriate for the hazard, as defined in NFPA 70E.

PART 2 – DATA ACQUISITION

2.1 DATA COLLECTION FOR THE STUDIES

A. The Contractor shall provide the required data for preparation of the studies. The switchboard manufacturer shall furnish the contractor with a listing of the required data immediately after award of the contract.

B. The Contractor shall expedite collection of the data to assure completion of the studies as required for final approval of the distribution equipment shop drawings and/or prior to release of the equipment for manufacture.

C. The Contractor shall be responsible for provision of all feeder lengths required for all calculations.
2.2 SHORT CIRCUIT AND PROTECTIVE DEVICE EVALUATION STUDY

A. The short circuit study shall be performed with the aid of a digital computer program and shall be in accordance with ANSI C37.5-1969 (R1975), IEEE Std. 320-172 and IEEE Std. 141-1976.

B. The study input data shall include the Power Company's short circuit contribution, resistance and reactance components of the branch impedances, the X/R ratios, base quantities selected, and other source impedances. This data shall be obtained by the contractor from the Utility Company.

C. Short circuit close and latch duty values and interrupting duty values shall be calculated on the basis of assumed three-phase bolted short circuits at each switchgear bus, medium voltage controller, switchboard, low voltage motor control center, distribution panelboard, pertinent branch circuit panel and other significant locations through the system. The short circuit tabulations shall include symmetrical fault currents and X/R ratios. For each fault location, the total duty on the bus, as well as the individual contribution from each connected branch, shall be listed with its respective X/R ratio.

D. A protective device evaluation of circuit breakers, disconnect switches, and fuses by tabulating and comparing the short circuit ratings of these devices with the calculated fault currents. Appropriate multiplying factors based on system X/R ratios and protective device rating standards shall be applied. Any problem areas or inadequacies in the equipment due to short circuit currents shall be promptly brought to the Engineer's attention.

2.3 PROTECTIVE DEVICE COORDINATION STUDY

A. A protective device coordination study shall be performed to provide the necessary calculations and logic decisions required to select the protective relay characteristics and settings, ratios and characteristics of associated current transformers, and low voltage breaker trip characteristics and settings.

B. The coordination study shall include all medium and low voltage classes of equipment from the building service protective devices down to and including the largest rated device in the MCC low voltage motor control center and panelboard. The phase and ground overcurrent protection shall be included as well as settings of all other adjustable protective devices.

C. The time-current characteristics of the specified protective devices shall be drawn on Keuffel and Esser Log log paper. The plots shall include complete titles, representative one-line diagram and legends, significant motor starting characteristics, complete parameters of transformers, complete operating bands of low voltage circuit breaker trip curves and fuses. The coordination plots shall indicate the types of protective devices selected, proposed relay taps, time dial and instantaneous trip settings, transformer magnetizing inrush and ANSI transformer withstand parameters, cable thermal overcurrent withstand limits and significant symmetrical and asymmetrical fault currents. All restrictions of the National Electrical Code shall be adhered to and proper coordination intervals and separation of characteristic curves shall be maintained. The coordination plots for phase and ground protection devices shall be provided on a system basis. A sufficient number of separate curves shall be used to clearly indicate the coordination achieved.

D. The selection and settings of the protective devices shall be provided separately in a tabulated form listing circuit identification, IEEE device number, current transformer ratios and connection, manufacturer and type, range of adjustment and recommended settings. Any discrepancies, problem
areas, or inadequacies shall be promptly brought to the Engineer's attention.

2.4 STUDY REPORT

A. The results of the Power System Study shall be summarized in a final report. Submit six (6) bound copies of final report.

B. The report shall include the following sections:

1. Description, purpose, basis and scope of the study and a single line diagram of that portion of the power system which is included within the scope of the study.

2. Tabulations of circuit breakers, and other protective device ratings versus calculated short circuit duties, and commentary regarding same.

3. Protective device time versus current coordination curves, tabulations of relay and circuit breaker trip settings, and commentary regarding same.

4. Fault current calculations including a definition of terms and guide for interpretation of computer printout.

PART 3 – EXECUTION

3.1 PROTECTIVE DEVICE TESTING, CALIBRATION AND ADJUSTMENT

A. The equipment manufacturer shall provide the services of a qualified field Engineer any necessary tools and equipment to test, calibrate and adjust the protective relays and circuit breaker trip devices as recommended in the Power System Study.

3.2 ARC FAULT LABELING

A. Contractor shall submit sample of arc fault label during shop drawing review for approval.

END OF SECTION 26 01 95
SECTION 26 04 00

ELECTRICAL DISTRIBUTION

PART 1 – GENERAL

1.1 GENERAL PROVISIONS

A. The general provisions of the Contract, including the Conditions of the Contract (General, Supplementary and other Conditions, if any) and Division 1 as appropriate, apply to the work specified in this section.

B. This section is a Division 26 Basic Methods and Materials Section, and is part of each Division 26 Section.

1.2 DESCRIPTION

A. Perform all work necessary and/or required and furnish all materials and equipment for a complete system of electrical service and distribution. Such work includes but is not limited to the following:

1. New 480/277-volt, 3 phase, 4 wire grounded neutral service to be utilized for this project distribution.

2. Grounding system for the electric service entrance, equipment and the distribution system.

3. Complete system of distribution for light and power including panelboard and circuit breakers, switches, receptacles, wiring devices, conduit and wiring.

1.3 SHOP DRAWINGS

A. No shop drawing submittals required under this specification section.

1.4 ELECTRICAL SERVICE

A. Main incoming secondary service shall be 480/277-volt, 3 phase, 4 wire, grounded neutral (wye).

1.5 ELECTRIC DISTRIBUTION SYSTEM

A. 480/277-volt, 3 phase, 4 wire grounded neutral system for 480/277 volt combined lighting and power.

PART 2 – PRODUCTS

2.1 GROUNDING

A. Grounding shall comply with the requirements of the National Electrical Code with all final grounds being made to the driven ground rod(s). System neutrals to be grounded to one location only for protective relaying.

B. The following list is representative of the parts which shall be solidly grounded:
Electric systems neutrals
Electric systems grounding conductors
Conduit system complete
Panelboard
Equipment frames, boxes and cabinets

PART 3 – EXECUTION

3.1 ELECTRIC DISTRIBUTION SYSTEM

A. Install the main feeders and sub-feeders using specified conductors in electrical raceways.

3.2 GROUNDING

A. Provide a complete grounding system for the electrical systems, equipment frames and housing.

B. Contractor shall make such connections as are necessary and shall be required to complete the wiring arrangement shown on the single line wiring diagram on drawings.

END OF SECTION 26 04 46.

NOT FOR BIDDING PURPOSES
SECTION 26 04 02
UNDERGROUND ELECTRIC SERVICE

PART 1 – GENERAL

1.1 DESCRIPTION OF WORK

A. Underground electric service work is indicated by drawings and schedules.

B. Types of underground electric service equipment in this section includes the following:
 - Raceways
 - Cable and Wire
 - Wall and Floor Seals

PART 2 – PRODUCTS

2.1 SERVICE ENTRANCE EQUIPMENT

A. Provide Service Entrance equipment accessories, of the types, sizes, ratings and electrical characteristics which comply with manufacturer's standard materials, design and construction in accordance with published product information and as required for complete installation, and as herein specified.

2.2 OVERCURRENT PROTECTIVE DEVICES

A. Provide overcurrent protective devices complying with Division 26 Basic Materials and Methods Section "Overcurrent Protective Devices", in accordance with the following listing:

 - Service Entrance rated disconnect.
 - Molded-case circuit breakers.

2.3 CABLE/WIRING

A. Provide cable/wiring complying with Division 26 Basic Materials and Methods Section "Wires and Cables", in accordance with the following listing:

 - Type THW, Copper Cable.
 - Type THW, Aluminum Cable.

2.4 RACEWAYS

A. Provide raceways complying with Division 26 Basic Materials and Methods Section "Raceways", in accordance with the following listing:

 - Intermediate metal conduit and fittings.
 - Rigid metal conduit and fittings.
 - Polyvinyl chloride rigid conduit.
2.5 SERVICE ENTRANCE ACCESSORIES

A. Provide wall and floor seals complying with Division 26 in accordance with the following listing:

Wall and floor seals.

PART 3 – EXECUTION

3.1 INSTALLATION OF UNDERGROUND ELECTRIC SERVICE EQUIPMENT

A. Install underground electric service equipment in accordance with equipment manufacturer's written instructions, and with recognized industry practices, to ensure that Service Entrance equipment fulfills requirements. Comply with applicable installation requirements of NEC and NEMA Standards.

B. Coordinate with other electrical work, including Utility Company wiring, as necessary to interface installation of Service Entrance equipment work with other work.

3.2 GROUNDING

A. Provide tight system and equipment grounding and bonding connections for Service Entrance equipment and wiring/cabling.

3.3 FIELD QUALITY CONTROL

A. Upon completion of installation of underground electric service equipment and electrical circuitry, energize circuitry and demonstrate capability and compliance with requirements. Where possible, correct malfunctioning units at site, then retest to demonstrate compliance; otherwise, remove and replace with new units and proceed with retesting.

END OF SECTION 26 04 02
SECTION 26 04 52

GROUNDING

PART 1 – GENERAL

1.1 DESCRIPTION OF WORK

A. Types of grounding in this section include the following:

Grounding:
- Underground metal piping.
- Underground metal water piping.
- Grounding rods.
- Service equipment.
- Enclosures.
- Systems.
- Equipment.
- Building Structural Steel (Bonding)

PART 2 – PRODUCTS

2.1 GROUNDING

A. Except as otherwise indicated, provide each electrical grounding system indicated, with assembly of materials including, but not necessarily limited to, cables/wires, connectors, terminals (solderless lugs), and other items and accessories needed for complete installation. Where materials or components are not otherwise indicated, comply with NEC, NEMA, and established industry standards for applications indicated.

B. Provide conduit, tube, duct, cable and fittings complying with Division 26 Basic Materials and Methods section, "Raceways", in accordance with the following listing:

- Rigid steel conduit.
- Electrical metallic tubing.
- Flexible metal conduit.
- Liquid-tight flexible metal conduit.
- Rigid metal conduit fittings.
- EMT fittings.
- Flexible metal conduit fittings.
- Liquid-tight flexible metal conduit fittings.

2.2 ELECTRICAL GROUNDING CONDUCTORS

A. Unless otherwise indicated, furnish a green insulated equipment grounding conductor for all feeders and branch circuits, matching power supply wiring materials and sized according to NEC.
2.3 BONDING PLATES, CONNECTIONS, TERMINALS & CLAMPS

A. Provide electrical bonding plates, connectors, terminals and clamps as recommended by bonding plate, connector, terminal and clamp manufacturers for applications.

2.4 GROUND RODS & PLATES

A. Ground Rods: Steel with copper welded exterior, 3/4" dia. x 10'.

PART 3 – EXECUTION

3.1 INSTALLATION OF GROUNDING SYSTEMS

A. Install electrical grounding systems in accordance with manufacturer's written instructions and with recognized industry practices to ensure grounding complies with requirements. Comply with requirements of NEC, NESC, NEMA and UL standards for installation of grounding systems.

B. Coordinate with other electrical work as necessary to interface installation of grounding system with other work.

C. Clamp cable connections to ground rods.

D. Install bonding jumpers with ground clamps on water meter piping to electrically bypass water meter.

E. Install clamp-on connectors only on thoroughly cleaned metal contact surfaces, to ensure electrical conductivity and circuit integrity.

3.2 FIELD QUALITY CONTROL

A. Upon completion of installation of electrical grounding system, test ground resistance with ground resistance tester. Where tests show resistance-to-ground is over 25 ohms, take appropriate action to reduce resistance to 25 ohms or less by driving additional ground rods and/or by chemically treating soil encircling ground rods with sodium chloride, calcium chloride, copper sulphate, or magnesium. Then retest to demonstrate compliance.

END OF SECTION 26 04 52
SECTION 26 04 60
TRANSFORMERS

PART 1 – GENERAL

1.1 DESCRIPTION OF WORK

A. Extent of transformer work is indicated by drawings and schedules.

B. Types of transformers in this section include the following:

- Dry type transformers
- Harmonic Mitigating Transformers

1.2 SUBMITTALS

A. Product Data: Submit manufacturer's data on power/distribution transformers, including certification of transformer performance efficiency at indicated loads, percentage regulation at 100% and 80% power factor, no-load and full-load losses in watts, % impedance at 75 Degrees C, hot-spot and average temperature rise above 40 degrees C ambient, sound level in decibels and standard published data including dimensions and net and shipping weights.

B. Shop Drawings: Submit dimensioned drawings of transformer installations, showing mountings and supports.

PART 2 – PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products of one of the following (for each type of transformer):

- Dry

Sorgel Electric Division/Square D Company
Cutler-Hammer/Eaton Electrical, Inc.
The ABB Group
Siemens Energy & Automation, Inc.
Mirus International, Inc.
Approved Substitute.

2.2 POWER/DISTRIBUTION TRANSFORMERS

A. General Requirements:

1. Except as otherwise indicated, provide manufacturer's standard materials and components as indicated in contract documents and by published product information designed and constructed as recommended by manufacturer, and as required for complete installation.
2. All single phase transformers sized from 15 kVA thru 167 kVA shall be Energy Star rated and be compliant with NEMA Standard TP-1.

3. All 3-phase transformers sized from 15 Kva thru 750 Kva shall be Energy Star rated and be compliant with NEMA Standard TP-1.

B. Three Phase Distribution Transformers: Provide open ventilated dry-type three phase distribution transformers, 480-volt delta primary, 120/208 volt secondary with KVA rating as indicated on the drawings. Transformers shall be aluminum wound windings, 220°C Class insulation and temperature rise rating of 150 degrees C. Unit shall be provided with six (6) approximately 24/2% taps, two (2) above and four (4) below rated primary voltage. A low voltage neutral terminal shall be provided. Coils shall be enclosed by a sheet steel enclosure comprised of readily removable sections having ventilated openings in front cover. Core and coil assemblies shall be mounted on rubber isolation pads. Limit terminal compartment to 75 degrees C. at full-rated load. Provide wiring connectors suitable for copper wiring. Cushion-mount transformers with external vibration isolation supports. Electrically ground core and coils to transformer enclosure by means of flexible metal grounding strap.

2.3 HARMONIC MITIGATING ISOLATION TRANSFORMERS (T-3)

A. Furnish an isolation transformer with low zero sequence output impedance designed to reduce the voltage distortion created by the 3rd and other triplen harmonic currents. Primary-secondary phase shift permits cancellation of 5th, 7th, 17th and 19th harmonic currents with those of other loads fed from the same primary supply. Transformer shall be Energy Star rated and be compliant with NEMA Standard TP-1.

B. Furnish an open ventilated, three (3), phase, common core unit with copper windings. Unit voltage and KVA rating shall be as indicated on the floor plans and/or single line diagram. Transformers shall have a insulation class 220 degrees C. and a temperature rise rating of 80 degrees C. Unit shall be furnished with a full load efficiency of 97% minimum at 170 degrees C. and two (2) full load taps above normal and two (2) full load taps below normal. Transformer shall have single electrostatic shielding rated 60dB attenuation.

C. Enclosure shall be an open ventilated, NEMA-1, general purpose, finished in grey with anti-vibration pads between the core and the enclosure.

D. Transformer shall be similar to Mirus International, Inc., Model Harmanity-1, 2 or 3, based on the quantity of feeder taps or approved equal.

PART 3 – EXECUTION

3.1 INSTALLATION OF TRANSFORMERS

A. Install transformers as indicated in contract documents, and complying with manufacturer’s written instructions, applicable requirements of NEC, NEMA and IEEE Standards, and in accordance with recognized industry practices to ensure that products fulfill requirements.

B. Install units on vibration mounts; comply with manufacturer’s installation method if any.
3.2 GROUNDING

A. Provide tightly fastened equipment grounding and bonding connections for transformers.

3.3 TESTING

A. Upon completion of installation of transformers, energize primary circuit at rated voltage and frequency from normal power source and test transformers, including, but not limited to, audible sound levels, to demonstrate capability and compliance with requirements. Where possible, correct malfunction units at the site, then retest to demonstrate compliance; otherwise, remove and replace with new units and proceed with retesting.

END OF SECTION 26 04 60
SECTION 26 04 70

DISTRIBUTION CIRCUITS

PART 1 – GENERAL

1.1 DESCRIPTION OF WORK

A. Distribution circuit work is indicated by drawings and schedules.

B. The distribution circuits shall include furnishing and installing a complete wire and conduit system between distribution panelboards and branch circuit panelboards.

C. Types of equipment to be furnished and installed in this section include the following:

- Rigid Metal Conduit
- Intermediate Metal Conduit (IMC)
- Electrical Metallic Tubing (EMT)
- PVC (Below Slab Only)
- Wires and Cables
- Junction Boxes
- Pull Boxes
- Conduit Bodies
- Bushings
- Locknuts
- Supporting Devices

PART 2 – PRODUCTS

2.1 DISTRIBUTION CIRCUITS

A. Furnish and install each distribution circuit indicated, with assembly of materials, including but not necessarily limited to, conduit, wire, pull boxes, junction boxes and other items and accessories needed for a complete installation. Where materials or components are not otherwise indicated, comply with NEC, NEMA and established industry standards for applications indicated.

PART 3 – EXECUTION

3.1 INSTALLATION OF DISTRIBUTION CIRCUITS

A. Install distribution circuits complying with equipment manufacturer’s written instructions, applicable requirements of NEC, NEMA, and NECA’s "Standard of Installation", and in accordance with recognized industry practices.

B. Multiple circuits within a single raceway shall not be permitted under this section.

END OF SECTION 26 04 70
SECTION 26 04 71

FEEDER CIRCUITS

PART 1 – GENERAL

1.1 DESCRIPTION OF WORK

A. Feeder circuit work is indicated by drawings and schedules.

B. The feeder circuits shall include furnishing and installing a complete wire and conduit system between distribution panelboards and major 3 phase loads, between power panels and 3 phase motor loads.

C. Types of equipment to be furnished and installed in this section include the following:

- Rigid Metal Conduit
- Electrical Metallic Tubing (EMT)
- Intermediate Metal Conduit (IMC)
- Wires and Cables
- Junction Boxes
- Pull Boxes
- Conduit Bodies
- Bushings
- Locknuts
- Supporting Devices

PART 2 – PRODUCTS

2.1 FEEDER CIRCUITS

A. Furnish and install each feeder circuit with assembly of materials, including but not necessarily limited to, conduit, wire, pull boxes, junction boxes and other items and accessories needed for a complete installation. Where materials or components are not otherwise indicated, comply with NEC, NEMA and established industry standards for applications indicated.

PART 3 – EXECUTION

3.1 INSTALLATION OF FEEDER CIRCUITS

A. Install feeder circuits, complying with equipment manufacturer's written instructions, applicable requirements of NEC, NEMA and NECA's "Standard of Installation", and in accordance with recognized industry practices.

B. Multiple circuits within a single raceway shall not be permitted under this section.

END OF SECTION 26 04 71
SECTION 26 04 72

BRANCH CIRCUITS

PART 1 – GENERAL

1.1 DESCRIPTION OF WORK

A. Branch circuit work is indicated by drawings.

B. The branch circuits shall include furnishing and installing a complete wire and conduit or cable system between panelboards and lighting fixtures, receptacles, fractional horsepower motors, and small single phase loads.

C. Types of equipment to be furnished and installed in this section include the following:

- Rigid Raceways – See Section 260110
- Electrical Metallic Tubing (EMT)
- MC (Metal Clad) (Concealed Work only)
- Wires and Cables
- Junction Boxes
- Pull Boxes
- Conduit Bodies
- Bushings
- Locknuts
- Supporting Devices

PART 2 – PRODUCTS

2.1 BRANCH CIRCUITS

A. Furnish each branch circuit with an assembly of materials, including but not necessarily limited to, conduit, wire, cable, pull boxes, junction boxes and other items and accessories needed for a complete installation. Where materials or components are not otherwise indicated, comply with NEC, NEMA and established industry standards for applications indicated.

2.2 CONVENIENCE BRANCH CIRCUITS

A. Intent

1. The intent of this portion of the specifications is to describe the requirements of a convenience circuit as it applies to 120-volt receptacles.

2. All convenience branch circuits may consist of more than one 120-volt receptacle.

B. Convenience Circuit - General: A circuit consisting of a phase and neutral conductor, which may share its neutral with other phase conductors provided that the neutral conductor does not become overloaded due to circuit phase relationship. This type of circuit shall also include an equipment grounding conductor as described under the grounding section of the specifications.
C. Convenience Circuit - Dedicated: A circuit consisting of a phase and neutral conductor which DOES NOT share conductors with any other circuits. This type of circuit shall also include an equipment grounding conductor as described under the grounding section of the specifications.

D. Convenience Circuit Dedicated with Isolated Ground: A circuit consisting of a phase, neutral and ground conductor which DOES NOT share conductors with any other circuits. This type of circuit shall also include an equipment grounding conductor as described under the grounding section of the specifications.

1. The isolated ground conductor shall be connected to an isolated ground type receptacle as described under the Wiring Devices Section of the specifications.

2. The isolated ground conductor shall be identified by green insulation with a yellow stripe.

3. The isolated ground conductor shall be connected to an isolated ground bar in the branch circuit panelboard. This isolated ground bar shall then be connected to an applicable derived system ground or service entrance ground.

PART 3 – EXECUTION

3.1 INSTALLATION OF BRANCH CIRCUITS

A. Install branch circuits, complying with equipment manufacturer's written instructions, applicable requirements of NEC, NEMA, and NECA's "Standard of Installation", and in accordance with recognized industry practices.

B. Multiple circuits within a single raceway or cable shall be permitted under this section. It shall be the responsibility of the Electrical Contractor to assure that the neutral conductors do not become overloaded due to circuit phase relationship, and isolated grounds not become voided or compromised due to miswiring or wrong connections.

C. The Electrical Contractor may elect to use metal clad cable in lieu of electrical metallic tubing (EMT) in wall cavities and/or above tile ceilings as fixture drops only. In all areas of exposed construction, electrical metallic tubing (EMT) shall be installed.

END OF SECTION 26 04 72
SECTION 26 04 75

ELEVATOR ELECTRICAL SYSTEMS

PART 1 – GENERAL

1.1 DESCRIPTION OF WORK

A. Elevator electrical work is indicated by drawings, schedules and specifications.

B. The feeder circuits, branch circuits and fire alarm interface shall include, but not be limited to, furnishing and installing a complete wire and conduit system with required equipment and components. This shall occur between the building’s distribution panelboard, branch circuit panelboard, the fire alarm control panel and the elevator equipment, machine room, hoistway and elevator lobby.

C. Types of equipment to be furnished and installed in this section shall include, but not be limited to, the following:

1. Lighting (branch circuits)
2. Power (feeder circuits)
3. Control (fire alarm system)
4. Signal (telephone system) (when required)

PART 2 – PRODUCTS

2.1 LIGHTING

A. Furnish and install within the elevator machine room on strike side of machine room door, a 30 amp, 2 pole fused disconnect switch with conduit and wire to a junction box in the hoistway, final location of junction box shall be as directed by the elevator contractor.

B. The non-fused disconnect switch shall be connected to the local branch circuit panelboard with 2 # 12 + 1 # 12 ground in ¾” conduit. This circuit shall be used to provide service to the elevator car lighting, exhaust fan and any other small loads required by the elevator equipment.

2.2 POWER

A. Furnish and install switch with auxiliary contacts, with conduit and wire to the elevator controller, refer to the single line diagram for conduit and wire size. Fuse type and size shall be as directed by the elevator manufacturer. The auxiliary contacts shall be used to disconnect the control panel’s battery backup during maintenance.

B. Furnish and install within the distribution panelboard a 3 pole molded case circuit breaker with a shunt trip device, auxiliary contact and conduit and wire to the elevator disconnect switch. Refer to the single line diagram for the circuit breaker size and type and the conduit and wire size. The auxiliary contacts shall be used to disconnect the control panel’s battery backup.
C. Furnish and install a 20 amp, 120 volt, single phase power source for the molded case circuit breaker’s shunt trip device from a local branch circuit panelboard.

2.3 CONTROL

A. Furnish and install smoke detectors within areas of the building associated with the elevator as follows:

1. Elevator Lobbies one on each level
2. Hoistway at the top of the shaft. In addition to the smoke detector, furnish and install a heat detector.
3. Machine Room in addition to the smoke detector, furnish and install a heat detector.

B. Each elevator lobby, hoistway and machine room smoke detector shall be zoned separately from each other and from the floor detectors. These detectors shall be wired and programmed to form a three (3) circuit control scheme for elevator recall as outlined in the National Fire Alarm Code 3-8.14.6.

C. When the building is sprinkled the elevator machine room and the elevator hoistway shall have a heat detector installed. This detector shall be installed within 2 feet of the sprinkler head in accordance with the National Fire Alarm Code 3-8.15.2. The heat detector shall be furnished based on the Response Time Index (RTI) of both the heat detector and the sprinkler head. This detector shall be wired to the fire alarm control panel to provide for elevator shutdown in accordance with the National Fire Alarm Code 3-8.15.

D. Furnish and install a shunt trip device and auxiliary contact with power source on the elevator molded circuit breaker located in the distribution panelboard. When the building is sprinkled this device shall be wired to the fire alarm control panel in accordance with ANSI/ASME A17.1 – 1996, Rule 102.2 (C) and National Electrical Code 620-51.

2.4 COMMUNICATIONS

A. Furnish and install a four (4) pair, Cat 5 cable in ¾” conduit between the telephone terminal backboard and a junction box located in the elevator hoistway. Final location of the junction box shall be as directed by the elevator contractor.

PART 3 – EXECUTION

3.1 INSTALLATION OF ELEVATOR ELECTRICAL SYSTEMS

A. Install equipment and components, complying with equipment manufacturer’s written instructions, applicable requirements of the National Electrical Code (NEC), NEMA and NECA’s “Standard of Installation”, and in accordance with recognized industry practices.

3.2 CONTROL WIRING

A. The Electrical Contractor shall furnish and install all required wiring between the fire alarm
control panel and the elevator controller to provide for elevator recall when the building has an
alarm condition. This contractor shall consult and cooperate with the elevator installing
contractor.

B. The Electrical Contractor shall furnish and install all required wiring between the fire alarm
control panel and the smoke detectors in the elevator lobbies, and the smoke and heat detectors in
the elevator machine room and hoistway. This contractor shall consult and cooperate with the fire
alarm manufacturer in providing the required programming and wiring needed to complete the
recall system as required by the Elevator Code, NEC, NFPA and the NATIONAL FIRE ALARM
CODE.

C. The Electrical Contractor shall furnish and install all required wiring between the fire alarm
control panel and the shunt trip circuit breaker located in the distribution panel. This wiring and
programming shall provide for the trip signal from the fire alarm control panel and a supervisory
signal to the fire alarm control panel as “TROUBLE” for the loss of the trip power source. This
wiring and programming shall be in accordance with the requirements of the NEC and the
NATIONAL FIRE ALARM CODE.

3.3 POWER WIRING

A. The Electrical Contractor shall furnish and install an elevator circuit breaker in the distribution
panel of the size and type as indicated on the single line diagram. This circuit breaker shall be
complete with a shunt trip device rated 120 volt A.C and auxiliary contact. The shunt trip device
shall be wired to an external 120 volt power source in a local branch circuit panel with a 20 amp –
1 pole circuit breaker and 2 # 12 + 1 # 12 ground in ¾” conduit. Trip control and supervisory
shall be furnished and installed as indicated above under 3.1 paragraph “C”.

B. The Electrical Contractor shall furnish and install within the elevator machine room a fused
elevator disconnect switch of the size and type indicated on the single line diagram. This
disconnect switch shall be furnished with an auxiliary contact and wired to the elevator
controller’s “optional” battery system for disconnect and shutdown. If the “optional” battery
system is not selected then the auxiliary contact remains un-wired. All required wiring shall be in
accordance with the requirements of the NEC and the ELEVATOR CODE. The Electrical
Contractor shall consult and cooperate with the elevator installer in providing this function.

C. The Electrical Contractor shall furnish and install a 30 amp,1 pole fused disconnect switch within
the elevator machine room. This switch shall provide power to the elevator car lighting and
exhaust system, the switch shall be connected to the elevator equipment in accordance with the
elevator contractor’s requirements. The switch shall be connected to a local branch circuit panel
with a 20 amp – 1 pole circuit breaker and 2 # 12 + 1 # 12 ground in ¾” conduit.

3.4 COMMUNICATION WIRING

A. The Electrical Contractor shall furnish and install one (1) four pair, CAT-5 cable in ¾” conduit
between the elevator equipment and the building’s telephone system. The Electrical Contractor
shall consult and cooperate with the Elevator Contractor in making this connection.

END OF SECTION 26 04 75
SECTION 26 05 10

BUILDING LIGHTING

PART 1 – GENERAL

1.1 DESCRIPTION OF WORK

A. Lighting fixture work is indicated by specifications, drawings and schedules.

B. Types of lighting fixtures in this section include the following:
 1. LED

C. Applications of lighting fixtures required for the project include the following:
 1. General Lighting,
 2. Supplementary Lighting,
 3. Emergency Lighting.

1.2 SUBMITTALS

A. Product Data: Submit manufacturer’s data on building lighting fixtures.

B. Shop Drawings: Submit dimensioned drawings of lighting fixture installations, including but not necessarily limited to, layout, relation to associated panelboards, and connections to panelboards. Submit fixture shop drawings in booklet form with separate sheet for each fixture, assembled in luminaire “type” alphabetical order, with proposed fixture and accessories clearly indicated on each sheet.

PART 2 – PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS

A. Each lighting fixture type specified represents a specific style and quality of fixture acceptable for this project.

B. The Engineer reserves the right to reject any shop drawing and to request a resubmission should the Contractor submit a shop drawing of an equivalent manufacturer which is viewed as being of an incompatible style or inferior quality.

C. No fixture shop drawing shall be submitted, nor will any be accepted, for any manufacturer which is not specifically listed for that fixture type. When a fixture manufacturer is listed for a specific fixture type, this does not provide him with the right to submit for fixtures he is not listed under. A bidding Contractor may elect to bid using non listed fixtures for the listed Lighting Representatives. The Engineer and the Architect shall make the final decision on whether the submitted fixture meets the project’s requirements during shop drawing review.

D. Should the Contractor be unable to obtain approval of the resubmitted manufacturer, then he should submit the basis of design specified manufacturer/fixture.
2.2 LIGHTING FIXTURES

A. Provide lighting fixtures of the size, type and rating indicated complete with, but not necessarily limited to, housings, lamp holders, reflectors, ballast, lamps, mounting frames, pendants and wiring; wired and connected in place, complete, tested and left in satisfactory operating condition.

B. LED Drivers

1. All LED fixtures shall be provided with integral drivers (unless noted otherwise) and must operate at line voltage as indicated on drawings (unless noted otherwise).

2. LED drivers shall have operating temperature of 50°F - 140°F unless noted otherwise.

3. LED drivers shall carry a 5-year warranty.

C. Fixture Lamps: For the type, number and color of the fixture lamps, refer to the Lighting Fixture Schedule on the drawings.

PART 3 – EXECUTION

3.1 INSTALLATION OF LIGHTING FIXTURES

A. Install lighting fixtures at locations and heights as indicated, in accordance with fixture manufacturer’s written instructions, applicable requirements of NEC, NECA’s “Standard of Installation”, NEMA Standards and with recognized industry practices to ensure that lighting fixtures fulfill requirements of the project.

B. Install lighting fixtures in removable tile ceilings using 3/8” flexible metal conduit with 3 # 12 awg. conductor. Maximum length of flexible lead shall not exceed 60”. Flexible lead shall extend from the fixture to the junction box. The junction box shall be securely fastened to the building structure above the removable tile ceiling and shall not serve more than two (2) lighting fixtures, nor shall the junction box support any of the lighting fixtures.

3.2 LIGHTING FIXTURE MOUNTING

A. 1’ x 4’, 2’ x 2’ and 2’ x 4’ fixtures installed in a removable tile ceiling shall be installed using T-Bar grid safety clips as provided by the fixture manufacturer and as required by the NEC.

B. 2’ x 2’ and 2’ x 4’ fixtures installed in a removable tile ceiling shall be installed using support wires at all four corners of the fixture. The support wires shall be carried up to the building structure and securely anchored using screwed or bolted hardware. Pressure type clips will not be acceptable. The Electrical Contractor shall be responsible for installing or having installed these four (4) support wires.

C. 1’ x 4’ fixtures installed in a removable tile ceiling shall be installed using support wires at two (2) corners of the fixture. The support wires shall be carried up to the building structure and securely anchored using screwed or bolted hardware. Pressure type clips will not be acceptable. The Electrical Contractor shall be responsible for installing or having installed these Two (2) support wires.
D. Downlights installed in a removable tile ceiling shall be installed using 24” spreader bars attached to the T-Bar grid system. Two (2) support wires shall be installed, one (1) on each side of the fixture and centered between the spreader bars, these support wires shall be carried up to building structure and securely anchored using screwed or bolted hardware. Pressure type clips will not be acceptable. The Electrical Contractor shall be responsible for installing or having installed these two (2) support wires.

E. Pendant lighting fixtures, either chain, cable or stem hung below a removable tile ceiling shall be installed in accordance with fixture manufacturer’s written instructions and recommendations. The Electrical Contractor shall furnish and install support wire or threaded rod from the fixture mounting hardware up to building structure and securely anchor using screwed or bolted hardware. Pressure type clips will not be acceptable. These support devices shall be independent from the ceiling T-Bar grid system, the system may be used as a guide, but in no way shall the T-Bar grid system carry any of the weight produced by the fixture or it’s support devices.

F. Surface mounted fixtures installed on removable tile ceilings or dry wall ceilings shall be installed in accordance with fixture manufacturer’s written instructions and recommendations.

1. Fixtures installed on removable tile ceilings shall be anchored to the T-Bar grid system using snap-on clips with threaded studs and wing nuts. The Electrical Contractor shall furnish and install a support wire from each snap-on clip carried up to building construction and securely anchor using screwed or bolted hardware.

2. Fixtures installed on dry wall ceilings shall be mounted using spring-loaded toggle bolts. The number and location of the anchors shall depend on the fixture manufacture’s written instructions and recommendations. It shall be the responsibility of the Electrical Contractor to follow these instructions and recommendations.

3.3 ADJUST and CLEAN

A. Clean lens, reflectors and interiors of all lighting fixtures of dirt and construction debris upon completion of installation.

B. Protect installed lighting fixtures from damage during the remainder of the construction period.

3.4 FIELD QUALITY CONTROL

A. Upon completion of the installation of the lighting fixtures, and after the building circuitry has been energized, apply electrical energy to demonstrate capability and compliance with project requirements. Where possible, correct malfunctioning units at the site, then retest to demonstrate compliance; otherwise, remove and replace with new units, and proceed with retesting.

B. At the time of Substantial Completion, replace lamps in lighting fixtures which are observed to be noticeably dimmed after Contractor’s use and testing, as judged by the Architect/Engineer. Furnish stock or replacement lamps amounting to 15% (but not less than one (1) lamp in each case) of each type and size used in each type of fixture. Deliver the replacement stock as directed to the Owner’s storage area.
1. Refer to Division 1 sections for the replacement/restoration of lamps in lighting fixtures, where used for temporary lighting prior to the time of Substantial Completion.

C. Replace defective and burned out lamps for a period of one (1) year following the time of Substantial Completion.

3.5 GROUNDING

A. Provide tight equipment grounding connections for each lighting fixture installation, in accordance with fixture manufacturer’s recommendations and the NEC’s requirements.

END OF SECTION 26 05 10
SECTION 26 05 20
ROADWAY & PARKING AREA LIGHTING

PART 1 – GENERAL

1.1 DESCRIPTION OF WORK

A. Extent of roadway and parking area lighting work is indicated by drawings and schedules.

B. Applications of roadway and parking area lighting in this section include the following:
 - Private roadways.
 - Automobile parking lots.
 - Pedestrian walkways.
 - Building entrances.

C. Excavation and backfilling for roadway and parking area lighting poles, standards and foundations are specified in applicable Division 26 General Provisions sections.

D. Concrete for embedding poles, and for pole foundations and footings are specified in applicable Division 26 General Provision sections.

1.2 SUBMITTALS

A. Product Data: Submit manufacturer's data on roadway and parking area lighting units, including certified dimension drawings of components including, but not necessarily limited to, fabricated poles and standards, and hardware.

PART 2 – PRODUCTS

2.1 GENERAL

A. Provide concrete bases, standards and luminaries of sizes, types and ratings indicated; complete with but not necessarily limited to anchor bolts, housings, lamps, lampholders, reflectors, ballasts, starters, lighting brackets and wiring; wired and connected in place, tested and left in satisfactory operating condition. See schedule on the drawings for types of standards and luminaries. Type letters are keyed with fixture letters indicated at the outlets on the drawings.

B. Material: Extruded aluminum.

C. Configuration: Anchor base type with handhole and cover where indicated.

D. Metal Lighting Standard Accessories: Provide accessories for metal lighting standards, including anchor bolts, as recommended by standard manufacturer of sizes and materials needed to fulfill loading and erection application requirements.
PART 3 – EXECUTION

3.1 INSTALLATION

A. Install roadway and parking area lighting units as indicated, in accordance with manufacturer’s written instructions, applicable requirements of NEC, NESC and NEMA standards, and with recognized industry practices to ensure that lighting units fulfill requirements.

B. Use belt slings or rope (not chain or cable) to raise and set finished poles and standards to protect finishes.

C. Set poles and standards plumb. Support adequately during backfilling, or anchoring to foundations.

3.2 ADJUST AND CLEAN

A. Clean standards and luminaries of dirt and debris upon completion of installation.

B. Protect standards and luminaries from damage during remainder of construction period.

3.3 FIELD QUALITY CONTROL

A. Upon completion of installation of roadway and parking area lighting fixtures, and after building circuitry has been energized, apply electrical energy to demonstrate capability and compliance with requirements. Where possible, correct malfunctioning units at site, then retest to demonstrate compliance; otherwise, remove and replace with new units, and proceed with retesting.

B. At the time of Substantial Completion, replace lamps in lighting fixtures which are observed to be noticeably dimmed after Contractor’s testing, as judged by Architect/Engineer.

3.4 GROUNDING

A. Provide tight equipment grounding connections for each lighting fixture installation.

END OF SECTION 26 05 20
SECTION 26 06 01
LIGHTNING PROTECTION SYSTEMS

PART 1 – GENERAL

1.1 DESCRIPTION OF WORK

A. Lightning protection system work is indicated by specifications.

B. Types of lightning protection system equipment and components specified in this section include the following:
 - Air terminals.
 - Conductors.
 - Connectors.
 - Cable Splicers.
 - Ground rods.
 - Rod clamps.
 - Bonding plates.

1.2 QUALITY ASSURANCE

A. ANSI/NFPA Compliance: Comply with NEC and NFPA No. 780, "Lightning Protection Code", as applicable to materials and installation of lightning protection components, and wiring.

B. UL Compliance: Comply with UL 96, "Lightning Protection Components" pertaining to design, materials and sizing of lightning protection components and devices. Provide components and devices which are UL listed and labeled.

1.3 SUBMITTALS

A. Product Data: Submit manufacturer's data on lightning protection equipment, components and devices.

B. Shop Drawings: Submit dimensioned layout drawings of all lightning protection system equipment, components and devices including conductor sizing, routing and connections.

C. UL Certificate: Provide Owner with UL Master Label for overall system which shall be suitable for fastening to building for display. Comply with UL 96A, "Installation Requirements for Lightning Protection Systems."

PART 2 – PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS

A. Manufacturer: Subject to compliance with requirements, provide lightning protection and components of one of the following manufacturers and their representative:
2.2 LIGHTNING PROTECTION SYSTEM COMPONENTS

A. Provide lightning protection system equipment and components, of types, sizes, and ratings for service indicated, which comply with manufacturer's standard materials, design and construction in accordance with published product information, and as required for a complete installation. Where type or material is not otherwise indicated, comply with NFPA 780 and UL 96 Standards.

2.3 ANCILLARY COMPONENTS

A. Air Terminal: Copper with low solid bronze base; 3/8 inch diameter extending 10 inches above the object they protect.

B. Conductors: Copper cable; 28 strand, 16 gauge; 220 lb. per 1000 feet; structural steel columns may be substituted for the down conductors.

C. Connectors: Solid bronze cable connector with stainless steel pressure screws.

D. Ground Rod: Copper clad, 5/8 inch diameter x 10 feet.

E. Rod Clamp: Bronze ground rod clamp with stainless bolts.

F. Bonding Plate: Cast bronze flat metal bonding plate with mild steel welding plate 1/4"x4"x4" for attachment to steel columns or beams. Steel plate to be electrically welded to the steel column or beam. Plate shall be furnished with four stainless steel bolts and nuts to attached bonding plate welding plate.

PART 3 – EXECUTION

3.1 INSTALLATION OF LIGHTNING PROTECTION SYSTEMS

A. Install lightning protection systems, in accordance with equipment manufacturer's written instructions, in compliance with applicable requirements of NFPA 780 and with UL 96A lightning protection standards, to ensure that lightning protection system complies with requirements.

B. Interconnect metals as required by the Underwriters' Laboratories code such as cold water pipe, sewer, etc., with lead coated copper strap type pipe bonding clamps.

C. Conceal down conductors within building construction where applicable.
D. Coordinate with roofing work, as necessary to interface the installation of the lightning protection system.

E. Install conductors with direct paths from air terminals to ground connections. Do not use metal casings of structure/equipment as a ground path. Avoid sharp bends and narrow loops.

3.2 TESTING

A. Upon completion of installation of lightning protection system, test resistance-to-ground level. Where tests show resistance-to-ground is over 25 ohms, the Contractor shall take appropriate action to reduce resistance to 25 ohms or less by driving additional ground rods and/or treating soil in the proximity to the ground rod with sodium chloride, calcium chloride, copper sulphate, or magnesium. Then retest to demonstrate compliance with requirements.

END OF SECTION 26 06 01
SECTION 26 08 51
HEATING TERMINALS

PART 1 – GENERAL

1.1 DESCRIPTION OF WORK

A. Extent of heating terminal work is indicated by drawings, schedules and specifications.

B. Types of electrical heating terminals in this section include the following:
 1. Self-regulating cable
 2. Constant wattage cable
 3. Monitoring controller and sensor

C. The heating terminal work shall be designed and installed to provide freeze protection for all exterior and interior piping including, but not limited to, supply, return, FI drain and equalizing lines on chillers and cooling towers, fire protection systems where indicated or subjected to freezing and rain water conductors where indicated.

1.2 SUBMITTALS

A. Product Data: Submit manufacturer's data on heating terminals, including dimensions, capacities, ratings, performance characteristics, gauges and finishes of materials, installation and wiring instructions.

B. Shop Drawings: Submit assembly type shop drawings showing unit dimensions, construction details, and field electrical connection details.

PART 2 – PRODUCTS

2.1 ELECTRIC HEAT TRACING CABLE

A. The heat tracing cable shall be either self-regulating or constant wattage type. Cable installation shall be designed to maintain 40 deg. F in a -20 deg. F ambient temperature with a 25 MPH wind factor and a 20% safety factor. System shall be designed to operate at the voltage indicated on the plans.

B. Heat loss design shall be calculated on a nominal 1-1/2" fiberglass insulation thickness. Pipe sizes and lengths shall be taken from the Mechanical, Plumbing and Fire Protection drawings.

C. Heat trace system shall be complete with, but shall not be limited to, controller, sensors, trace cable, wiring, connectors, junction boxes, mounting brackets, supports and fastenings as required in the quantities and lengths to suit the required installations.

D. Monitoring Controller: Furnish a microprocessor base controller with the following characteristics:

1. Supply Voltage: 120/277 Vac, +/- 10%, 50/60 Hz, internal power less than five watts.
2. Environmental Temp.: -40°F to 125°F maximum operating temperature range; 0% - 95% R.H. @ 40°C non-condensing
3. Microprocessor: Non-volatile memory; no data loss on power outage.
4. Load Current: 30 AMPS maximum
5. Control: Double pole solid state switching
6. Temp. Sensor Input: 100 ohm platinum RTD, 3 wire, 20 ohm maximum, lead wire compensation, $a = 0.00385 \text{ ohms/ohm/deg. C.}$
7. Outputs: Unit alarm output configurable as “open on alarm” or “close on alarm”. AC alarm triac: isolated solid-state triac, SPST, 0.5 AMP max. @ 12 to 277 volts AC.
9. Setpoints:
 Temperature:
 Units: Deg. F or Deg. C
 Control Range: -40 deg. F to 999 deg. F or OFF
 Low – temp. alarm: -40 deg. F to 999 deg. F or OFF
 High – temp. alarm: -40 deg. F to 999 deg. F or OFF

 Ground Fault:
 Alarm Range: 20 to 100 mA
 Trip Range: 20 to 100 mA or OFF

10. Alarm Conditions

11. Heat Trace System Diagnostic Test. System cycles heating cable regularly (settable period from 0.5 to 24.0 hours) and confirms proper system operation.

12. Stored parameters (measured):

13. Enclosure: NEMA 4X.

15. Manufacturer: Controller shall be similar to Raychem Corporation’s Digitrace 910/920 or approved equal.

E. Heat Trace Sensor: Furnish a 3-wire, platinum resistance temperature detector (RTD) with the following parameters:

1) Type: 100 ohm platinum.
2) Accuracy: 100 ohm +/- 0.25 ohm @ 0 deg. C.
3) Alpha: 0.00385 ohm/ohm/deg. C.
4) Temperature Measurement Range: RTD – 300: 300 deg. F. (150 deg. C.)
5) Exposure Temperature Limits: RTD – 300: 300 deg. F. (150 deg. C.)
6) Manufacturer: Sensor shall be similar to Raychem Corporation’s RTD – 300 or approved equal.

F. Communications: RS-485 interface to be provided for MODBYS Communications to BAS System.

G. Power Wiring: Provide required circuit breakers and wiring to local panel for required quantity of heat trace circuits.

2.2 MANUFACTURERS

A. Subject to compliance with requirements, furnish a heat trace cable system of one of the following:
 1. Raychem Corporation
 2. Delta – Therm Corporation
 3. Thermon Manufacturing Company
 4. Approved substitute

PART 3 – EXECUTION

3.1 INSTALLATION OF HEATING TERMINALS

A. Install heat trace cable system and controls as required, in accordance with equipment manufacturer's written instructions, and with recognized industry practices, to ensure that the heat trace system equipment fulfills project requirements. Comply with applicable installation requirements of the NEC and NECA’s "Standard of Installation".

B. Install electric heat trace cable system after the piping tests are complete and before the piping insulation is applied. The Electrical Contractor shall consult, cooperate and coordinate with both the Mechanical Contractor and the Insulation Contractor in completing the required work.

C. Install heat trace labels every 15’.

D. Megger test before and after insulation is complete. Tests to be documented. Tests to be witnessed by the Construction Manager and Insulation Contractor.

3.2 GROUNDING

A. Provide equipment grounding connections, sufficiently tight to assure a permanent and effective ground, for heating terminals and controls as indicated in contract documents.

3.3 TESTING

A. Upon completion of installation of heating terminals and controls and after building circuitry has been energized; test heating terminals and all control functions to demonstrate capability and compliance with requirements. Where possible, field correct malfunctioning units, then retest to demonstrate compliance.

END OF SECTION 26 08 51
SECTION 27 05 00

TELECOMMUNICATIONS PATHWAYS AND SPACES

PART 1 - GENERAL

1.1 SECTION INCLUDES

A. Telecommunications Room Build out
B. Pathways for Telecommunications Systems
C. Grounding and Bonding for Telecommunications

1.2 REFERENCES

A. Industry Codes, Standards and Methods shall be observed, including the following:
 1. ANSI/TIA-568-C.0: Generic Telecommunications Cabling for Customer Premises
 2. ANSI/TIA-568-C.1: Commercial Building Telecommunications Cabling Standard
 3. ANSI/TIA-568-C.2: Balanced Twisted Pair Cabling and Components Standard
 4. ANSI/TIA-568-C.3: Optical Fiber Cabling Components Standard
 5. ANSI/TIA-569-B: Commercial Building Standard for Telecommunications Pathways and Spaces
 6. ANSI/TIA-570-B: Residential Telecommunications Cabling Standard
 7. ANSI/TIA-606-A: Administration Standard for Telecommunications Infrastructure of Commercial Buildings
 8. ANSI/TIA-607-C: Commercial Building Grounding and Bonding Requirements for Telecommunications
 10. BICSI Telecommunications Distribution Methods Manual (TDMM), Latest Edition

B. Comply with all local, state and federal codes for telecommunications installations.

1.3 SYSTEM DESCRIPTION

A. Design Requirements
 1. All systems and equipment must comply with the Delaware State-Wide Information Technology and Architecture Standards, Latest Version.
 2. Contractor shall outfit all telecom rooms according to T Drawings. Racks and other termination and distribution fields shall be installed according to manufacturer’s guidelines and industry standards.
 3. TR and TER layouts shall be approved by school Technology personnel prior to installation of cabling, pathways or termination hardware.
B. Performance Requirements

1. Materials and equipment will be installed in an orderly and precise manner. Clearances between equipment will prevent incidental damage or unsafe conditions.

2. Equipment shall provide proper support and housing of all intended active and non-active components.

3. Refer to Telecom Room Details for precise location of equipment and termination fields.

1.4 SUBMITTALS

A. Product Data

1. Provide product data for all equipment listed in Part 2

2. Equipment data must be submitted in a single package and clearly indicated for efficient review. (by specifications section) Equipment submittals not clearly called out will be rejected without question at the contractor’s expense for resubmittal.

3. Product data must be approved by designer and owner prior to purchase and installation of equipment.

B. Shop Drawings

1. Provide scaled drawings to show proposed equipment locations, clearances and administrative labeling of Telecom Rooms and equipment. All fields, racks and cabinets shall be methodically documented and permanently labeled agreed upon by school district.

2. Shop drawings must be approved by the designer and owner prior to purchase and installation of any equipment.

C. As-Built Drawings

1. Contractor shall upon completion of the project, provide a complete set of As-Built drawings. These drawings shall identify room numbers and outlet identification numbers for all low voltage cabling systems. Drawings should also include all IDF and MDF locations with a detailed layout of all racks, patch panels, trays, and wall fields.

2. Additional project information shall include Reline Details of all horizontal and backbone cable routes and pathways.

3. As-Builts shall be submitted in electronic CAD format and in hardcopy at the end of the project.

1.5 QUALITY ASSURANCE

A. Regulatory Requirements

1. All equipment shall be installed in a neat and professional manner. All methods of construction that are not specifically described or indicated in the contract documents shall be subject to the control and approval of the school district. Equipment and materials shall be of the quality and manufacturer indicated. The equipment specified is based upon the acceptable manufacturers listed. Where “approved equal” is stated, equipment shall be equivalent in every way to that of the equipment specified and subject to approval.

B. Substitutions

TETRA TECH

TELECOMMUNICATIONS PATHWAYS & SPACES

270500 - 2
1. Conditions for consideration of “Or Equal” Products: Where products are specified by name and accompanied by the term “or equal”, the proposed “or equal” product will be considered when the following conditions are satisfied.

 a. If all the following conditions are not satisfied, Design Consultant will return requests without action, except to record noncompliance with these requirements.

 b. Proposed product does not require extensive revisions to the Contract Documents.

 c. With the exception of the product name or number and manufacturer’s name, proposed product conforms with requirements indicated on the Drawings and in the Specifications in every respect and will produce indicated results.

 d. Proposed product is fully documented and properly submitted.

 e. Proposed product has received necessary approvals of authorities having jurisdiction.

 f. Proposed product is compatible with and has been coordinated with other portions of the Work.

 g. Proposed product provides specified warranty.

2. If proposed product involves more than one contractor, proposed product has been coordinated with other portions of the Work, is uniform and consistent, is compatible with other products, and is acceptable to all contractors involved.

3. Submission is accompanied with detailed comparison of significant qualities of proposed product with those named in the Specifications. Significant qualities include attributes such as performance, weight, size, durability, visual effect, and specific features and requirements indicated.

4. Submission is accompanied with a list of similar installations for completed projects with project names and addresses and names and addresses of design consultants and authorities, if requested.

5. Submission is accompanied with proposed product’s Manufacturer signed written statement on Manufacturer’s letterhead, certifying that manufacturer complies with requirements in the Contract Documents.

1.6 WARRANTY

A. Warranty: Installer must provide manufacturer’s warranty without cost to the owner during that time period, including materials, hourly costs, etc.,

B. Installer’s warranty shall guarantee workmanship for a period of one year, during which time any deficiency in installation shall be repaired or replaced at no additional cost to the school district. Contractor must respond within 2 business days of written notification.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Distribution Racks and Cabinets

1. Floor Mounted Free Standing 2 Post Racks

 a. Hubbell HPW84RR19D 84” X 6” Equipment Rack with
i. Hubbell HC219CE3N 2U Horizontal Manager

ii. Hubbell XS1010 Vertical Cable Manager

b. Or approved equal from Cooper B-Line, Ortronics, Systimax or Leviton.

2. Floor Mounted Free Standing 4 Post Racks

a. Four post aluminum frame with EIA rails

b. 45 Rack Units

c. Black

d. Similar to Ortronics OR-MM67SVR or approved equivalent.

3. Floor Mounted Equipment Cabinet

a. The cabinet frame shall be constructed of four cold rolled steel components – top, bottom, left and right welded to form a self-supporting framework. The side members shall be fabricated from 16ga cold rolled steel. The top and bottom shall be fabricated from 14ga cold rolled steel. The vertical uprights shall have integral cable management channels with provisions for hook and loop or traditional cable ties. The frame shall be bolted to the floor, and side by side to other frames.

b. The side covers shall be constructed of 19ga cold rolled steel with double bent flanges along the entire perimeter. The side covers shall lift off easily via grip handles assembled to the covers. The side covers shall have clusters of rectangular perforation to accommodate ventilation for equipment providing greater than 100 sq. in. of ventilation.

c. The front door shall be a window door assembled to the frame via spring-loaded hinges at the top and bottom. The door shall be locking with a unique operator’s key. The operator’s key shall operate the front door only. The latch shall be flush to the door. The window shall be a .125” acrylic panel secured to a reinforced steel frame.

d. The rear door shall be a steel door assembled to the frame via spring-loaded hinges at the top and bottom. The door shall be locking with a unique service personnel key. The service personnel key shall operate both the rear and front doors. The latch shall be push button operated. The rear door shall be reinforced and have a cluster of rectangular perforations for ventilation.

e. The top shall have a removable panel in the center, designed to be replaced with a cooling fan, and six 3” diameter cable entry knockouts; three along each side to route cables directly into vertical cable organizers minimizing the number of bends to the cables.

f. The bottom panel shall be similarly configured with 6 knockout locations. The cabinet bottom shall also be provided with holes for securing the cabinet to the floor.

g. The top cover shall accept the mounting of a 250 CFM cooling fan.

h. The cabinet shall be pre-configured for 19” mounting with universal hole spacing per EIA 310 D. The cabinet shall feature three sets of rails, front, center, and rear. The front set of rails shall be 20 rack positions high, from the bottom of the cabinet. The rear and center rails shall be the full internal height. The recess of all three sets of rails
shall be adjustable forward and back. The rails shall be tapped for a #10-32 screw. The center rails shall be formed in a ‘C’ profile, 3” deep tapped on both the front and rear flanges so as to provide the functionality of an open frame rack. The front and rear rails shall be an L shape.

i. The entire enclosure shall be finished with a durable polyurethane powder coat – medium texture and shall be available in black.

4. All racks and cabinets shall be capable of supporting the weight and space of existing and proposed equipment. 30% growth capacity shall be provided in addition to detailed requirements.

5. Racks, cabinets and other termination equipment shall be properly secured to floor with appropriate anchors and bonded to Telecommunications Grounding System.

6. Unit shall be similar to Ortronics OR-DCC422846-00002 or approved equivalent.

7. Provide (1) 8-port transient surge protection strip for each TR and per rack/cabinet in the TER and TRs.

B. Cable Management

1. Horizontal Cable Management
 a. Horizontal wire management panels are required for patch panels in certain racks. (See drawings for rack diagrams.)
 b. Horizontal cable management shall occupy 1 or 2 rack units, as shown on T Drawings.
 c. Similar to OR-MM6HMF1RU or approved equivalent

2. Vertical Cable Management
 a. Vertical Cable management shall be provided for all racks. Provide 2 for each rack or cabinet.
 b. Cable management shall be – Ortronics OR-60400510, or approved equivalent.

C. Wiremesh Cable Tray

1. Cablofil CF 54/3300
2. Cablofil CF 105/300

D. Ladder-Type Aluminum Cable Tray (Ladder Rack)

1. All TR and TER locations shall receive ladder-rack style cable tray as shown in T-series drawings for cable distribution.
2. Class 5160 or Chatsworth “TELCO-Style Cable Runway,” 12-inch ladder rack from racks/cabinets from corridor or other wire routing space where indicated on drawings.

E. Conduit

1. In-wall conduit shall be provided for work in new areas. Refer to T Drawings for conduit details.
2. Conduit bend radii shall follow current ANSI/TIA standards for telecommunications.

3. Refer to T drawings for locations and sizes of all sleeves for telecommunications.

F. Gang Boxes
 1. In-wall Gangable Gang Boxes for low voltage:
 a. Hubbell HBL985 Two Gang Box
 b. Hubbell HBL986 Three Gang Box
 c. Hubbell HBL989 Low Voltage Partition

G. Surface Mounted Raceway (SMR)
 1. Surface mounted split channel raceway for power and data - Wiremold 4000
 a. Coordinate all Wiremold for telecom equipment with electrical installer.
 b. Provide associated colored connectors (see 271000) and faceplates per manufacturer’s recommendations for telecommunications.
 c. Coordinate color and finish with architect prior to installation

H. Floor Boxes and Poke-through Device
 1. Small Capacity In-floor box
 a. Coordinate all floor boxes and poke-through devices for telecom equipment with electrical installer.
 b. Floor box shall meet latest UL standards for scrub water resistance
 c. Four-Compartment Combination Box similar to Wiremold RBF4 or Wiremold RFB6
 d. Top of box shall allow for matching floor finish insert and be constructed of metal
 e. Provide all brackets and accessories for proper telecommunications installation.
 2. Large Capacity In-floor box
 a. Wiremold Evolution Series EFB6S with flush mounted cover.
 3. Poke-through
 a. Unit shall be similar to Wiremold Evolution Series with 5 gangs.

I. Distribution Backboard
 1. Plywood
 a. ¾” AC-grade plywood shall be provided as shown on T drawing details to line the walls within the TR. The plywood should be provided in 4’ x 8’ sheets.
 b. Plywood shall be void free and painted on all sides with two coats of fire-resistant paint.
1. Telecommunications Main Grounding Busbar (TMGB) and Telecommunications Grounding Busbar (TGB)
 a. Provide one TMGB in the Telecommunications Equipment Room as shown on T Drawings.
 b. Provide a TGB in every Telecommunications Room and distribution cabinet location as shown on T Drawings.
 c. The telecom grounding and bonding system shall be bonded to the main electrical ground for the facility.

K. UPS Equipment
 1. TrippLite SMART3000RM2UN
 2. TrippLite SU2200RTXLCDN

L. Rack mounted power strip
 1. Provide 8 port transient, surge protection strip (UL Listed) for each rack or cabinet.

PART 3 - EXECUTION

3.1 EXAMINATION
A. Site Verification of Conditions
 1. Contractor shall ensure that sufficient space has been allocated for the installation of all equipment per T Drawings prior to installation. Clearances and existing equipment should be taken into consideration. If insufficient space exists, the Design consultant should be notified in writing, before proceeding with installation.

3.2 INSTALLATION
A. Distribution Racks and Cabinets
 1. Racks shall be assembled such that mounting rails are exactly perpendicular to the base.
 2. Racks shall be secured to the floor using appropriate anchors.
 3. Racks shall be grounded to the TGB or appropriate building ground using a minimum #6 grounding wire.

B. Distribution Backboard
 1. Securely fasten backboard to wall-framing members to ensure it can support attached equipment.
 2. Mount plywood on all available areas where telecommunications equipment may be located.
 3. Refer to T Drawings for minimum coverage.

C. Ladder Rack and Cable Tray
 1. Ladder rack and cable tray shall be properly secured using manufacturer recommended anchors and connectors.
2. Ladder rack and cable tray shall be routed according to T Drawing floor plans.

3. Ladder rack and cable tray shall be bonded to ground according to TIA/EIA 607.

D. Firestop

1. Provide re-enterable, non-hardening, intumescent putty, rated for floors or wall, UL approved assembly, with approved packing material for fire stopping inside building cable penetrations thru conduits sleeves.

2. The material used for sealing all openings shall have a fire rating equal to or greater than the floor ceiling, wall or partition material.

E. Sleeves and openings

1. The telecommunications contractor shall provide sleeves through all walls and floors to protect cabling and or raceways installed as part of the telecommunications system. All sleeves shall extend through the respective wall or partition and finish with a connector protective bushing.

2. Sleeves through all fire rated structures shall have appropriate fire stop system.

END OF SECTION

NOT FOR BIDDING PURPOSES
SECTION 27 10 00

STRUCTURED CABLING

PART 1 - GENERAL

1.1 SECTION INCLUDES

A. Local Area Network (LAN) Cabling
B. Telephone Cabling
C. Termination Equipment for Telecommunications
D. Faceplates and Outlets
E. Classroom / Conference / Collaboration A/V Cabling

1.2 DEFINITIONS

A. “Backbone Cabling” refers to telecommunications cabling that provides interconnections between telecommunications rooms, equipment rooms, and entrance facilities.
B. “Communications Network Outlet (CNO)” refers to a collection of one or more mechanical cable termination device for horizontal cable in the work area.
C. “Drop” refers to the vertical transition to a location of one or more CNOs.
D. “Horizontal Cabling” refers to the cabling between and including the work area communications network outlet and the horizontal cross-connect in the telecommunications room.
E. “Jack” refers to a female-style telecommunication receptacle.
F. “Telecom Room (TR)” refers to an enclosed space for housing telecommunications equipment, cable terminations, and cross-connects. The room is the recognized cross-connect between the backbone or trunk cabling and horizontal cabling.
G. “Telecom Equipment Room (TER)” refers to a centralized space for telecommunications equipment that serves the occupants of the building, usually containing the headend equipment for the distribution systems found in the building.

1.3 REFERENCES

A. Industry Codes, Standards and Methods shall be observed, including the following:
 1. ANSI/TIA-568-C.0: Generic Telecommunications Cabling for Customer Premises
 2. ANSI/TIA-568-C.1: Commercial Building Telecommunications Cabling Standard
 3. ANSI/TIA-568-C.2: Balanced Twisted Pair Cabling and Components Standard
 4. ANSI/TIA-568-C.3: Optical Fiber Cabling Components Standard
 5. ANSI/TIA-569-B: Commercial Building Standard for Telecommunications Pathways and Spaces
 6. ANSI/TIA-570-B: Residential Telecommunications Cabling Standard
 7. ANSI/TIA-606-A: Administration Standard for Telecommunications Infrastructure of Commercial Buildings
 8. ANSI/TIA-607-C: Commercial Building Grounding and Bonding Requirements for Telecommunications
 10. BICSI Telecommunications Distribution Methods Manual (TDMM), Latest Edition

B. Comply with all local, state and federal codes for telecommunications installations.
1.4 SYSTEM DESCRIPTION

A. Design Requirements

1. All systems and equipment must comply with the Delaware State-Wide Information Technology and Architecture Standards, Latest Version.

2. LAN and Telephone Distribution:

 a. Provide labor, materials, equipment, services and operations required for complete installation of LAN compatible with:

 i. Ethernet 10Base-SX
 ii. Ethernet 100Base-FX
 iii. Ethernet 1000Base-SX
 iv. Ethernet 1000Base-LX
 v. Ethernet 10GBase-S
 vi. Ethernet 10Base-LX4
 vii. Ethernet 10GBase-L
 viii. Ethernet 10GBase-LRM
 ix. Fibre Channel 100-MX-SN-I
 x. Fibre Channel 100-SM-LC-LC
 xi. Fibre Channel 200-MX-SN-I
 xii. Fibre Channel 200-SM-LC-L
 xiii. Fibre Channel 400-MX-SN-I
 xiv. Fibre Channel 400-SM-LC-L
 xv. Fibre Channel 1200-MX-SN-I
 xvi. Fibre Channel 1200-SM-LL-L
 xvii. FDDI PMD ANSI X3.166
 xviii. FDDI SMF-PMD ANSI X3.184

 b. All wiring including copper and fiber optic employs a star topology.

 i. Category 6 UTP wiring terminates on Category 6 RJ-45 jack at workstation and on Category 6 rack-mounted patch panel in telecommunications room. Connections wired per ANSI/TIA-568A.

 ii. Multi-strand composite fiber optic cable connects distribution racks between telecommunications rooms and terminates on rack-mounted fiber optic patch panel.

 c. Network cables routed from distribution racks throughout building as shown on T-Drawings. Drop to outlet installed in conduit and wall box, or dual-channel...
surface mounted raceway to communications outlet in classrooms, offices, or other locations indicated on T-Drawings.

i. Refer to notes on each drawing to determine exact installation methods.

ii. Note and record all cable lengths to the nearest foot.

iii. Replace any cable exceeding 90 meters (295 feet) and route to reduce length to a minimum of 90 meters. Complete all cable rerouting for compliance at no additional cost to School district.

iv. Identify to Design consultant prior to installation of any cables that cannot be reduced to 90 meters or less in total length (rise and run).

v. Strictly adhere to most current version of ANSI/TIA Telecommunications cabling standards.

vi. Unless otherwise noted on T-Drawings, provide ladder-type cable tray from corridor to distribution racks and termination fields in telecommunication rooms.

vii. Install “waterfall” device providing sweep from cable tray to data rack/cabinet and other vertical transitions.

d. Data and Telephone outlets: Category 6 rated RJ-45 type connectors with all four copper pairs terminated and tested in accordance with the 568B wiring standard.

e. Fiber Optic Horizontal and Backbone Cables: Terminate on panels in each rack and connectors with ceramic sleeves. Terminate and test all strands unless otherwise noted.

f. Permanently identify and label all cables and termination devices, at distribution rack and workstation in accordance with ANSI TIA 606 Standard or as agreed by Design consultant and school district.

g. Remove and replace any cables failing to meet end-to-end testing requirements; do not abandon cable in place. All cable shall be terminated at both ends, unless noted on T-Drawings.

B. Performance Requirements

1. Comply with applicable requirements in Local, State and Federal Codes, ANSI/TIA Standards, and BICSI methodology.

1.5 SUBMITTALS

A. Comply with requirements of Division 0 and Division 1 - Submittals and as modified below.

B. Product Data: Submit manufacturer’s product literature, technical specifications and similar information for the following items demonstrating compliance with the specified requirements.

1. Communications outlets, faceplates, and accessories.

2. Fiber optic cable, patch cables and terminations.

3. Copper cable, patch cables and termination devices.

4. Inner duct and accessories.

5. Rack configurations and wiring diagrams.

6. Network cabling test equipment and process (routines).
7. Equipment Racks
8. Outlets

C. Samples:
1. Provide samples of outlets and assemblies as described below, prior to installation, for approval by designer.
2. Telecommunications outlets – Submit samples of telecommunications outlets to be provided including following components and characteristics:
 a. Flush mounted and Raceway outlets – Completely assembled faceplate and wall box with each type of outlet to be mounted in faceplate, including blank covers, dust covers, labeling field, cabling, and adapter plates and bezels required.
 b. Sample characteristics:
 i. Provide all components in colors selected by Design consultant.
 ii. Provide multiple outlet samples where required to accurately represent range of outlets to be provided.

D. Shop Drawings
1. The Contractor shall submit shop drawings of all systems showing major components of the systems. Submit wiring diagrams showing connections for all systems and equipment.

E. Quality Control Submittal
1. Test Reports: Submit complete sample test data and reports with exact labels used on cables, patch panels and faceplates.
2. Certificates
 a. Manufacturer Certification: Submit certification from manufacturer of products to be installed under this contract certifying that Installer is authorized by manufacturer to install specified products.
 b. Installer Experience Listing: Submit list of at least 5 completed projects as specified below in “Quality Assurance – Qualifications – Installer.”

F. Contract Closeout Submittal: Comply with requirements of Division 0, including submission of operating and maintenance instructions as item in “Operation and Maintenance Data” manual described in that Section.

1.6 QUALITY ASSURANCE
A. All Work shall be installed in a first class, neat and workmanlike manner by skilled Technicians. The quality of the workmanship shall be subject to inspection and approval by authorized school district personnel. Any work found to be of inferior quality and/or workmanship shall be replaced and/or reworked until the approval of school district is obtained.
B. Installer Qualifications: Qualified to cable, terminate and test data network cabling system specified in this Section, certified by manufacturer of products to be installed, and completed at least 5 computer network installations of similar size, nature and complexity as specified for this project.
C. Conditions for Consideration of "Or Equal" Products: Where products are specified by name and accompanied by the term "or equal", the proposed "or equal" product will be considered when the following conditions are satisfied. If all the following conditions are not satisfied, Design Consultant will return requests without action, except to record noncompliance with these requirements:
 1. Proposed product does not require extensive revisions to the Contract Documents.
2. With the exception of the product name or number and manufacturer's name, proposed product conforms with requirements indicated on the Drawings and in the Specifications in every respect and will produce indicated results.

3. Proposed product is fully documented and properly submitted.

4. Proposed product has received necessary approvals of authorities having jurisdiction.

5. Proposed product is compatible with AND has been coordinated with other portions of the Work.

6. Proposed product provides specified warranty.

7. If proposed product involves more than one contractor, proposed product has been coordinated with other portions of the Work, is uniform and consistent, is compatible with other products, and is acceptable to all contractors involved.

8. Submission is accompanied with detailed comparison of significant features of proposed product with those named in the Specifications. Significant features include attributes such as performance, weight, size, durability, visual effect, and specific features and requirements indicated.

9. Submission is accompanied with a list of similar installations for completed projects with project names and addresses and names and address of design consultants and authorities, if requested.

10. Submission is accompanied with proposed product manufacturer signed written statement on Manufacturer's letterhead, certifying that manufacturer complies with requirements in the Contract Documents.

1.7 WARRANTY

A. Installer’s Warranty: Provide manufacturer’s system warranty against electrical or mechanical defects for 1 year from date of final acceptance.

B. A fifteen (15) year Extended Product Warranty and System Assurance Warranty for this wiring system shall be provided by the Manufacturer as follows:

1. Extended Product Warranty: The Extended Product Warranty shall ensure against product and workmanship defects, that all approved cabling components exceed the specifications of ANSI/TIA 568B and Addenda for fiber link/channels and copper components, for a fifteen (15) year period. The warranty shall apply to all passive components, including both cable and connecting hardware as a combined system. Any claims cover replacement costs on any defective product, both material and labor. Extended warranties beyond fifteen (15) years will be considered.

2. System Assurance: The System Assurance shall cover the failure of the wiring system to support the application which it was designed to support as well as additional application(s) introduced in the future by recognized standards or user forums that use the ANSI/TIA 568B component and link/channel specifications for cabling, for a fifteen (15) year period.

3. System Certification: Upon successful completion of the installation and subsequent inspection, the School district shall be provided with a numbered certificate, from the manufacturing company, registering the installation.

PART 2 - PRODUCTS

2.1 MATERIALS

A. All materials shall be new and unused except as noted in T-series Drawings.

B. All cables shall be plenum rated.

C. System wiring and equipment installation shall be in accordance with good engineering practices as established by ANSI/TIA and the NEC. Wiring shall meet all state and local electrical codes. All wiring shall test free from all grounds and shorts.
D. Velcro straps shall be used for bundling wires. Wires shall be bundled loosely. Permanent cable ties are not acceptable.

E. Wiring system shall consist of the following:
1. Accessories and Appurtenances
2. Cable Management Devices
3. Fiber Optic Cable and Terminators (as indicated on drawings)
4. Copper and Fiber Patch cables
5. Remote Jacks
6. Termination/Patch Panels
7. Twisted Pair Data Cables
8. The Cable Infrastructure Project requires a structured cabling system, or equivalent single-manufacturer solution. The Category 6 portion of the cabling system shall comply with the link and channel performance requirements of ANSI/TIA 568-B.2-1 “Performance Specifications for 4-pair 100 Ohm Category 6 Cabling.” The cabling system shall be backed by a 15-Year System Warranty.
9. The work includes the provision for a complete and operable Local Area Network Building Data System consisting of active and non-active components. The cabling system and all wiring components shall meet and comprise an ANSI/TIA Category 6 Wiring System. With master and remote data equipment, the completed system shall provide 1Gbs Fiber Optic Fast Ethernet communications backbone support to the edge switches and Ethernet 1000 BASE-T to the workstation data jacks. The system shall provide such services as computer networking, data transmission, graphics and other multi-media offerings.
10. Provide one home run cable from each data/voice jack to appropriate wiring closet.
11. Cable length of home run cable shall not exceed 90 meters.
12. All Modular jack panels shall be wired to ANSI/TIA 568B

2.2 J-HOOKS
A. Cooper B-Line BCM-21, 23 or 64.
1. Provide in sufficient quantity for 15% future expansion.
2. Installed no more than 6’ apart.
3. Install in any areas without cable tray above false ceilings.

2.3 HORIZONTAL CABLES
A. Category 6a 100 ohm UTP 23 AWG Wireless cables shall have a distinctive color. Submit for approval from design team.
1. Hubbell C6ASxx
2. Or approved equal from
 a. Belden
 b. Berk-Tek
 c. Systimax
B. Category 6 100 ohm UTP Voice, Data, Wireless and Security cables shall each have a distinctive color. Submit for approval from design team.
1. Hubbell C6SPxx
2. Hubbell C6RPxx
3. Hitachi 30025-8
4. Hitachi 30024-8
5. Or approved equal from
 a. Belden
 b. Berk-Tek
 c. Systimax
2.4 BACKBONE CABLES
A. Multi-pair Cat 5e Riser Cables
 1. Hitachi 30093-50
 2. Hitachi 30172-100
 3. Or approved equal from
 a. Mohawk
 b. Belden
 c. Berk-Tek
B. SingleMode Fiber Optic Cables
 1. 12 Strand Hitachi 61459
 2. Or approved equal from
 a. Corning
 b. Berk-Tek

2.5 TERMINATION FIELDS
A. Category 6a 48-Port Patch Panels. Patch panels shall be segregated for POE switches and
 non-POE switches.
 1. Provide 15% spare capacity
 2. Hubbell HP6A48
 3. Hubbell Rear Cable Manager
 4. Or approved equal from
 a. Ortronics
 b. Panduit
 c. Systimax
 d. Leviton
B. Category 6 48-Port Patch Panels. Patch panels shall be segregated for POE switches and
 non-POE switches.
 1. Provide 15% spare capacity
 2. Hubbell P6E48U
 3. Hubbell PCBLMGT Rear Cable Manager
 4. Or approved equal from
 a. Ortronics
 b. Panduit
 c. Systimax
 d. Leviton
C. Fiber Enclosure
 1. Hubbell 2U FCR350SP36R
 2. Hubbell 2U FCR350SP54R
 3. Hubbell 3U FCR525SPR
 4. Hubbell 4U FCR700SP
 5. Or approved equal from
 a. Ortronics
 b. Panduit
 c. Systimax
 d. Leviton
D. Fiber Adaptor Panels
 1. Hubbell FSPLCDM6AQ
 2. Hubbell FSPLCQM6AQ
 3. Hubbell FSPLCDS6
 4. Hubbell FSPLCQS3
 5. Or approved equal from
E. Fiber Connectors
1. Hubbell FCLC900K50GM12 50/125um OM4 Aqua
2. Hubbell FCLC900K50GM12 9/125 UPC
3. Or approved equal from
 a. Ortronics
 b. Panduit
 c. Systimax
 d. Leviton

F. 110 Blocks
1. Hubbell 110BLK50FTK5
2. Hubbell 110BLK100FTK5
3. Hubbell 110BLK300FTK5
4. Or approved equal from
 a. Ortronics
 b. Panduit
 c. Systimax
 d. Leviton

2.6 OUTLETS
A. Category 6a Wireless Jacks
1. Hubbell HJ6Axx (replace xx with specified colors)
2. Or approved equal from
 a. Ortronics
 b. Panduit
 c. Systimax
 d. Leviton

B. Category 6 Voice and Data Jacks
1. Hubbell HXJ6xx (replace xx with specified colors)
2. Or approved equal from
 a. Ortronics
 b. Panduit
 c. Systimax
 d. Leviton

C. Faceplates
1. Hubbell IFP11xx
2. Hubbell IFP12xx
3. Hubbell IFP13xx
4. Hubbell IFP14xx
5. Hubbell IFP16xx
6. Hubbell IFP26xx
7. Hubbell IFP29xx
8. Hubbell IFP212xx
9. Or approved equal from
 a. Ortronics
 b. Panduit
 c. Systimax
 d. Leviton
D. Frames
1. Hubbell ISF2xx
2. Hubbell ISF3xx
3. Hubbell ISF4xx
4. Hubbell ISF6xx
5. Hubbell NS620xx
6. Or approved equal from
 a. Ortronics
 b. Panduit
 c. Systimax
 d. Leviton

2.7 PATCH CORDS
A. Cat 6a UTP Copper Patch Cords
1. Hubbell HC6Axx03
2. Hubbell HC6Axx05
3. Hubbell HC6Axx07
4. Hubbell HC6Axx010
5. Hubbell HC6Axx15
6. Hubbell HC6Axx20
7. Hubbell HC6Axx25
8. Or approved equal from
 a. Ortronics
 b. Panduit
 c. Systimax
 d. Leviton

B. Cat 6 UTP Copper Patch Cords
1. Hubbell HC6xx03
2. Hubbell HC6xx05
3. Hubbell HC6xx07
4. Hubbell HC6xx010
5. Hubbell HC6xx15
6. Hubbell HC6xx20
7. Hubbell HC6xx25
8. Or approved equal from
 a. Ortronics
 b. Panduit
 c. Systimax
 d. Leviton

C. Fiber Patch Cords
1. Hitachi Singlemode
2. Or approved equal from
 a. Ortronics
 b. Panduit
 c. Systimax
 d. Leviton

2.8 CLASSROOM / CONFERENCE / COLLABORATION A/V CABLING
A. The “L1” and “PR1” assembly shall include the following cables. (see T series drawings for exact cable types and connections)
1. Audio
a. 3.5 MM Stereo terminated connectors
b. 18/2 AWG Speaker Wire

2. HDMI & USB
 a. Hubbell HDBase-T Module HDMI and USB Transmitter
 b. Hubbell HDBase-T Module HDMI and USB Receiver
 c. Hubbell AVPS15W with 5V DC Output to ISFHDBT3W

3. Control and Signal
 a. Cat 6 UTP

4. AV Patch and Jumper Cables
 a. Provide 3.5 mm cables from faceplates to devices
 b. Provide HDMI from faceplates to devices
 c. Provide USB from faceplates to devices
 d. Provide HDMI for owner provided Apple TV at each display device.
 i. Provide and install Velcro straps and install owner provided Apple TV to display device.
 ii. Coordinate with owner.
 e. Provide a plug-in Y power splitter at each display device.

PART 3 - EXECUTION

3.1 EXAMINATION
A. Verification of Conditions: Examine conditions under which telecommunications cabling and equipment and related components are to be installed in coordination with Installer of materials and components specified in this Section and notify affected Prime Contractors and Design consultant in writing of any conditions detrimental to proper and timely installation. Do not proceed with installation until unsatisfactory conditions have been corrected to ensure a safe and timely installation.
 1. When Installer confirms conditions as acceptable to ensure proper and timely installation and to ensure requirements for applicable warranty or guarantee can be satisfied, submit to Design consultant written confirmation from applicable Installer. Failure to submit written confirmation and subsequent installation will be assumed to indicate conditions are acceptable to Installer.
 2. Visit Site to identify and become familiar with existing field conditions and specific requirements of each Site.
 3. Verify all dimensions in field and confirm condition of existing hardware to be utilized.
 4. Confirm space requirements and physical confines of all work areas to ensure that all materials can be installed in indicated spaces.
 5. Confirm all outlet locations and cable pathways and advise Design consultant in writing of any discrepancies or issues in Design described in Contract Documents.

3.2 PREPARATION
A. Protection: Provide adequate protection of equipment and hardware before and after installation.
B. Existing Communications Services: Ensure all telecommunications systems (voice, video and data) remain operational throughout the project.
 1. Identify any additional telecommunications outlets, circuits, and wiring at the site not shown on T-Drawings and interfering with installation of specified equipment.
 2. Contact local telephone, network and CATV company to identify all circuits providing existing services.
3. Remove all accessible portions of abandoned communications cabling per NEC 800.52. Tag all communications cabling not terminated at both ends but retained for future use.

3.3 INSTALLATION

A. Provide and install all components necessary to install complete telecommunications cabling and equipment systems, including (but is not limited to) connectors, patch cables, terminators, etc…

1. Cable runs shall be continuous and unbroken from end to end. Splicing of any Telephone, LAN, or coaxial video distribution cable is prohibited. Horizontal cabling for LAN and telephone shall end in rack-mounted patch panels.

2. Secure all horizontal cables within ceiling cavities to building structure.

3. Loosely bundle all cables and support from structure at unequal intervals from 5 to 6 feet with spring steel fasteners and cable clip rated for use with high performance cables where cable tray or other support structure has not been provided as indicated on Drawings. All mounting clips shall be seismic type as per BOCA.

4. Do not violate manufacturer’s recommended loadings. Leave 30% capacity for future use of pathway.

5. Verify all horizontal cable run lengths prior to installation. Re-distribute horizontal cabling to maintain distance requirements and maintain pathway route accessibility.

6. Do not support cables from ceiling grid T-Bars, grid wire supports or bridle rings. Do not allow cables to touch ceiling grid.

7. Do not secure cables with permanent cable ties. Do not tighten cable bundles in such a way as to cause jacket deformation or damage.

8. Provide a 10-foot service loop in all fiber optical cables to permit future cable splice and repair at all building entrance points and termination points.

10. Tight 90-degree bends are unacceptable, and use of plastic “cinch-type” tie-wraps are not permitted, in order to prevent damage to cable jacket and compromise the cable’s electrical or optical characteristics.

11. Cable bundles shall be neatly routed with a service loop to provide 10 feet of slack at the cross-connect end and as noted in the T-drawings. Cable bundles shall be secured using only black Velcro cable wraps.

12. 10 feet of service loop shall be provided in the ceiling at each workstation. Contractor shall not secure service loop in coils, but route in such a manner as to minimize EMI.

13. Wireless outlet locations

a. Wireless locations shown on T-series drawings shall be installed outside of a faceplate.

b. Ceiling shall be marked and as-builts shall reflect the location of all terminated ends and service loops as directed by SCHOOL DISTRICT personnel.

c. Cable shall be terminated in a female RJ-45 female jack, and left with a service loop as described in T-series drawings. Cable shall be tested and documented per previous requirements.

d. After completion of wireless site survey, outlet shall be re-terminated for connection to Wireless Access Point.
B. Determine allowable cable proximity to other electrical power sources of 480 Volts or less using TIA/EIA-569A “Cabling Pathway Standard” for UTP cable separations from sources of EMI:

1. Minimum separation distance from Power Source at 480 V or less:

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>≤ 2kVA</th>
<th>2-5 kV</th>
<th>> 5 kVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Unshielded power lines or electrical equipment in proximity to open or non-metal pathways</td>
<td>6 in.</td>
<td>12 in.</td>
<td>24 in.</td>
</tr>
<tr>
<td>b. Unshielded power lines or electrical equipment in proximity to open or non-metal pathways</td>
<td>3 in.</td>
<td>6 in.</td>
<td>12 in.</td>
</tr>
<tr>
<td>c. Power lines enclosed in a grounded metal conduit (or equivalent shielding) in proximity to grounded metal conduit pathway</td>
<td>3 in.</td>
<td>6 in.</td>
<td>12 in.</td>
</tr>
<tr>
<td>d. Transformers & Elec. Motors</td>
<td>40 in.</td>
<td>40 in.</td>
<td>40 in.</td>
</tr>
<tr>
<td>e. Fluorescent Lighting</td>
<td>12 in.</td>
<td>12 in.</td>
<td>12 in.</td>
</tr>
</tbody>
</table>

C. Interior Fiber Optical Cable Installation Requirements

1. Install all interior fiber optic backbone cables in 1-inch plenum-rated inner duct, similar to Pyramid Industries #PLM100(T), where fiber optical cable placed in cable tray or otherwise fully supported in accordance with manufacturer’s requirements.

2. Install all outdoor rated communications cables not rated for plenum placement in interior environments in metallic conduit, according to NEC Articles 770 and 800.

3. Install inner duct for fiber optic cabling in all conduits, as necessary for proper support of cables, or where required to assure pull-in tension not exceeding manufacturer’s recommendation.

4. Provide pull strings or ropes in all conduit and inner duct used for communications cables.

D. Cabling System

1. Where not provided as part of the electrical work or the data/voice work, the Contractor shall furnish and install necessary conduit, raceways, pull boxes, outlet boxes and cable to provide a complete system as herein specified. All wiring shall be tested for continuity and freedom of all grounds and short-circuits. All outlet boxes shall be as specified for other wiring devices; size as required by equipment manufacturer.

2. Cables shall be installed in raceways or EMT, as detailed on the drawings and/or as specified, above non-accessible ceilings, where exposed, and wherever it may be subject to physical damage. Where not provided as part of the electrical work or the data/voice work, the Contractor shall provide a raceway (conduit) from each outlet to above the accessible ceiling. Otherwise, cable shall be installed above accessible suspended tile ceilings and attached to building structure with approved bridle rings or J-hooks, cable is not permitted to rest on ceiling. The cable routes used shall avoid steam lines, power wiring and other utilities that may adversely affect the system's performance or result in damage to the cable. If the routes required place the cable in proximity to these utilities, the cable shall be suitably protected. Under no circumstances shall cable be run in hangers used for pipes or electric conduits nor
shall the cable be supported in any way by attachment to these pipes, conduits or ceiling hangers.

3. During the installation work, improper bending, stretching, twisting, kinking, pinching or any other improper handling must not deform the cable. All cable runs shall contain "S" loops or other means to accommodate expansion and contraction. Coaxial cables shall not bend at any point of installation to a radius of less than ten times the diameter of the cable or less than the value recommended by the cable manufacturer. Cable connected to electronic equipment in the system shall be tagged to show its function and the location of its other end. All labels shall be of durable material and securely fastened to the cable.

4. All cables shall be fastened securely with suitable hardware so as to avoid sharp bends and to prevent rubbing against sharp corners and in a manner to prevent injury or physical distortion.

5. Wiring for all wall-mounted equipment shall be concealed in raceway (conduit) from outlet to above removable ceilings, unless noted otherwise.

6. Wiring installed above removable ceilings shall be installed on bridle rings. No cables shall be installed on roof or exterior of building.

7. Infrastructure properly terminated on backboard, neatly arranged in orderly fashion and accurately identified.

8. Equipment cabinet(s) anchored to wall or floor utilizing an approved method.

9. Install all exposed cabling in surface raceway by Wiremold, Hubbell or Panduit where in-wall conduit has not been provided. Follow all manufacturers’ guidelines requirements regarding bending radius and slack. All bends, offsets and fittings shall be appropriately sized to provide 30% capacity after installation.

E. Install all cable in accordance with National, state and local codes and ANSI/TIA Standards, and BICSI methods.

1. Follow manufacturer’s guidelines and requirements for all cable termination.

2. Install and connect #6 AWG to bond all equipment racks, conduits and cable trays to busbar in each telecom room. Each telecom room shall be interconnected to TER with #3 AWG bonding backbone to TMGB per Telecommunications Grounding Diagram. It shall be left to licensed electrician to interconnect TMGB with lowest point of building ground. Contractor shall verify TMGB has been bonded to building ground before declaring completion.

F. Permanently identify all system components following ANSI/TIA-606A “Administration Standards for Commercial Telecommunications Infrastructure” with identification format:
1. Identification: Provide permanent identification labels for outlets, faceplates, patch panels, access panels and entrance facilities.

2. Each individual cable shall be labeled on both ends of cable terminations regardless of cable intended use. Labels must be machine printed with permanent black ink on laminated white label material. Contractors must check with appropriate school district personnel for appropriate labeling scheme. The intended format and labeling material must be approved by school district Technology Department before labeling begins.

3.4 TESTING

A. LAN and Telephone

1. Upon completion of work, all parts of the telecommunications installation shall be tested by the Telecommunications Contractor and demonstrated free of any defects. Preliminary testing will be permitted but shall not be accepted in lieu of obtaining final test results. Final test results shall be accomplished by the use of proper test equipment for the system being tested.
2. Re-terminate and re-test any cables or pairs of cables failing end-to-end testing requirements. Replace any faulty cables/pairs or termination devices. Remove all defective cables completely from pathways.

B. As-Builts
1. Accurate as-built drawings shall be provided in electronic and hard copy format.
 a. Drawings shall accurately show and describe all cable routing and equipment location in redline format.
 b. 3 copies of electronic (CAD) drawings shall be distributed on appropriate media: 1 to construction management, 1 to designers and 1 to the school district.
 c. 3 hard copies of CAD drawings shall be plotted on full size sheets and test results of every installed cable have been given to the construction management for appropriate distribution.

3.5 ACCEPTANCE
A. Contractors work shall be considered complete after the following conditions have been met:
 1. Cable installation is complete and all cable runs have been tested and documented to be installed according to specifications and drawings.
 2. A school district Technology representative has successfully tested the “LIVE” system.
 3. All punch list items have been reconciled.
 4. All disturbed ceiling panels, firestopping materials, covers, etc. have been properly reinstalled.
 5. All materials and trash have been removed from the site.
 6. A 1-Year Installers warranty has been given to a school district Technology representative.
 7. Submit Manufacturers Extended Warranty Application.

END OF SECTION
SECTION 27 41 00

AUDIO VISUAL AND SOUND SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes

1. Electronic Displays
2. Sound Distribution including cabling, terminations and equipment.
3. Cafeteria A/V System
4. Gymnasium Auxiliary Sound System
5. Auditorium A/V System

1.2 DEFINITIONS

A. “Communications Network Outlet (CNO)” refers to a collection of one or more mechanical cable termination device for horizontal cable in the work area.

B. “Drop” refers to the vertical transition to a location of one or more CNOs.

C. “Horizontal Cabling” refers to the cabling between and including the work area communications network outlet and the horizontal cross-connect in the telecommunications room.

D. “Jack” refers to a female-style telecommunication receptacle.

1.3 SYSTEM DESCRIPTION

A. Design Requirements

1. A/V Systems
 a. An Auditorium A/V system shall be provided and include A/V cabling, faceplates, connectors, controllers and electronic displays.
 b. Cafeteria A/V system shall be provided and include A/V cabling, faceplates, connectors, controllers, mixers, DSPs, amplifiers, loudspeakers, mobile podiums and electronic displays.
 c. Gymnasium Sound Reinforcement System - A multi-loudspeaker system shall be provided. Clearly label and color code the master volume control for all functions.
 d. Hearing Assistance System - Provide a reinforcement system for the hearing impaired for each system. The hearing assistance system shall be an FM radio system that shall not limit operation to certain seats or areas of the room(s). Provide approximately 20-40 milliseconds of high-quality digital signal delay to help in the localization of the sound source.

2. All stand alone sound systems must have call override from the Intercom/PA system in the case of an emergency.
B. Performance Requirements

1. Comply with applicable requirements in Local, State and Federal Codes, ANSI/TIA Standards, and BICSI methodology.

2. Specified cabling system derived from recommendations in approved telecommunications industry codes, standards and methods, including the following documents:
 a. ANSI/TIA-568-C.0: Generic Telecommunications Cabling for Customer Premises
 b. ANSI/TIA-568-C.1: Commercial Building Telecommunications Cabling Standard
 c. ANSI/TIA-568-C.2: Balanced Twisted Pair Cabling and Components Standard
 d. ANSI/TIA-568-C.3: Optical Fiber Cabling Components Standard
 e. ANSI/TIA-569-B: Commercial Building Standard for Telecommunications Pathways and Spaces
 f. ANSI/TIA-570-B: Residential Telecommunications Cabling Standard
 g. ANSI/TIA-606-A: Administration Standard for Telecommunications Infrastructure of Commercial Buildings
 h. ANSI/TIA-607-C: Commercial Building Grounding and Bonding Requirements for Telecommunications
 i. ANSI/TIA-758-A: Customer-Owned Outside Plant Telecommunications Cabling Standard
 j. BICSI Telecommunications Distribution Methods Manual (TDMM), Latest Edition

1.4 SUBMITTALS

A. Comply with requirements of Division 0 and Division 1 - Submittals and as modified below.

B. All systems and equipment must comply with the Delaware State-Wide Information Technology and Architecture Standards, Latest Version.

C. Product Data: Submit manufacturer’s product literature, technical specifications and similar information for the following items demonstrating compliance with the specified requirements.
 1. Sound coverage and pressure level diagram for each auxiliary sound system
 2. Sound Amplifier
 3. Sound Speakers
 4. Sound Microphones
 5. Sound Cabling and Wiring
 6. Audio Visual cables and connectors
 7. Audio Visual Mixers
 8. Controllers
9. Amplifiers

10. Electronic Displays

11. Communications outlets, faceplates, and accessories.

12. Wall outlets

D. Samples: Provide samples of equipment, cables, microphones and assemblies as described below, prior to installation, for approval by designer.

1. Sound Systems – Submit samples of audio/visual cables provided including following components and characteristics:
 a. Sample characteristics:
 i. Provide all components in colors selected by Design consultant.
 ii. Provide multiple samples where required to accurately represent range of cables to be provided.

E. Shop Drawings

1. The Contractor shall submit shop drawings of all systems showing major components of the systems. Submit wiring diagrams showing connections for all systems and equipment.

F. Quality Control Submittal

1. Test Reports: Submit complete sample test data and reports with exact labels used on cables and faceplates.

2. Certificates
 a. Manufacturer Certification: Submit certification from manufacturer of products to be installed under this contract certifying that Installer is authorized by manufacturer to install specified products.
 b. Installer Experience Listing: Submit list of at least 5 completed projects as specified below in “Quality Assurance – Qualifications – Installer.”

G. Contract Closeout Submittal: Comply with requirements of Division 0, including submission of operating and maintenance instructions as item in “Operation and Maintenance Data” manual described in that Section.

1.5 QUALITY ASSURANCE

A. All Work shall be installed in a first class, neat and professional manner by skilled Technicians. The quality of the workmanship shall be subject to inspection and approval by authorized school district personnel. Any work found to be of inferior quality and/or workmanship shall be replaced and/or reworked until the approval of the school district is obtained.

B. Installer Qualifications: Qualified to cable, terminate and test cabling system specified in this Section, certified by manufacturer of products to be installed, and completed at least 5 installations of similar size, nature and complexity as specified for this project.

C. Conditions for Consideration of "Or Equal" Products: Where products are specified by name and accompanied by the term "or equal", the proposed "or equal" product will be considered when the following conditions are satisfied. If all the following conditions are not satisfied, Design
Consultant will return requests without action, except to record noncompliance with these requirements:

1. Proposed product does not require extensive revisions to the Contract Documents.
2. With the exception of the product name or number and manufacturer's name, proposed product conforms with requirements indicated on the Drawings and in the Specifications in every respect and will produce indicated results.
3. Proposed product is fully documented and properly submitted.
4. Proposed product has received necessary approvals of authorities having jurisdiction.
5. Proposed product is compatible with AND has been coordinated with other portions of the Work.
6. Proposed product provides specified warranty.
7. If proposed product involves more than one contractor, proposed product has been coordinated with other portions of the Work, is uniform and consistent, is compatible with other products, and is acceptable to all contractors involved.
8. Submission is accompanied with detailed comparison of significant qualities of proposed product with those named in the Specifications. Significant qualities include attributes such as performance, weight, size, durability, visual effect, and specific features and requirements indicated.
9. Submission is accompanied with a list of similar installations for completed projects with project names and addresses and names and addresses of design consultants and authorities, if requested.
10. Submission is accompanied with proposed product's Manufacturer signed written statement on Manufacturer's letterhead, certifying that manufacturer complies with requirements in the Contract Documents.

1.6 WARRANTY
A. Installer’s Warranty: Provide manufacturer’s system warranty against electrical or mechanical defects for 1 year from date of final acceptance.

1. System Certification: Upon successful completion of the installation and subsequent inspection, the Authority shall be provided with a numbered certificate, from the manufacturing company, registering the installation.

PART 2 - PRODUCTS

2.1 MATERIALS – ALL MATERIALS SHALL BE NEW AND UNUSED
A. Acceptable Products

1. The Auxiliary Sound and A/V Systems are based on Extron, Community, Biamp, Shure, Middle Atlantic, Epson and other like reputable manufacturers.
 a. Equipment substitutions must be submitted in writing to the design team for review and approval.
 b. Any equipment not meeting the design criteria will be rejected at the contractor’s expense.
B. J-Hooks

1. Cooper B-Line BCM-21, 23 or 64.
 a. Provide in sufficient quantity for 15% future expansion.
 b. Installed no more than 6’ apart.
 c. Install in any areas without cable tray above false ceilings.

C. Electronic Displays

1. 75” LCD Display
 a. Smart 6275 Smart Panel with adjustable mount
 b. Copernicus iRover Mobile Cart for:
 i. Stage
 ii. Media Center

2. 42” LCD Display
 a. NEC V404

3. Large Format Projector
 a. Epson Powerlite Pro L1200UNL with lens
 b. Epson Powerlite Pro L1300UNL with lens
 c. Epson Powerlite Pro L1500UNL with lens

D. Gymnasium Equipment: (substitutions must provide equal or greater performance)

1. Equipment Cabinet
 a. Middle Atlantic DWR 24 RU swing open wall cabinet with Plexi Door.

2. Controller
 a. Biamp TEC-1S

3. Assistive Listening Equipment
 a. Listen Technologies LS-54-072

4. Wireless Microphone Equipment
 a. Shure SLX124/85/sm58

5. CD Player
 a. Denon DN-300z

6. DSP
 a. Biamp Tesiraforte AVB AI

7. Power Sequencer

NOT FOR BIDDING PURPOSES
1. SurgeX SEQ 2 RU

2. Equipment Drawer
 a. Atlas SD4-14 Drawer

3. Two Channel Amplifier
 a. Lab Gruppen E:42

4. Mic Level Input
 a. Neutrik Combo ¼" XLR

5. Line Level Input
 a. RDL D-CIJ3.

6. Wired Microphone
 a. Shure SM58S (Provide 3)

7. Microphone Stands
 a. Atlas TEB-E (Provide 3)

8. Loudspeakers
 a. Soundsphere 110B with transformer
 b. Soundsphere Q8 with transformer

9. Wiring
 a. Multi-conductor control cable.
 b. 18/2 AWG Speaker Wiring
 c. 14/2 AWG Speaker Wiring
 d. VGA
 e. 3.5 mm audio
 f. Cat 6 UTP
 g. Shielded Cat 5e or greater UTP for audio faceplate cables.
 h. West Penn 226, or equal, for the loudspeaker cluster circuits.

10. Miscellaneous Connectors
 a. Provide Neutrik NC3 series “XLR”, Neutrik NP3C “TRS” or Canare F-09 “RCA” connectors.
 b. Provide Switchcraft N112B connectors.
 c. Wirenuts are not acceptable.

E. Cafeteria A/V System
1. Equipment Cabinet
 a. Middle Atlantic DWR 24 RU swing open wall cabinet with Plexi Door.
2. Controller
 a. Biamp TEC-1S
3. Assistive Listening Equipment
 a. Listen Technologies LS-54-072
4. Wireless Microphone Equipment
 a. Shure SLX124/85/sm58
5. CD Player
 a. Denon DN-300z
6. DSP
 a. Biamp Tesiraforte AVB AI
7. Power Sequencer
 a. SurgeX SEQ 2 RU
8. Equipment Drawer
 a. Atlas SD4-14 Drawer
9. Two Channel Amplifier
 a. Lab Gruppen E:42
10. Mic Level Input
 a. Neutrik Combo ¼" XLR
11. Line Level Input
 a. RDL D-CIJ3.
12. Wired Microphone
 a. Shure SM58S (Provide 3)
13. Microphone Stands
 a. Atlas TEB-E (Provide 3)
14. Loudspeakers
 a. Soundsphere 110B with transformer
15. Wiring
 a. Multi-conductor control cable.
 b. 18/2 AWG Speaker Wiring
c. 14/2 AWG Speaker Wiring
d. VGA
e. 3.5 mm audio
f. Cat 6 UTP
g. Shielded Cat 5e or greater UTP for audio faceplate cables.
h. West Penn 226, or equal, for the loudspeaker cluster circuits.

16. Miscellaneous Connectors
 a. Provide Neutrik NC3 series “XLR”, Neutrik NP3C “TRS” or Canare F-09 “RCA”
 connectors.
 b. Provide Switchcraft N112B connectors.
 c. Wirenuts are not acceptable.

F. Auditorium A/V System
 1. Stage Projection Screen
 a. Draper Ultimate Access XL/Series V Front Projection Screen
 b. 110 V AC power
 c. Low voltage control with 24 V 3 button switch and RF remote control
 d. 3 Position switch with hinged key locking coverplate.
 2. Amplifier
 a. Lab Gruppen E:42
 b. QSC GXD8
 c. Extron XPA-4002 70V
 3. Surge/Sequencer
 a. Middle Atlantic Products PD-915R
 b. Middle Atlantic Products HCM-1DR
 4. Mixer/DSP
 a. Behringer XR12
 b. iPad Pro (latest generation)
 5. Wireless Mics
 a. Shure SLX 124/85
 b. Shure QLX
 6. Media Player
7. Assistive Listening
 a. Listen LS-54-072

8. A/V Switchers/Scalers
 a. Crestron DMPS3-4K-150-C
 b. Extron SW2 HDMI 4K
 c. Crestron DM-RMC-4K-Scaler-C

9. Signal Extenders
 a. Crestron DM-TX-200-C-2G Wall Plate

10. Speakers
 a. EV EVC-1152-64
 b. EV Xw12A Monitors
 c. Extron XPA-4002 70v

11. A/V Switch
 a. Crestron CEN-SW-PoE5

12. Projector
 a. Epson Powerlite Pro L1500UNL with long throw lens
 b. Include Chief wall mount, Adjustable Pipe and Adjustable Projector Mount.

13. Cabinet
 a. Middle Atlantic WM-8-18.
 b. Middle Atlantic DWR-24-32

14. Shunt Relay
 a. Atlas Sound AA-PPRC

15. Touch Panel
 a. Crestron TSW-760-C-S

16. Cables
 a. Multi-conductor control cable.
 b. 18/2 AWG Speaker Wiring
 c. 14/2 AWG Speaker Wiring
 d. Cat 6 UTP Twisted Pair Cables
 e. HDMI, with signal extenders
f. VGA

17. Microphone
 a. Shure SM58

18. Ceiling Microphones
 a. Shure MX202

19. Microphone Stands
 a. Atlas TEB-E (Provide 3)

20. See drawings for equipment specifications.
 a. All equipment must meet the performance specification of the specified equipment.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verification of Conditions: Examine conditions under which AV cabling and sound enhancement equipment and related components are to be installed in coordination with Installer of materials and components specified in this Section and notify affected Prime Contractors and Design consultant in writing of any conditions detrimental to proper and timely installation. Do not proceed with installation until unsatisfactory conditions have been corrected to ensure a safe and timely installation.

1. When Installer confirms conditions as acceptable to ensure proper and timely installation and to ensure requirements for applicable warranty or guarantee can be satisfied, submit to Design consultant written confirmation from applicable Installer. Failure to submit written confirmation and subsequent installation will be assumed to indicate conditions are acceptable to Installer.

2. Visit Site to identify and become familiar with existing field conditions and specific requirements of each Site.

3. Verify all dimensions in field and confirm condition of existing hardware to be utilized.

4. Confirm space requirements and physical confines of all work areas to ensure that all materials can be installed in indicated spaces.

5. Confirm all outlet locations and cable pathways and advise Design consultant in writing of any discrepancies or issues in Design described in Contract Documents.

3.2 PREPARATION

A. Protection: Provide adequate protection of equipment and hardware before and after installation.

B. Existing Communications Services: Ensure all telecommunication systems (voice, video and data) remain operational throughout the project.

1. Identify any additional outlets, circuits, and wiring at the site not shown on T-Drawings and interfering with installation of specified equipment.
2. Remove all accessible portions of abandoned communications cabling per NEC 800.52. Tag all communications cabling not terminated at both ends but retained for future use.

3.3 INSTALLATION

A. Provide and install all components necessary to install complete AV cabling and sound enhancement equipment systems, including (but is not limited to) connectors, electronics, terminators, pass-thrus, cables etc…

1. Cable runs shall be factory terminated. Splicing of any cable is prohibited
2. Secure all cables within ceiling cavities to building structure.
3. Loosely bundle all cables and support from structure at unequal intervals from 5 to 6 feet with spring steel fasteners and cable clip rated for use with high performance cables where cable tray or other support structure has not been provided as indicated on Drawings. All mounting clips shall be seismic type as per BOCA.
4. Do not violate manufacturer’s recommended loadings. Leave 30% capacity for future use of pathway.
5. Verify all horizontal cable run lengths prior to installation. Ensure cables do not exceed distances that would degrade the signal transmission requirements
6. Do not support cables from ceiling grid T-Bars, grid wire supports or bridle rings. Do not allow cables to touch ceiling grid.
7. Install cables in EMT in all unfinished or exposed areas
8. Do not secure cables with permanent cable ties. Do not tighten cable bundles in such a way as to cause jacket deformation or damage.
9. Place cables in compliance with ANSI/TIA/standards and BICSI recommended methods.
10. Tight 90-degree bends are unacceptable and use of plastic “cinch-type” tie-wraps are not permitted, in order to prevent damage to cable jacket and compromise the cable’s electrical or optical characteristics.
11. Communications outlets shall be located to be no more than 6 feet from an electrical outlet.

B. Determine allowable cable proximity to other electrical power sources of 480 Volts or less using TIA/EIA-568A “Cabling Pathway Standard” for UTP cable separations from sources of EMI:

1. Minimum separation distance from Power Source at 480 V or less:

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>< 2kVA</th>
<th>2-5 kV</th>
<th>> 5 kVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Unshielded power lines or electrical equipment in proximity to open or non-metal pathways</td>
<td>6 in.</td>
<td>12 in.</td>
<td>24 in.</td>
</tr>
<tr>
<td>b. Unshielded power lines or electrical equipment in proximity to open or non-metal pathways</td>
<td>3 in.</td>
<td>6 in.</td>
<td>12 in.</td>
</tr>
<tr>
<td>c. Power lines enclosed in a grounded metal conduit (or equivalent shielding) in proximity to grounded metal conduit</td>
<td>3 in.</td>
<td>6 in.</td>
<td>12 in.</td>
</tr>
</tbody>
</table>
C. Install all cable in accordance with National, state and local codes and TIA/EIA Standards, and BICSI methods.

1. Follow manufacturer’s guidelines and requirements for all cable termination.

D. Permanently identify all system components following TIA/EIA-606A “Administration Standard for Commercial Telecommunications Infrastructure” with identification format:

1. Identification: Provide permanent identification labels for outlets, faceplates and cables.

2. Each individual cable shall be labeled on both ends of cable terminations regardless of cable intended use. Labels must be machine printed with permanent black ink on laminated white label material. Contractors must check with appropriate school district personnel for appropriate labeling scheme. The intended format and labeling material must be approved by the school district Technology Department before labeling begins.

3.4 TESTING

A. A/V and Sound Systems

1. The contractor shall test all aspects of the Audio/Visual Systems once it is installed and demonstrate these functions to the owner or owner’s representative.

 a. Speaker levels shall be verified to function individually and as a unit.

 b. Video Displays shall be verified to display from all input sources.

 c. Control of the system shall be shown to control all aspects of the systems.

 d. Levels shall be set for all outputs.

 e. EDID and HDCP compliance shall be setup and verified.

 f. Microphones shall be demonstrated to work as intended by the manufacturer.

B. Audio Visual Cables

1. The contractor shall test all cables included in the harness for proper signal transmission based on manufacturer standards.

2. The contractor shall record remove any cable that does not meet manufacturer standards and replace it with a correctly functioning cable.

3. The contractor shall demonstrate that the installed cables meet manufacturer standards for signal transmission prior to the job being considered complete.

3.5 AS-BUILTS

A. As-builts shall be provided by the contractor in hardcopy and electronic CAD format prior to completion.

B. As-builts by contractor must include parts lists and wiring diagrams that clearly indicate all equipment, locations, wiring and connections.
C. Owner’s manuals shall be supplied as part of the as-built documentation.

3.6 DEMONSTRATION AND TRAINING

A. All aspects of the systems must be demonstrated for the owner at the time of training

B. A minimum of 16 hours of training shall be provided.

C. Training shall be video and audio recorder for the owner and turned over to the owner at acceptance.

3.7 ACCEPTANCE

A. Contractors work shall be considered complete after the following conditions have been met:

1. Cable installation is complete and all cable runs have been tested and documented to be installed according to specifications and drawings.

2. Equipment installation is complete and all functions have been tested and documented to function as designed and per the manufacturer’s recommendations.

3. All punch list items have been reconciled.

4. All disturbed ceiling panels, fire stopping materials, covers, etc. have been properly reinstalled.

5. A 1-Year Installers warranty has been given to a school district Technology representative.

END OF SECTION
SECTION 27 50 00

INTERCOM AND CLOCKS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes

1. This section and associated drawings define a communications system for an intercom, public address and master clock system. The contractor shall provide all infrastructure, cable, hardware and equipment as defined to provide complete and operational systems.

1.2 SYSTEM DESCRIPTION

A. Design Requirements

1. Intercom/PA/Master Clock System

a. The facility intercommunication system shall be a low voltage system that utilizes a fiber and copper cable infrastructure to distribute a user-defined input in a single and bi-directional manner. The system shall be capable of multiple, simultaneous conversations on separate channels throughout the facility through VoIP telephones and loudspeaker assemblies.

b. A programmable master for tone distribution schedule shall also be included as part of the overall system.

c. The system shall be microprocessor based and have interconnection with the telephone system installed within the facility. In addition, the system must be expandable to meet the user’s future expansion needs and be programmable from a computer terminal located at the facility.

d. The clock system shall consist of a master unit and slave clocks. The system shall be wirelessly corrected and have 24v powered clocks. All clocks shall be corrected wirelessly to the master clock system.

B. Performance Requirements

1. Rack/Cabinet mountable headend equipment.

2. Announcement distribution from a central location to zones, individual classrooms, groups or all facility speakers.

3. Broadcast of user defined input (radio signal, compact disc, aux input, etc.) to zones, individual rooms, groups or all facility loudspeakers.

4. Emergency cut-in to all speakers in an emergency situation from a central location.

5. Two-way intercommunication between the central rack, any call-in location or any selected two-way speaker location.

6. Hands free communications by means of a loudspeaker or speakerphone used as a transducer or speaker/microphone combination.

7. Visual and audio monitoring of all intercommunication system activity.
8. Volume and level controls for all centrally located intercommunication system equipment.
9. Tone distribution based off the master clock that can be partitioned into zones.
10. Capability to tie into any auxiliary sound system throughout the facility.
11. High priority call-in from any telephone/call switch in an emergency situation.

C. Regulatory requirements
 1. All work will conform to the National Electric Code and applicable local ordinances.

1.3 SUBMITTALS

A. Comply with requirements of Division 0 and Division 1 - Submittals and as modified below.

B. Product Data: Submit manufacturer’s product literature, technical specifications and similar information for the following items demonstrating compliance with the specified requirements.
 1. Submit the shop drawings, product data and quality control submittals specified below at the same time as the package
 2. Shop Drawings shall include the following items but are not limited to:
 a. Equipment and device quantities and types
 b. Wire types
 c. System wiring diagrams showing interconnections
 d. Drawings including all equipment locations
 e. Associated equipment specifications and cut sheets
 f. Product data including catalog cut sheets, manufacturer’s default specifications, user operation guides and a bill of materials

C. Quality Control Submittal
 1. Submit the name, address and telephone number of the nearest fully equipped service organization.
 2. Submit a certificate of completion of installation and service training from the system manufacturer.
 3. Certificates
 a. Manufacturer Certification: Submit certification from manufacturer of products to be installed under this contract certifying that Installer is authorized by manufacturer to install specified products.
 b. Installer Experience Listing: Submit list of at least 5 completed projects as specified below in “Quality Assurance – Qualifications – Installer.”

D. Contract Closeout Submittal: Comply with requirements of Division 0, including submission of operating and maintenance instructions as item in “Operation and Maintenance Data” manual described in that Section.
1.4 AS-BUILTS
A. All systems must have as-built drawings provided in electronic CAD and hardcopy format that clearly show all system components, wiring schemes and system interconnections.

1.5 QUALITY ASSURANCE
A. All Work shall be installed in a first class, neat and workmanlike manner by skilled Technicians. The quality of the workmanship shall be subject to inspection and approval by authorized school personnel. Any work found to be of inferior quality and/or workmanship shall be replaced and/or reworked until the approval of the school systems is obtained.

B. Qualifications
 1. Installer
 a. Must be qualified to cable, terminate, install and program the equipment specified in this Section, certified by manufacturer of products to be installed and completed at least 5 installations of similar size, nature and complexity as specified for this project.

1.6 WARRANTY
A. Special Warranty: Provide manufacturer’s system warranty against electrical or mechanical defects for 1 year from date of final acceptance.
 1. System Assurance: The System Assurance shall cover the failure of the wiring system to support the application which it was designed to support as well as additional application(s) introduced in the future by recognized standards or user forums
 2. System Certification: Upon successful completion of the installation and subsequent inspection, the Authority shall be provided with a numbered certificate, from the manufacturing company, registering the installation.

1.7 TRAINING
A. Installing contractor shall provide a minimum of 8 hours of training on system operation and managements as part of their scope of work.
 1. Additional hours shall be provided on a time and materials basis at the request of the owner.

B. Installing contractor shall provide a video recording on a standard format DVD to the owner which includes training sessions.

1.8 OPERATION AND MAINTENANCE MANUALS
A. Installing contractor shall provide a minimum of two hardcopy and one electronic copy of all operation and maintenance manuals to the owner at project completion.

B. All passwords and software must be included for the system.

PART 2 - PRODUCTS
2.1 MANUFACTURERS
A. Acceptable manufacturers
1. The intercom and clock systems shall be manufactured by a reputable manufacturer with a proper support and maintenance operation in place.
 a. Intercom - Bogen
 b. Clock - Bogen

2. Substitutes
 a. Any proposed substitute must have identical system architecture and function in an identical manner to the designed solution.
 b. Burden of proof rests on the submitting contractor to provide information that the proposed substitute meets the design criteria.

2.2 MATERIALS

A. J-Hooks
 1. Cooper B-Line BCM-21, 23 or 64.
 a. Provide in sufficient quantity for 15% future expansion.
 b. Installed no more than 6’ apart.
 c. Install in any areas without cable tray above false ceilings.

B. CONSOLE
 1. Rack-mounted equipment shall be Bogen Model TCPER
 a. 77” Rack

C. MCRMP / MCMP / QRC24-48 (Compact Rack System)
 1. Rack Mount full, Mini-System, or Wall Mount panel. Shall include the following components:
 a. Quantum Processor Card QSPC1
 b. Analog Card
 c. Station Card
 d. Telephone Interface Card
 e. 5 volt / 12 volt Power Supply
 f. 26 volt Power Supply(s)
 g. Audio Program Module Interface Assembly

D. MCRMF / MCMF / QRC24-48
 1. MCRMF Rack mounting mainframe. Includes built-in ventilation fans and the following circuit cards:
 a. Quantum Processor Card
b. Analog Card

c. Station Card

d. Telephone Interface Card

e. Ribbon Cable Assembly

2. MCF Wall Mount mounting mainframe. Utilizes convection cooling and the following circuit cards:

 a. Quantum Processor Card
 b. Analog Card
 c. Station Card
 d. Telephone Interface Card

3. QCR24 / QCR48 Compact Quantum Rack System Mainframe (1 per Mini-System). Includes built-in ventilation fan and the following circuit cards:

 a. Quantum Processor Card
 b. Analog Card
 c. Station Card
 d. Telephone Interface Card

E. MCRRP / MCRRC / MCRC

1. Relay Module/Card

F. MCRCA

1. Ribbon Cable Assemblies

G. Program Sources

1. 5-Disc CD Player
2. AM/FM Tuner
3. Desktop Paging Microphone

H. Power Amplifiers

1. 60-Watt Amplifier
2. 125-Watt Amplifier
3. 250-Watt Amplifier

I. Station Equipment

1. Administrative Display Phone
2. Administrative VoIP Phone
3. Administrative Wall-Mount Phone
4. Administrative Desktop Phone
5. Secure Call - Call Assurance Call-in Switch
6. Call switch with Privacy
7. Rocker-style Call Switch

J. Optional Equipment
1. Telephone Access Card
2. Telemedia Control Unit
3. Television Control Unit
4. Handheld Infrared Transmitter

K. Administrative Phone
1. Admin phones shall be one of the following Bogen Model(s)
 a. MCDS4 – Administrative Display Phone
 b. QSIP1 – Administrative VoIP Phone (Desk or Wall)

L. Call Staff Stations
1. Staff Stations shall be Bogen Model:
 a. SC1 – Secure Call - Call Assurance Call-in Switch
 b. CA21B – Call Switch with Privacy

M. Intercom System Speakers
1. Classroom Speakers shall be Bogen:
 a. Drop-in Ceiling Speakers: CSD2X2VR/U Drop-In Ceiling Speakers
 b. Cut-in Ceiling Speakers: S86T725PG8U
 c. Wall Speakers: MB8TSQ/SL Metal Box Speakers
2. Hallway Speakers shall be Bogen:
 a. Ceiling Speakers: CSD2X2VR/U Drop-In Ceiling Speakers
 b. Cut-in Ceiling Speakers: S86T725PG8U
 c. Wall Speakers: MB8TSQ/SL Metal Box Speakers
3. Outdoor / Gym / Locker Room Speakers shall be Atlas Sound:
 a. Atlas Sound VTF-157UCN or similar
4. Pendant Speaker:
a. Tannoy OCV 6
b. TOA PE-304
c. TOA PJ-304

N. Master Clock
1. The system shall be Bogen BCMA 3000 Wireless Clock system.
2. The system shall provide for automatic clock correction for Daylight Savings Time, Spring Ahead/Fall Back. Daylight savings shall not require the use of any user input at the time of daylight savings.
3. The master clock system shall support a minimum of 16 schedules and 1380 events as outlined in the Intercom/PA Features section.
4. The system shall support Electronic Message Displays. These displays are integral to the emergency notification needs of the facility.
5. In the event of an Emergency Call from a classroom, the origin of the Emergency Call is displayed on multiple Electronic Message Displays, giving the opportunity for school staff to respond more quickly. In addition, a console or room telephone has the ability to activate a specific message for display on a group of EMs. This allows an emergency procedure such as school “lock down” to be activated from any telephone, quickly and efficiently.

O. Clocks
1. Clocks shall be Bogen BCAL-2 wired power (24v dc), wirelessly corrected clocks in 12” and 16” surface, round.
 a. All clocks shall be corrected via RF.

P. Accessories
1. Bogen 1000 Wireless Repeater.
2. Bogen Wire guard.

Q. Corridor Clocks
1. Double faced 12” (24 vdc) Slave clock where indicated from Bogen

R. Cable and Jacks
1. 50 Micron OM4 Fiber
2. Cat 6 UTP
3. Headend to Call Switches shall be West Penn 25359B Plenum Rated Wire. Red/Black to speakers, Green/White to call switches.
4. PA Cable shall be plenum rated.
5. PA Cable shall be yellow or approved equal.
6. Hallway and exterior speaker runs shall utilize West Penn 25292B Plenum rated cable with no more than 10A per circuit.
7. PA Cable must be presented to the school district for approval prior to installation.

S. UPS
1. System shall be powered via a 2200 VAC UPS

T. SPARE CAPACITY/SYSTEM EXPANSION
1. The contractor shall include extra circuits for staff telephones and loudspeakers built into the system for future expansion. Contractor shall provide and install fifteen percent (15%) extra circuitry (line cards, expanders, etc.) for these devices. The Owner shall add only field instruments (telephones and loudspeakers), cabling, and programming to make these extra capacity circuits fully operational.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verification of Conditions: Examine conditions under which telecommunications cabling and equipment and related components are to be installed in coordination with Installer of materials and components specified in this Section and notify affected Prime Contractors and Design consultant in writing of any conditions detrimental to proper and timely installation. Do not proceed with installation until unsatisfactory conditions have been corrected to ensure a safe and timely installation.

1. When Installer confirms conditions as acceptable to ensure proper and timely installation and to ensure requirements for applicable warranty or guarantee can be satisfied, submit to Design consultant written confirmation from applicable Installer. Failure to submit written confirmation and subsequent installation will be assumed to indicate conditions are acceptable to Installer.

2. Visit Site to identify and become familiar with existing field conditions and specific requirements of each Site.

3. Verify all dimensions in field and confirm condition of existing hardware to be utilized.

4. Confirm space requirements and physical confines of all work areas to ensure that all materials can be installed in indicated spaces.

5. Confirm all device locations and cable pathways and advise Design consultant in writing of any discrepancies or issues in Design described in Contract Documents.

3.2 PREPARATION

A. Protection: Provide adequate protection of equipment and hardware before and after installation.

B. Existing Communications Services: Ensure all telecommunications systems (voice, video and data) remain operational throughout the project.

1. Identify any additional intercom equipment, devices, and wiring at the site not shown on T-Drawings and interfering with installation of specified equipment.

2. Remove all accessible portions of abandoned communications cabling per NEC 800.52. Tag all communications cabling not terminated at both ends but retained for future use.

3.3 INSTALLATION
A. Provide and install all components necessary to install complete intercom/PA/master clock system, including (but is not limited to) cable, connectors, patch panels, call switches, speakers, etc…

B. Secure all horizontal cables within ceiling cavities to building structure.
 1. Loosely bundle all cables and support from structure at unequal intervals from 5 to 6 feet with spring fasteners and cable clip rated for use with high performance cables (similar to Caddy Series “CableCat” or approved alternate mounting methods) including placement in cable tray as indicated on Drawings. All mounting clips shall be seismic type as per BOCA.
 2. Do not violate manufacturer’s recommended loadings. Leave 30% capacity for future use of pathway.
 3. Verify all horizontal cable run lengths prior to installation. Re-distribute horizontal cabling to maintain distance requirements and maintain pathway route accessibility.
 4. Do not support cables from ceiling grid T-Bars, grid wire supports or bridle rings.
 5. Do not allow cables to touch ceiling grid.
 6. Install cables in EMT conduit in all unfinished, exposed areas as shown in Design consultant roof plans and/or T-Drawings, unless alternate pathways are noted.
 7. Do not secure cables with permanent cable ties. Do not tighten cable bundles in such a way as to cause jacket deformation or damage.
 9. Re-terminate and re-test any cables or pairs of cables failing end-to-end testing requirements. Replace any faulty cables/pairs or termination devices. Remove all defective cables completely from pathways.

C. Install all exposed cabling in surface raceway by Wiremold, Hubbell or Panduit where in-wall conduit has not been provided. Follow all manufacturers’ guidelines requirements regarding bending radius and slack. All bends, offsets and fittings shall be appropriately sized to provide 30% capacity after installation.

D. Install all cable in accordance with National, state and local codes and TIA/EIA Standards, and BICSI methods.
 1. Follow manufacturer’s guidelines and requirements for all cable termination.
 2. Follow detail drawings to locate equipment racks and cabinets. Where it is necessary to deviate, to obtain 30-inch clearance between equipment, obtain Design consultant’s written approval before mounting cabinet/rack.
 3. Ladder-type cable tray shall be affixed 6 inches above all data racks and equipment cabinets, and routed to all points of entry into each telecommunications room.
 a. Include transition to proper height for penetration into hallway or other wall penetration as indicated on Drawings.
b. Install sufficient 4-inch conduits from telecom rooms into hallway (minimum of 2) with protective insulating bushings, cable spillway or specially designed cable tray sections, with appropriate firestop materials.

E. Properly terminate all cables at speakers, call switches, administrative consoles and distribution racks. Permanently identify all cables in pullboxes, transition points, and termination points by affixing pre-marked self-adhesive wraps similar to Brady “B-500+ Plastic Cloth Markers.”

F. Permanently identify all system components following TIA/EIA-606A “Administration Standard for Commercial Telecommunications Infrastructure” with identification format:

1. Identification: Provide permanent identification labels for end devices and associated cabling at each end.

3.4 TESTING

A. Intercom and Clock

1. Upon completion of work, all parts of the system installation shall be tested by the Contractor and demonstrated free of any defects. Preliminary testing will be permitted but shall not be accepted in lieu of obtaining final test results. Final test results shall be accomplished by the use of proper test equipment for the system being tested.

2. Re-terminate and re-test any cables or pairs of cables failing end-to-end testing requirements. Replace any faulty cables/pairs or termination devices. Remove all defective cables completely from pathways.

B. As-Builts

1. Accurate as-built drawings shall be provided in electronic and hard copy format.

 a. Drawings shall accurately show and describe all cable routing and equipment location in redline format.

 b. 3 copies of electronic (CAD) drawings shall be distributed on appropriate media: 1 to construction management, 1 to designers and 1 to the school district.

 c. 3 hard copies of CAD drawings shall be plotted on full size sheets and test results of every installed cable have been given to the construction management for appropriate distribution.

3.5 ACCEPTANCE

A. Contractors work shall be considered complete after the following conditions have been met:

1. Cable installation is complete and all cable runs have been tested and documented to be installed according to specifications and drawings.

2. A school district Technology representative has successfully tested the “LIVE” system.

3. All punch list items have been reconciled.

4. All disturbed ceiling panels, firestopping materials, covers, etc. have been properly reinstated.

5. All materials and trash have been removed from the site.

6. A 1-Year Installers warranty has been given to a school district Technology representative.

7. Submit Manufacturers Extended Warranty Application.
END OF SECTION
SECTION 28 07 21

FIRE ALARM AND DETECTION SYSTEMS

PART 1 – GENERAL

1.1 DESCRIPTION OF WORK

A. It is the intent of these drawings, schedules and specifications to outline the scope of work required to furnish and install a complete and operating fire alarm and detection system for this project.

B. The following specifications and the associated drawings are for reference only and are to only indicate the intent for a required fire alarm system and the level of quality. These specifications and drawings shall not be used for the basis of providing a bid for the project. It will be the responsibility of the Electrical Contractor to obtain the services of a licensed fire alarm vendor in the State of Delaware to indicate the required items necessary for a complete and operational system as recognized by the NFPA, State Fire Marshal's Office and the ADA. This responsibility shall also include any coordination with fire protection interface, mechanical equipment shutdown, hood suppression interface, etc. During construction, the shop drawings shall be submitted and approved by the Authority Having Jurisdiction (AHJ). Any changes required by the AHJ during the shop drawing review or during the final walk-thru shall be the responsibility of the Electrical Contractor and shall not be passed on to the Owner, Architect or Engineer in the form of a change order.

C. Types of fire alarm and detection systems required in this section include the following:

- Combination: Manual and Automatic
- Zoned: Wing, Floor, Level, Area, Machine or Device
- Non-Coded: Continuous Signal

D. The system shall include all required hardware, raceways, interconnecting wiring and software to accomplish the intent of this specification and the contract drawings, whether or not specifically itemized herein.

E. All equipment furnished and installed shall be new and the latest state of the art products of a single manufacturer, engaged in the manufacturing and sale of the specified fire detection devices for over ten (10) years.

F. The system as specified shall be furnished, installed, tested and approved by the local Authority Having Jurisdiction, and shall be turned over to the owner in an operational condition. In the interest of job coordination and responsibility the installing contractor shall contract with a single supplier for fire alarm equipment, engineering, programming, inspection and tests, and shall be capable of providing a “UL Listing Certificate” for the complete system.

G. Demolition of existing fire alarm system, once the new system is installed, functioning and certified. Furnish temporary interface between the old existing system and the new fire alarm system, as both will exist side by side, during completion of the project. The Electrical Contractor shall not allow both the new and existing system manual pull stations to exist side by side and, therefore, confuse building personnel.
H. Coordinate with Mechanical Contractor to furnish operations for air handling unit shutdown.

1.2 QUALIFICATIONS OF INSTALLERS

A. Before commencing work, submit data showing that the manufacturer has successfully installed fire alarm systems of the size, scope, type and design in projects of this type.

B. The manufacturer’s vendor and his fire protection engineer shall have a minimum of five (5) years experience in, and be licensed and certified in, the design and installation of the selected fire alarm system being furnished for this project.

C. The installing contractor shall submit copies of all required Licenses and Bonds for his selected equipment vendor, his fire protection engineer and his own as may be required by the City, County and State of Delaware.

D. The selected vendor shall be qualified by “UL” for certifying fire alarm systems. Upon completion of the installation the vendor shall certify the final system meets “UL” ongoing maintenance.

1.3 MANUFACTURER’S REPRESENTATIVE

A. The electrical contractor shall furnish the services of a manufacturer factory trained and certified representative, experienced in the installation, operation, maintenance and service of the type of system being furnished. The representative shall be licensed in the State of Delaware. The representative shall supervise the installation, software documentation, adjustment, preliminary testing, final testing and certification of the system. The representative shall furnish the required instruction to the owner’s personnel in the system’s programming, operation and maintenance.

1.4 CODES, REGULATIONS AND STANDARDS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only. The latest version of each listed publication shall be used as a guide unless the authority having jurisdiction has adopted an earlier version.

B. Factory Mutual (FM)
 1. FM AG Approval Guide

C. National Fire Protection Association (NFPA)
 1. NFPA 70 National Electrical Code (NEC)
 2. NFPA 72 National Fire Alarm Code
 3. NFPA 90A Standard for the Installation of Air Conditioning and Ventilating Systems
 5. NFPA 170 Standard Fire Safety and Hazmat Symbols

D. Underwriters’ Laboratories, Inc. (UL) Appropriate “UL” equipment standards
1. “UL” 864 Control Panels
2. “UL” 268 Smoke Detectors
3. “UL” 268A Smoke Detectors (HVAC)
4. “UL” 1076 Security
5. “UL” 1971 Standard for Visual Signaling Appliances

E. Building Codes

1. BOCA National Building Code and the BOCA Fire Code

F. State Codes and Regulations

1. Delaware State Fire Prevention Commission
2. State of Delaware
3. State Fire Prevention Regulations as amended through January 1995

1.5 COORDINATION

A. As a requirement of this project, the Electrical Contractor and/or his subcontractor or vendor shall furnish coordination for his equipment and layouts with other subcontractors or vendors furnishing equipment and services for Divisions 1 thru 23. Any and all contractors who install their equipment or furnish services prior to coordination, or any contractor who changes their equipment or services after coordination has occurred, without notifying associated subcontractors, shall be held responsible for making all required changes with no additional cost to the Owner, or delay in construction time.

B. The Mechanical, Plumbing, Fire Protection and Electrical Contractors are responsible to coordinate all manufacturer’s recommended sizes for all circuit breakers, starters, disconnects, fuses, wire and conduit for all equipment. Submission of a shop drawing will certify that this has been completed.

C. The drawings and specifications reflect the type, number and size of services required for the equipment the design is based upon, should the supplying subcontractor elect to furnish an alternate piece of equipment requiring different services and/or space conditions, he shall inform the subcontractor furnishing those services and be held responsible to pay for all required changes as part of this contract.

1.6 SUBMITTALS

A. The installing contractor shall include the following information in his shop drawing equipment submittal:

1. Submit manufacturer’s data on fire alarm and detection systems including, but not limited to, roughing-in diagrams and instructions for installation, operation and maintenance, suitable
for inclusion in maintenance manuals. Also include a standard of a typical riser diagram and wiring diagram for equipment to be furnished and installed under this contract.

2. The fire alarm devices and equipment shown on the floor plans is indicated strictly to show intent and coordination with other trades, and shall not be taken to indicate a complete fire alarm and detection layout; meeting all NFPA, State and local codes for this project. It shall be the responsibility of the Electrical Contractor’s sub-contractor/vendor and his fire protection engineer to produce a complete set of drawings indicating all required equipment, devices, wiring diagrams and components needed to meet and fulfill the requirements of the NFPA, State of Delaware’s Office of the Fire Marshal and the Authority Having Jurisdiction.

3. One (1) complete set of the entire submittal shall be forwarded to the local Fire Marshal’s Office for approval. The submission shall also include the following:

 a. Power calculations. Battery capacity calculations. Battery size shall be a minimum of 125% of the calculated requirement.
 b. Supervisory power requirements for all equipment.
 c. Alarm power requirements for all equipment.
 d. Power supply justification showing power requirements for each of the system power supplies. Power supplies shall be sized to furnish the total connected load in a worst-case condition plus 25% spare capacity.
 e. Voltage drop calculations for wiring runs demonstrating worst-case condition.
 f. NAC circuit design shall incorporate a 15% spare capacity for future expansion.

 The plan review by the Fire Marshal’s Office shall be forwarded to the Project’s Engineer, signed or under cover sheet, of approval from the Fire Marshal, as a shop drawing, once received in triplicate.

4. Complete manufacturer’s catalog data including supervisory power usage, alarm power usage, physical dimensions, finish and mounting requirements.

5. Complete drawings covering the following shall be submitted by the Electrical Contractor for the proposed system:

 a. Floor plans in a CAD compatible format showing all equipment and raceways, marked for size, conductor count with type and size, showing the percentage of allowable National Electrical Code fill used.

 b. Furnish a fire alarm system matrix as referenced by NFPA 72 figure A-7.5.2.2 (1999). Matrix shall illustrate alarm input/output events in association with initiation devices. Matrix summary shall include system supervisory and trouble output functions.

 c. Include any and all departures, exceptions, variances or substitutions from these specifications and/or drawings at the time of bid.

6. Should the above-mentioned information not be included in the shop drawing submission, the submission shall be rejected without processing and returned to the contractor.
PART 2 – PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS

A. The model numbers provided are for use with the Notifier NFS – 640 fire alarm system and outline the products to be furnished for this project.

B. Approved equipment manufacturers and installing vendors:

1. Notifier
2. Simplex.
3. Edwards System Technology
4. Gamewell
5. Silent Knight
6. Siemens
7. Bosch-Radionics

C. Approved equipment manufacturers listed must be installed by an authorized distributor certified by the manufacturer for the sales, service, installation, and maintenance of the system.

D. These specifications are designed and written in such a manner as to represent the minimum Fire Alarm and Detection System requirements. Any other components not indicated in these specifications, but deemed necessary by the selected manufacturer, for a complete and operational system, shall be included at no additional cost to the owner.

E. Once the vendor’s design has been through the Fire Marshal’s Office, and received his approval and been submitted as shop drawings, any additional devices required by the Fire Marshal shall be taken from the spare equipment list. Refer to paragraph 5.3 SPARE EQUIPMENT herein.

2.2 GENERAL SYSTEM OPERATION

A. When an alarm occurs on an initiating device, the control panel indicates the alarm condition until manually reset.

B. An alarm may be acknowledged by actuating the "ACKNOWLEDGE" switch. This shall silence the panel buzzer, and change the "SYSTEM ALARM" LED from flashing to steadily lit.

C. This project shall be provided with synchronized audible and visual signaling devices. Activation of the signal silence switch at the fire alarm panel shall cause the audible signal to stop. The visual signal shall continue. If a subsequent initiating device causes an alarm, the audible signal shall resound. The visual signals shall continue until the system is reset. Synchronization shall be provided so that horns and strobes on different circuits will operate in unison.

D. If the microprocessor fails, the system shall execute a default signaling program. This program will enable the panel to sound the audible signals and summon the Fire Department. Inability of the system to sound signals or summon the fire department during microprocessor failure shall not be acceptable.

E. A single ground or open on the system signaling line circuit shall not cause system malfunction, loss of operating power or the ability to report an alarm from all initiating devices. A wire to wire
short on the signaling line circuit shall cause fault isolation modules on either side to open allowing operation of all analog/addressable devices not located between the activated fault isolation modules.

2.3 SPECIFIC OPERATIONS

A. Operation of a manual station or automatic activation of any smoke detector, heat detector, or kitchen hood suppression system, shall cause the following:

1. Indicate on the Fire Alarm Control Panel and Annunciator Panels the specific device in alarm via the English-language alphanumeric display. The "ALARM" LED shall also flash and the local audible device shall pulse.

2. All strobes to flash in unison. All horns to sound a synchronized “Code 3” output. All speakers within the gymnasium, cafeteria, and auditorium to broadcast a “Code 3” pre-alert tone followed by a prerecorded voice message of the owner’s choice.

3. Shutdown all air handling units in the vicinity of the alarm. Provide an addressable relay module at each air handling unit for connection to the low voltage shutdown control circuit. If a 120VAC control circuit is to be interrupted by the fire alarm system, provide an addressable control relay and isolation relay rated for the control circuit load.

4. Printing and history storage equipment shall log the information associated with each alarm condition, along with the time and date of each occurrence.

5. Release all electrically locked or held open doors.

6. Transmit the fire alarm condition to a U.L. listed central monitoring station, to dispatch the local Fire Department.

B. Supervisory/Trouble Operations

1. Alarm activation of a duct mounted smoke detector or sprinkler valve tamper switch, shall cause the exact device in alarm to be displayed on the fire alarm panel and remote annunciator alphanumeric display, and initiate a supervisory condition within the fire alarm panel.

2. Transmit a supervisory condition to the central monitoring facility.

3. Duct mounted smoke detectors, when in alarm, shall cause their associated air handling unit to shut down.

4. Activation of any trouble condition within the fire alarm system shall cause the trouble visual and audible indicators to operate within the fire alarm panel, the reason for the trouble condition to be shown in plain English on the alphanumeric display, and a trouble condition to be transmitted to the central monitoring facility.

C. The fire alarm system is to be connected to a U.L. listed central monitoring station, with the following requirements:
1. The entire installation shall comply with the requirements of NFPA 72, 2002 Edition (Remote Station Protective Signaling System) utilizing a Digital Alarm Communicator Transmitter (DACT) and a Digital Alarm Communicator Receiver (DACR).

2. The fire alarm system shall transmit alarm, trouble, and supervisory conditions, a daily test signal and the other signals required by NFPA 72.

3. The contractor shall be responsible for the entire installation (wiring, mounting of system components, connections at panel and the Digital Alarm Communicator Transmitter, programming, and functional testing).

4. The contractor shall coordinate with the owner to provide off-site monitoring of the fire alarm system. Off-site monitoring shall be provided by the Owner’s U.L. listed central station facility, and paid for by the Owner.

5. The owner shall be responsible for providing two (2) standard telephone lines at the rate demarcation point for connection to the fire alarm system dialer, and pay for all charges from the telephone company.

6. Digital alarm communicator transmitter shall be an integral component of the fire alarm control panel, and not a separate unit. Provide Notifier model UDACT Universal Digital Alarm Communicator Transmitter.

D. The fire alarm control panel shall be provided with a firefighter’s one-way voice paging system.

1. The one-way voice paging system shall consist of a voice command center audio message generator with microphone and all call pushbutton, pre-recorded voice message chip, speaker circuits with selector switches/status indicators, and audio amplifiers.

Provide a minimum of (1) speaker circuit per area required to have voice evacuation signaling. Speaker circuits to be wired using a Style Y (Class B) circuit. Speaker circuits shall be provided with a maximum usage of 80% of its rated maximum output, to allow for future additions. Provide calculations and supporting data in submittal booklet, for verification by review authorities. Provide 25 watt audio amplifiers shall be provided so that no amplifier will exceed 80% of its maximum capacity, to allow for future additions. Provide calculations and supporting data in submittal booklet, for verification by review authorities.

E. The fire alarm control panel shall be provided with strobe indicating circuits. Strobe circuits to be wired using a Style Y (Class B) circuit. Auxiliary power supplies and circuits shall be provided so that neither power supply or circuit will exceed 80% of its rated output, based on the strobe light intensities required by NFPA 72. Provide calculations and supporting data in submittal booklet, for verification by review authorities.

F. The fire alarm control panel shall be provided with a minimum of two (2) signaling line circuits, so that no one circuit exceeds 80% of its rated maximum. Provide calculations and supporting data in submittal booklet, for verification by review authorities.

Signaling line circuits shall be wired using a Style 7 (Class A) circuit, incorporating fault isolation modules. Provide the required quantity of fault isolation modules so that no more than 20 analog/addressable devices are located between modules.
G. The fire alarm control panel components shall be housed in multiple cabinets of the same dimensions. All components shall be integrally compatible with the main central processor, to provide a neat, and professional appearance. The use of separate central processors, strobe power supplies, or audio evacuation panels at the main fire alarm control panel location is forbidden. Remote audio/visual power supplies, as shown on the drawings, is acceptable. Care shall be taken during the system design phase so that both audible and visual signals located in the same viewing area will be synchronized.

PART 3 – SYSTEM COMPONENTS

A. The fire alarm control panel shall be Notifier model NFS-640 and shall contain a microprocessor based Central Processing Unit (CPU). The CPU shall communicate with and control the following types of equipment used to make up the system: intelligent detectors, addressable modules, printer, annunciators, and other system-controlled devices.

1. The control panel shall provide for the connection of 396 intelligent/addressable devices, without adding any additional components. If more than 396 device count is required, provide additional CPU-640 central processor units as necessary to meet job requirements and spare capacities.

2. The central processor unit, in conjunction with the loop interface board, shall utilize the patented “Flash Scan” technology. This technology allows the fire alarm control panel to poll devices on the signaling line circuit in groups of 10, and “looks” for any state changes from each device. This provides faster response by the fire alarm panel to an “alarmed” device, instead of the traditional communications format where each device reports 100% of its characteristics to the fire alarm panel each time it is polled. Activation of system outputs shall be performed within 2 seconds of an initiating device being placed in an alarm condition, on a fully loaded system. SYSTEMS that utilize the traditional device polling and those that cannot provide the system output response, as stated, are not acceptable.

3. The central processor unit shall provide the following features:

 a. Individual microprocessor design with degrade mode operations
 b. Cooperating multi-detector sensing algorithms that allow the fire alarm panel to interpret signals from adjacent detectors to make an alarm decision.
 c. Fully field programmable
 d. RS-232 output, standard
 e. Alarm verification – provide 30 second verification of alarm condition for all analog sensors.
 f. Drift compensation
 g. Dirty detector and excessively dirty detector indications
 h. Analog sensor sensitivity testing from the fire alarm panel, meeting requirements of NFPA72.
 i. Dual walk test modes
 j. Individual point or zone read, and point or zone enable/disable
 k. Nine(9)sensitivity settings for analog smoke detectors
4. Provide integral audio message generator with microphone and all-call button, pre-recorded voice message chip, speaker circuits with selector switches/status indicators, and audio amplifiers.

5. Provide integral strobe circuits with selector switches/status indicators, auxiliary 24VDC power supplies, and signal synchronization modules.

6. Provide integral digital alarm communicator transmitter.

7. Provide battery backup.

B. Display Interface Assembly

1. The display interface assembly shall provide all the controls and indicators used by the system operator and may also be used to program all system operational parameters.

2. The display interface assembly shall include status information and custom alphanumeric labels for all intelligent detectors, addressable modules and software zones.

3. The display shall provide a 640 character back-lit alphanumeric liquid crystal display (LCD). It shall also provide 10 light emitting diodes (LEDs), that will indicate the status of the following system parameters: AC POWER, FIRE ALARM, PRE-ALARM, SYSTEM TROUBLE, SUPERVISORY, SIGNAL SILENCED, CPU FAILURE, POINT DISABLED, SECURITY ALERT, AND OTHER EVENT.

4. The display shall provide a QWERTY keyboard with control capability to command all system functions, entry of any alphabetic or numeric information, and field programming. Ten different password levels shall be available to allow customized levels of operator access to programming, point status and alter status menus. This shall be used by the owner to assign different levels of control and bypass capabilities to different employees based on their individual level of experience.

5. An intuitive user guidance program shall be standard, allowing personnel without any prior experience the ability to follow easy step-by-step instructions to access all information related to an alarm, supervisory, or trouble condition.

6. Five (5) dedicated pushbuttons shall be provided allowing simple “scroll by event” operations for particular active conditions in the system. One (1) button shall be provided to scroll only “Fire Alarm” conditions, one for “Security Alarms”, one for “Supervisory Alarms”, one for “Trouble Conditions”, and one for “Other Events”.

7. An interactive summary event counter shall be provided on the alphanumeric display to show the number of alarms, troubles, or supervisory conditions in the system.

8. The display shall include the following operator functions: SIGNAL SILENCE, RESET, DRILL AND ACKNOWLEDGE. In a network system, these commands shall be completed for the entire network.

9. Fire alarm systems that cannot provide the high level of display and control functions, as outlined, are not acceptable.
10. For fire alarm systems that cannot provide the annunciation and control, as outlined, they must install a “Network Reporting Terminal” (not a CRT and keyboard) at the fire alarm panel location.

C. Secondary Power Source

A secondary power source consisting of lead acid batteries shall be provided. Batteries shall be of sufficient capacity to provide power for the entire system upon loss of normal 120VAC power for a period of twenty-four (24) hours, with five (5) minutes of alarm signaling at the end of this twenty-four (24) hour period. However, the batteries provided shall be able to meet the high alarm current required. Remote audio/visual power supplies shall be provided with (24) hours of supervisory operation and (5) minutes of alarm operation.

PART 4 – PERIPHERAL DEVICES

4.1 REMOTE ALPHANUMERIC ANNUNCIATOR

A. The unit to be provided shall be manufactured by Notifier. It shall be housed in a recessed mount backbox with smoked lexan window and key lock.

B. The remote alphanumeric annunciator shall provide an 80-character alphanumeric display, along with system control buttons.

C. Provide a color, CAD-generated map of the building plan with suitable frame at the fire alarm control panel and remote annunciator panel(s) locations.

4.2 ADDRESSABLE MONITOR MODULE - STYLE B

A. The addressable monitor module shall be a normally open (N.O.) contact type detection device which communicates with the main panel through the signaling line circuit. The unit shall contain a sub-loop that is wired Style B (Class B) and supplies an address for UL listed normally open contact devices on the sub-loop that close on alarm. When any open contact closes, the unit module address is transmitted to the main panel system and indicates on the 80 character alphanumeric display.

B. The address of the module shall be set by (2) rotary switches on the base of the unit. These switches utilize numbers 0 to 9. The use of jumper pins or any other means, except as stated above, shall not be acceptable.

C. The unit shall be mounted in the same enclosure as any normally open device that it monitors - if space permits - or it can be mounted in a standard 4-inch square or octagonal electrical box.

D. Use for connection to manual pull stations, remote power supplies, etc.

4.3 ADDRESSABLE MONITOR MODULE - STYLE B/D

A. The addressable monitor module shall be a normally open (N.O.) contact type detection device which communicates with the main panel through the Addressable Monitor Module. The unit shall contain a sub-loop that is wired either Style B (Class B) or Style D (Class A) and supplies
an address for UL listed normally open devices on the sub-loop that close on alarm. When any open contact closes, the module address is transmitted to the main panel and indicates on the 80 character alphanumeric display.

B. The address of the module shall be set by (2) rotary switches on the base of the unit. These switches utilize numbers 0 to 9. The use of the jumper pins or any other means, except as stated above, shall not be acceptable.

C. The unit shall be mounted in a standard 4-inch square X 2 1/8 inch deep square electrical box.

D. Use for connection to sprinkler waterflow/valve tamper switches, kitchen hood suppression panels, fire pumps, emergency generators, etc.

4.4 ADDRESSABLE OUTPUT MODULE

A. The Addressable Control Module shall energize upon alarm from any analog detector or monitor module or any combination of detectors and modules communicating with the NFS-640 control, or upon trouble from any analog detector or monitor module or any combination of detectors and modules communicating with the main panel control. A break in the wiring or removal of the module results in a fault message displaying on the panel, and the occurrence of a System Trouble. The module provides (2) sets of dry, form "C" relay contacts rated 2.0 Amp @ 30VDC (resistive). The module is used to supervise and control a Style Z or Style Y indicating appliance circuit when 24VDC is supplied to it from the Power Supply or Auxiliary Power Supply in the main panel.

B. The address of the modules shall be set by (2) rotary switches on the base of the unit. These switches utilize number 0 to 9. The use of jumper pins or any other means, except as stated above, shall not be acceptable.

C. The modules shall be mounted in a standard 4-inch square X 2 1/8 inch deep electrical box, with a 1 1/2 inch extension ring.

4.5 FAULT ISOLATOR MODULE

A. The module shall enable part of the signaling line circuit to continue operating when a short circuit occurs on it. A LED indicator shall blink in the normal condition and light during a short circuit condition. The module shall automatically restore the entire communications loop to the normal condition when the short circuit is removed.

4.6 MANUAL STATIONS

A. Manual stations shall be made of red phenolic resin plastic with "Fire" lettering, for semi-flush or surface mounting, and shall be of the double action design.

B. The station shall require two (2) distinct operations to actuate.

C. Once activated, stations shall not be resettable without the use of a key and physically opening the station to reset.

D. The key shall be the same as that used to open the control panel.
E. The station shall be a Notifier.

F. Provide monitor module for connection to the fire alarm system signaling line circuit.

G. Provide protective guard with 9VDC integral sounder, Safety Technology International model STI 1100 (flush) or STI 1200 (surface), for each manual pull station.

4.7 AUTOMATIC INITIATING DEVICES

A. Analog Photoelectric Sensor

1. These detectors shall be of the photoelectric type, using a light scattering diode and photo sensor, and of the low-profile design. Maximum height of detector shall be 2 inches.

2. Detectors shall be designed for two-wire non-polarized installation and multiple listed with control units having specific voltage current characteristics which are compatible with the detector circuitry.

3. The detector shall have 360° angle orientation (circumference) smoke entry characteristics, permitting maximum response to both visible and invisible products of combustion from any direction. The detector shall be capable of operation at altitudes up to 7,500 feet without adjustments.

4. The sensors shall continually monitor to measure any change in their sensitivity due to the environment (dirt, smoke, temperature, humidity, etc.). They shall give an advance indication to the main control panel of the need for maintenance and can be specific as to where the maintenance is needed. If local regulations permit, then selected maintenance may be performed as opposed to having to check the sensitivity of all sensors to assure overall performance when only a few may be dirty.

5. The sensor shall be a plug-in construction and is directly interchangeable in the same base with the analog heat sensor. A wide variety of bases, with built-in horn, etc. are available.

6. Remote LED annunciator capability shall be available as an optional accessory.

7. The sensor shall feature fully coated circuit boards, special insect and dirt protection and superior RF/transient protection.

8. The unit may be tested from the control panel or functional testing can be performed by applying a test magnet according to the test procedures.

9. The address of the detector shall be set by (2) rotary switches on the base of the detector. These switches utilize numbers 0 to 9. The use of jumper pins or any other means, except as stated above, shall not be acceptable.

10. The Analog Photoelectric Sensor shall be mounted to a standard 4-inch octagonal electrical box.
B. Duct Mounted Smoke Detector

1. The contractor shall furnish and install where shown on plans Notifier.

2. The duct housing contains an integral analog photoelectric type smoke detector. The exhaust sampling tube shall be molded into the base of the duct housing.

3. The address of the detector shall be set by (2) rotary switches on the base of the detector. These switches utilize numbers 0 to 9. The use of jumper pins or any other means, except as stated above, shall not be acceptable.

4. The detector shall be listed by Underwriters Laboratories, Inc. and approved by Factory Mutual under the current standards for photoelectric type duct smoke detectors - to allow remote functional testing without generating smoke.

5. Provide a remote test station for all duct mounted smoke detectors. Locate directly below unit in the suspended acoustic ceiling, or on wall at accessible location.

C. Analog Thermal Sensor

1. The series analog thermal sensors shall contain a state of the art electronic dual thermistor sensing circuit for fast response. These sensors provide open area protection with 50 foot spacing capability for rate of rise type and 25 foot spacing for fixed temperature type.

2. Two (2) LED's on each sensor light upon alarm and provide a local 360° visibility of alarm indication. The LED's flash each time the unit is interrogated.

3. The sensor shall be of plug-in construction and is directly interchangeable in the same base with the intelligent photoelectric smoke sensor. The bases shall include a tamper-proof feature which, when activated, prevents removal of the sensor without the use of a tool.

4. The address of the detector shall be set by (2) rotary switches on the base of the detector. These switches utilize numbers 0 to 9. The use of jumper pins or any other means, except as stated above, shall not be acceptable.

5. The Analog Thermal Sensor shall be mounted to a standard 4-inch octagonal electrical box.

4.8 FIRE ALARM SIGNALING APPLIANCES

A. Audio/Visual Signaling Appliance (Horn/Strobe.)

1. The unit to be provided shall be manufactured by Notifier, with mounting as required, for ceiling mounting. Device color shall be red for wall-mounted applications, and white for ceiling mounted applications.

2. It shall consist of an electronic horn with a UL1971/ADA Compliant Strobe. Strobe intensity to be provided as required by NFPA 72. Light intensities shown on drawings shall be used only as a basis for design. Field survey and adjust, if necessary, at no additional costs.
3. There shall be two dBA settings for the horn (low, high) that provide an alarm sound pressure level of 90, 98 dBA, respectively.

4. The horn/strobe shall interface with the Notifier Dual Synchronization Module to provide synchronized operation of the horn and strobe using (1) two conductor circuit.

5. The unit shall be semi-flush mounted, if possible.

6. If the unit is to be surface mounted, install the matching backbox skirt provided by the equipment manufacturer. The surface backbox shall be a finished product. Painted 4” square electrical boxes shall not be permitted.

7. Provide protective guard manufactured by Safety Technology International, where shown on plans.

B. Audio Signaling Appliance (Speaker-2 watt maximum)

1. The unit to be provided shall be manufactured by Notifier.

2. Speaker shall be comprised of a 4” voice cone with magnet, 25 watt audio transformer with ¼ / ½ / 1 / 2 watt taps, and a flush mount grille. Provide U.L. listed backbox skirt for a finished and professional appearance, where surface mounted. Provide 4” speaker support bracket for drop ceiling installations.

3. Unit to be white in color.

C. High Output Audio Signaling Appliance (Speaker - 15 watt maximum)

1. The unit to be provided shall be manufactured by Atlas Soundolier.

2. Speaker shall be of the re-entrant compression driver type, 4” square voice cone with magnet, 25 watt audio transformer with multi-tap configuration up to 15 watts, and a semi-flush housing. Provide U.L. listed backbox skirt for a finished and professional appearance, where surface mounted.

3. Unit to be red in color.

D. Audio Signaling Appliance (Trumpet Speaker)

1. The unit to be provided shall be manufactured by Wheelock.

2. Speaker shall consist of a high compression driver mounted to a cone shaped projector. Unit provided with an integral 25 watt audio transformer with multi-tap configuration up to 15 watts. Provided with an adjustable mounting base for exact directional positioning.

3. Mounts to a Wheelock surface mount backbox with adaptor plate. Unit to be red in color.

E. Visual Signaling Appliance
1. The unit to be provided shall be Notifier with mounting as required, for ceiling mounting. Device color shall be red for wall mounted applications, and white for ceiling mounted applications.

2. Unit shall produce a 15, 30, 75, 95, or 110 candela light output according to the UL1971 Polar Light Distribution measurement. It shall also produce the same light output near center axis. Strobe intensity to be provided as required by NFPA 72. Light intensities shown on drawings shall be used only as a basis for design. Field survey and adjust, if necessary, at no additional costs.

3. The unit shall be semi-flush mounted, if possible.

4. If the unit is to be surface mounted, install the matching backbox provided by the equipment manufacturer. The surface backbox shall be a finished product. Painted 4" square electrical boxes shall not be permitted.

5. The strobe shall interface with the Notifier Dual Synchronization module to provide synchronized operation.

F. Audio/Visual Signaling Appliance (Speaker/Strobe)

1. The unit to be provided shall be manufactured by Notifier with mounting as required, for ceiling mounting. Device color shall be red for wall mounted applications, and white for ceiling mounted applications.

2. It shall consist of a 4” voice evacuation speaker with multi-tap transformer with a UL1971/ADA Compliant Strobe. Strobe intensity to be provided as required by NFPA 72. Light intensities shown on drawings shall be used only as a basis for design. Field survey and adjust, if necessary, at no additional costs.

3. The speaker/strobe shall interface with the Notifier Dual Synchronization Module to provide synchronized operation.

4. The unit shall be semi-flush mounted, if possible.

5. If the unit is to be surface mounted, install the matching backbox skirt provided by the equipment manufacturer. The surface backbox shall be a finished product. Painted 4” square electrical boxes shall not be permitted.

6. Provide 4” speaker support bracket for drop ceiling installations.

G. Remote Audio/Visual Signal Power Supply

1. The unit to be provided shall be Notifier, 6A/24VDC, Addressable Charger/Power Supply with built-in signal synchronization modules.

2. The ACPS shall provide (5) fully addressable control inputs, one for each output circuit that are activated through the signaling line circuit in the fire alarm panel, one for synchronized horn input, and one monitor point for power supply trouble.
3. The use of separate addressable control modules, monitor modules, and synchronization modules shall be forbidden. Any fire alarm system that must be configured this way for proper operation is not acceptable.

4. It shall be possible to interconnect ACPS power supplies so that signal synchronization between power supplies can be provided.

5. The ACPS shall mount in (1) Notifier cabinet with (2) 7AH to 25AH batteries. Secondary power supply shall provide for (24) hours of standby operation followed by (5) minutes of alarm operation.

6. All communications inputs to the ACPS from the fire alarm control panel, and all outputs from the ACPS to the fire alarm control panel, shall be accomplished over the fire alarm system signaling line circuit(s).

SECTION 5 – WIRING

5.1 INSTALLER'S RESPONSIBILITIES

A. The installer shall coordinate the installation of the fire alarm equipment with the manufacturer’s authorized representative.

B. All conductors and wiring shall be installed according to the manufacturer's recommendations.

C. It shall be the Installer's responsibility to coordinate with the supplier, regarding the correct wiring procedures before installing any conduits or conductors.

5.2 INSTALLATION OF SYSTEM COMPONENTS

A. System components shall be installed in accordance with the latest revisions of the appropriate NFPA pamphlets, the requirements contained herein, National Electrical Code, local and state regulations, the requirements of the fire department, and other applicable authorities having jurisdiction (AHJ).

B. All wiring shall be type FPLP for plenum installations. All fire alarm cable shall be installed above the acoustic ceiling or contained in building walls. Where a device is mounted on a masonry wall, install conduit stub within wall from device backbox to top of wall. All wiring shall be concealed and all backboxes recessed, where possible. Where wiring cannot be concealed, install cables in Wiremold 500 (Public Areas) EMT (Mechanical spaces) conduit. Where device backbox cannot be recessed in walls, provide the manufacturer’s matching surface backbox.

C. Where wiring is run above acoustic ceiling, crawl spaces and pipe tunnels install cables in bridle rings connected to building steel supports. Install bridle ring every 6 feet. Cables shall not be ty-rapped to any pipes.

D. For fire alarm use, wire and cable shall be U.L. listed and be plenum rated, type FPLP.
E. Raceway containing conductors identified as “Fire Protective Alarm System” conductors shall not contain any other conductors and no AC current carrying conductors shall be allowed in the same raceway with the DC fire alarm detection and signaling conductors.

F. It shall be the responsibility of the contractor to coordinate the exact location of all installed equipment with all applicable trades.

G. Smoke and/or heat detectors shall be located 3 or more feet from any supply or return air register. Coordinate with mechanical contractor prior to final installation.

5.3 SPARE EQUIPMENT

A. The Electrical Contractor shall furnish up to twenty (20) in any combination of fire alarm devices selected by Owner, including but not limited to, smoke, heat, duct, monitor module, control monitor module or audio/visual devices for Owner spare.

SECTION 6 – ADDITIONAL SERVICES, GUARANTEE AND FINAL TEST

6.1 GENERAL

A. The contractor shall guarantee all equipment and wiring to be free from inherent mechanical and electrical defects for one (1) year (365 days) from the date of final acceptance.

B. In addition to the equipment shown on the project drawings, include twenty (20) additional peripheral devices of any type (i.e.: smoke detector, duct smoke detector, heat detector, pull station, monitor module, relay module, monor module, horn/strobe, speaker/strobe, strobe, etc.). These devices may be installed at the discretion of the local Fire Marshal, the project engineer, or the licensed fire alarm company, upon review and/or testing performed by all.

If necessary, these devices, along with the required panel additions, wiring, labor, etc., shall be furnished and installed at no additional cost to the owner. If, at the end of the project, they are not required to be installed, they shall be given to the owner for their use.

C. Concurrent with the warranty period, the licensed fire alarm contractor shall provide (2) semi-annual inspections of the completed fire alarm system in accordance with the State of Delaware Fire Prevention Regulations. All costs shall be included in the contract amount. No additional fees will be paid by the owner for this service.

6.2 FINAL TEST

Before the installation shall be considered complete and acceptable by the awarding authority, a test on the system shall be performed as follows:

A. The contractor's job foreman, in the presence of a representative of the owner, and the fire marshal's office shall operate every building fire alarm device to ensure proper operation and correct annunciation at each remote annunciator and control panel.

B. One half (1/2) of all tests shall be performed on battery standby power.

C. Where application of heat would destroy any detector, it may be manually activated.
D. When the testing has been completed to the satisfaction of both the contractor's job foremen and the representatives of the manufacturer and owner, a State of Delaware "Fire Alarm Signaling System Certificate of Installation" shall be completed and signed by the necessary personnel.

E. The contractor shall leave the fire alarm system in proper working order, and without additional expense to the owner, shall replace any defective materials or equipment provided by him under this contract within one (1) year (365 days) from the date of final acceptance by the awarding authority. Warranty work shall be completed during normal business hours, a maximum of 24 hours after notification of the service request.

F. Provide service response within (1) hour during a "false alarm" condition.

6.3 AS BUILT DRAWINGS, TESTING, and MAINTENANCE INSTRUCTIONS

A. As Built Drawings

A complete set of reproducible "as-built" drawings showing installed wiring, specific interconnections between all equipment, and internal wiring of the equipment shall be delivered to the owner upon completion of system.

B. Operating and Instruction Manuals

Complete sets of operating and instruction manual, each placed in a 3-ring binder, shall be delivered to the owner upon completion. Each manual shall contain a copy of the as-built fire alarm system drawings. The instruction period for the owner or its representatives shall be 4 hours, performed during normal business hours. Refer to Operations and Maintenance Manuals and Training in Section 26 00 00.

C. Testing Frequency Instructions

1. Complete, accurate, step-by-step testing instructions giving recommended and required testing frequency of all equipment, methods for testing each individual piece of equipment, and a complete trouble-shooting manual explaining how to test the primary internal parts of each piece of equipment shall be delivered to the owner upon completion of the system.

2. Maintenance instructions shall be complete, easy to read, understandable, and shall provide the following information:

 Instruction on replacing any components of the system, including internal parts.
 Instructions on periodic cleaning and adjustment of equipment with a schedule of these functions.

 A complete list of all equipment and components with information as to the address and phone number of both the manufacturer and local supplier of each item.

3. User operating instructions shall be provided, and prominently displayed on the cabinet front or on a separate sheet located next to the fire alarm control unit, in accordance with UL Standard #864.

END OF SECTION 28 07 21
SECTION 28 07 24

AREA RESCUE SYSTEM

PART 1 – GENERAL

1.1 GENERAL

A. The Contractor shall furnish and install all equipment including, but not limited to, outlet boxes, conduit (with pull strings), wiring, telephones, annunciators and speakers as shown on the plans, and all other equipment necessary to provide a complete and operating Area of Rescue system. All equipment shall comply with ADA Code 4.3.11.4.

B. Equipment supplied by Simplex Time Recorder Co. shall be considered as meeting these specifications and as the base bid. Any alternate system must be approved by the specifying authority. Bidders supplying an alternate system must make the authority aware of their intentions and provide adequate information, including catalog cuts, working and shop drawings, and a demonstration of the proposed system at least 10 days prior to bid date. Any prior approval of an alternate system does not exempt the supplier from meeting the intent of these specifications. If the alternate system fails to provide all the requirements specified in this document, the Contractor shall be responsible for all costs associated with the removal and replacement of said equipment.

1.2 ACCEPTABLE MANUFACTURERS

Simplex
Cornell
Housing Devices

1.3 SUBMITTALS

A. Data sheets shall be provided on all equipment being provided.

B. Internal control cabinet drawings showing internal block diagram connections shall be provided.

C. Wiring diagrams showing typical field wiring connections shall be provided.

D. FCC registration number and certificate shall be provided.

1.4 QUALIFICATIONS

A. The Contractor shall be from an established and locally run business which has been operating in the area for a minimum of five years.

B. The Contractor shall show evidence that he maintains a service organization and parts inventory to adequately support the supplied equipment.
1.5 MAINTENANCE SERVICE

A. The Contractor shall provide a one-year guarantee of the installed system against defects in material and workmanship. All labor and materials shall be provided at no expense to the Owner. Guarantee period shall begin on the date of acceptance by the Owner or engineer.

B. A maintenance contract offering continued factory authorized service of this system shall be made available if requested by the Owner.

1.6 QUALITY ASSURANCE

A. The Contractor shall currently maintain a locally run business for a minimum of five years and shall be an authorized distributor of the supplied equipment with full warranty privileges.

B. The Contractor shall maintain at his facility the necessary spare parts in the proper proportion as recommended by the equipment manufacturer to maintain and service the equipment being supplied. This facility shall be available for inspection by the engineer.

C. The supplying Contractor shall have attended the manufacturer’s installation and service school.

D. The Contractor shall furnish manufacturer's manuals of the completed system including individual specification sheets, schematics, inter-panel and intra-panel wiring diagrams. In addition, all information necessary for the proper operation of the system must be included. Any bidder using other than the specified equipment must provide this information prior to bidding.

E. As built drawings that include any changes to wiring, wiring designations, junction box labeling and any other pertinent information shall be supplied upon completion of project.

1.7 IN SERVICE TRAINING

A. The Contractor shall furnish training with the system. These sessions shall be broken into segments that will facilitate the training of individuals in operating Master Telephone equipment as well as call station panels. Operating manuals and users guides shall be provided at the time of the training.

1.8 WIRING

A. System wiring shall be CAT III, 22 AWG, UL Listed Cable. Wiring shall meet all established state and local electrical codes. All wiring shall test free from opens, grounds and shorts.

1.9 BASIC SYSTEM OPERATION

A. When the system is in normal operating mode, the Master Telephone Display shall indicate time and date. When operated, the system shall provide two way visual and audible communication between a Master location and Area of Rescue stations.

B. When an Emergency call is placed by an Area of Rescue station the Master Telephone shall ring and the display shall indicate the number of the calling station, along with the priority of the call. All Area of Rescue stations shall be displayed at an Emergency level. Provide a wall display is
provided it shall display the call in red lettering. Communications is established by simply answering the Master Telephone. When communications is completed and the Master Telephone has been hung up, the display will continue to show the station number until the station has been reset (See Paragraph 1.9.C)

C. When an Emergency call is placed by an Area of Rescue station several indications must be provided at the station to assure the caller that the call is being processed. After pressing the call button, the caller will be provided with both a visual and audible confirmation. A call placed LED shall begin to flash rapidly and a short tone shall be generated over the speaker. When the call has been answered by the Master Telephone the LED shall flash at a slower rate and a connection tone shall be heard through the speaker. To eliminate confusion this tone shall be different than the confirmation tone. Full two-way voice communication shall be provided without the need of any push to talk switches. The caller simply talks in the direction of the intercom speaker. Upon completion of the call, the LED shall remain on steady providing visual indication that help is coming. The LED will not be turned off until building personnel have reported to the Area of Rescue. A reset is necessary at the station to turn the LED off and remove the call from the Master Telephone’s display queue. This is accomplished by a momentary rocker type pushbutton on the station.

PART 2 – PRODUCTS

2.1 The installation shall include a comprehensive programmable microprocessor based Area of Rescue communications system consisting of a central switching exchange capable of handling up to 48 Area of Rescue stations. The system shall be equipped for 6 stations.

2.2 All programmable functions shall be located in battery backed ram to prevent loss in a power failure condition.

2.3 System shall have provisions for battery back-up and charger specifically designed for use with system power supplies. Systems that use a uninterruptable AC power supply (UPS) system shall not be accepted.

2.4 The central switch shall utilize standard dual tone multi-frequency type decoding (DTMF) for interconnection with standard telephone systems.

2.5 The central switch shall provide an RS-232 port for connection of a call logging printer.

2.6 Provide an individual one (1) watt amplifier circuit for each Area of Rescue station to allow absolute flexibility and redundancy for emergency paging. Equipment requiring a single power amp for these functions shall size such an amplifier as to deliver a minimum of 1.5 watts per station to compensate for inherent transformer losses.

2.7 The system shall be provided with four (4) multifunction ports for Master Telephones and or connection to a loop start trunk port of a KEY or PBX telephone system. All communication between Master Telephones shall be non blocking.

2.8 Incoming calls from any Area of Rescue station location may be directed to any of four (4) multifunction ports. It may also be possible to redirect these calls to a secondary Master Telephone or KSU/PBX system if there is no answer at the primary station.
2.9 The system shall be provided with voice synthesized call-in, providing the four multifunction ports with audible annunciation of the calling stations number. This enables the buildings telephone system to receive station identification numbers directly through the handset.

2.10 Nine (9) built in software definable signaling tones.

2.11 Two (2), three (3) or four (4) digit programmable Area of Rescue station numbers for individual station identification.

2.12 Eight (8) internal relays which can be activated manually from any Master Telephone or automatically by the CPU when Emergency conditions occur.

2.13 Caller I.D. information shall be provided at each of the four (4) ports for interfacing with a building PBX.

2.14 A call confirmation tone to the Area of Rescue station will be generated from the CPU to the station when a call is placed. This tone verifies to the caller that the call has been received by the CPU.

2.15 Dual chime pre-announce tone shall be generated to the station when the Master Telephone has answered and communications has been established.

2.16 Unanswered calls from ADA stations shall, after a user determined time, have their station I.D. number automatically announced over any one or group of system speakers or through the buildings paging system. This automatic page notifies key building personnel of an unanswered emergency condition.

2.17 The Master Telephone Station shall include the following:

A. A standard DTMF dialing instrument for voice communications with Area of Rescue stations. The instrument shall have an adjustable ringer volume for use in different environments.

B. A backlit operators display shall be provided at each designated Master Telephone. This 4 x 20 LCD display shall continually show time, day and date. In addition, it shall show up to three (3) incoming calls (the fourth line indicates how many additional calls are in the queue).

C. The Master Telephone and display shall be housed in a #18 gauge surface mounted steel enclosure with a locking front door. The enclosure shall be 9”W x 14”H x 4”D.

2.18 The Area of Rescue station assembly shall be constructed of #22 gauge steel with tamper proof mounting hardware. The station faceplate shall be 7-3/4”W x 6-3/8”H and be flush mounted. The faceplate shall have the following features:

A. A large format momentary pushbutton for placing call for help shall be provided. Push-button shall be domed in shape and be bright red in color. It shall be a minimum of 1-1/2 inch in diameter and be activated with a minimum of effort for ease of use. No other hardware shall protrude from the station as high as the pushbutton.
B. A 3” speaker shall be provided with a minimum frequency response of 250Hz-8kHz. It shall have a minimum voice coil diameter of 3/4”, a 2.5 ounce magnet and be capable of handling 12 watts of program power.

C. A high brightness LED shall be provided. It shall pulse at a fast flash rate when a call has been placed, pulse at a slow rate when the station is connected to the Master Telephone and will stay on steady after the Master Telephone has hung up indicating “help is coming”.

D. A momentary rocker type pushbutton reset switch will also be provided. The reset switch will provide the means to reset the “help is coming” light at the station and also reset the display at the Master Telephone. Building personnel must respond to the area that placed the call to reset the station. A password protected command code shall be provided to enable a general reset from the Master Telephone.

2.19 CABLES

A. All cable shall be as recommended by the manufacturer or an approved exact equivalent. All station wiring must be home run with individually jacketed cable.

B. All Area of Rescue station wiring shall be in accordance with current new construction wiring guidelines published by the manufacturer, including speaker, call switch, and reset switch/LED.

C. All interior Master Telephones shall be wired in accordance with current new construction wiring guidelines published by the manufacturer.

D. All operator displays shall be connected to the system in accordance with current new construction wiring guidelines as published by the manufacturer.

E. Transient suppression is required on all wiring leaving the building

F. All cables run in underground conduits must be suited for wet locations.

PART 3 – EXECUTION

3.1 INSTALLATION

A. Complete system shall be installed in strict accordance with manufacturer’s recommendations.

B. All wiring shall be installed in raceways where routed through plenum ceiling areas.

C. Station wiring shall be Southwest Wire and Cable, Inc. #141298 or equivalent.

D. Master Telephone enclosure shall be mounted 48” AFF to bottom of enclosure.

E. Area of Rescue station shall be mounted so that the bottom of enclosure is 38” AFF.
3.2 INSPECTION AND TEST UPON COMPLETION

A. Check-out and final connections to the 5115 system shall be made by a factory trained technician in the employ of a manufacturer of the products installed. In addition, factory trained technicians shall demonstrate operation of the complete system and each major component to the Owner.

B. System field wiring diagrams shall be provided to this subcontractor by the system manufacturer prior to installation.

C. All materials and installation shall be guaranteed to be free of defects in material and workmanship for one year after final acceptance of installation and test.

D. Upon completion of the installation, four (4) copies of complete operational instructions shall be furnished, complete with record drawings. Instructions shall include part numbers and names, addresses, and telephone numbers of parts source. Final payment shall not be made until operational manuals have been received.

E. Upon completion of the installation of the equipment, the electrical contractor shall provide to the engineer a signed statement form the equipment supplier that the system has been wired, tested, and functions properly according to the specifications.

F. Nothing herein contained shall be construed to relieve the Contractor from furnishing a complete and acceptable electrical wiring system in all its categories. The engineer will condemn and reject any materials or labor which are or may become detrimental to the accomplishment of the intentions of these specifications.

END OF SECTION 28 07 24
SECTION 31 00 00

EARTHWORK

PART 1 - GENERAL

1.1 DESCRIPTION

A. Earthwork includes: clearing, compaction, embankment, excavation, filling and grading, grubbing & stripping of topsoil.

B. The extent of earthwork is shown on the drawing.
 1. Remove shrubs, trees, grass or obstructions which interfere with new construction and are noted to be removed per drawings. Preparation of subgrade for slabs, pavements, and foundations are also included as part of this work.

1.2 QUALITY ASSURANCE

A. Codes and Standards: Perform excavation work in compliance with applicable requirements of governing authorities having jurisdiction.

B. Provide soil testing and inspection service. Inspection agency selected and paid by contractor subject to approval of the Engineer.

1.3 FIELD QUALITY CONTROL

A. Quality Control Testing During Construction: Testing agency will inspect and Engineer will approve subgrades and fill layers before further construction work is performed thereon.

B. If, based on reports of Testing Agency and inspection, subgrade or fills which have been placed are below specified density, provide additional compaction and testing at no additional expense.

1.4 JOB CONDITIONS

A. Existing Utilities: Locate existing underground utilities in the areas of work.
 1. Should uncharged or incorrectly charged piping or other utilities be encountered during excavation, consult the Owner immediately for directions as to proceed.
 2. Contact "Miss Utility" and Owner for assistance in locating existing utilities.

B. Protection of Persons and Property: Barricade open excavations occurring as part of this work and post with warning lights. Operate warning lights during hours from dusk to dawn each day and as otherwise required.
 1. Protect structures, utilities, sidewalks, pavements, and other facilities from damage caused by settlement, lateral movement, undermining, washout and other hazards created by earthwork operations.
1.5 RELATED WORK SPECIFIED ELSEWHERE

Erosion and Sediment Control: Section 31 25 00

PART 2 - PRODUCTS

2.1 SOIL MATERIALS

A. Subgrade Material: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, crushed slag, natural or crushed sand, as acceptable to the Owner.

B. Backfill and Fill Materials: Provide acceptable soil materials for backfill and fill from borrow, or on site stockpile, free of clay, rock, or gravel larger than 1" in any dimension, debris, waste, frozen materials, organic and other deleterious matter. Material to be in accord with governing jurisdiction and specifications: Delaware Standard Specifications for Road and Bridge Construction, August 2001, and all subsequent amendments thereof. DELDOT Type B shall be used unless otherwise indicated.

PART 3 - EXECUTION

3.1 INSPECTION

A. Examine the areas and conditions under which excavating, filling and grading are to be performed and determine suitability of stockpiled soil for use as backfill and fill material. Do not proceed with the work until unsatisfactory conditions have been corrected and accepted by the Engineer.

B. Soil Bearing Testing
 1. The Contractor shall be responsible for testing of the available soil bearing capacity. He shall arrange for such testing by an independent testing agency approved by the Engineer or Architect, the following tests shall be performed:
 a. Minimum one (1) three foot deep penetrometer test and subsequent bearing capacity evaluation per 500 S.F. of structure footprint.
 2. The Contractor shall secure the necessary proctor tests and one field density test for every 50 CY of backfill material used for structures and embankments. A minimum of two field density tests per structure or embankment will be required.
 3. The Engineer may request the necessary proctor tests and one compaction test per 100 L.F. section of backfilled trenches at any time during backfilling operations or upon completion of the backfill operations.

3.2 EXCAVATION

A. Excavation consists of removal and disposal of material encountered when establishing required grade elevations.
B. Earth excavation consists of removal and disposal of pavements and other obstructions visible on ground surface.

C. Unauthorized excavation consists of removal of materials beyond indicated subgrade elevations or dimensions without specific direction of Owner. Under footings, foundation bases or slabs fill unauthorized excavation by extending the indicated bottom elevation of the footing or base to the excavation bottom, without altering required top elevation. Lean concrete fill may be used to bring elevations to proper position, only when acceptable to the Owner. Elsewhere, backfill and compact unauthorized excavation as specified for authorized excavations of same classification, unless otherwise directed by the Owner. Payment will not be made to the contractor for filling unauthorized excavation.

D. Stability of Excavations: Slope side of excavation to comply with local codes and ordinances having jurisdiction. Shore and brace where sloping is not possible either because of space restrictions or stability of material excavated.
 1. Maintain sides and slopes of excavations in a safe condition until completion of backfilling.

E. Shoring and Bracing: Provide materials for shoring and bracing, such as sheet piling, uprights, stringers and crossbraces, in good serviceable condition.
 1. Provide minimum requirements for trench shoring and bracing to comply with local codes and authorities having jurisdiction.
 2. Maintain shoring and bracing in excavations regardless of time period excavations will be open. Carry down shoring and bracing as excavation progresses.

F. Dewatering: Prevent surface water and subsurface or ground water from flowing into excavations and from flooding project site and surrounding area.
 1. Do not allow water to accumulate in excavations. Remove water to prevent softening of foundation bottoms, undercutting footings, and soil changes detrimental to stability of subgrades and foundations. Provide and maintain pumps, sumps, suction and discharge lines, and other dewatering system components necessary to convey water away from excavations.
 2. Convey water removed from excavations and rain water to collecting or run-off areas. Provide and maintain temporary drainage ditches and other diversions outside excavation limits for each structure. Comply with applicable sediment control measures. Do not use trench excavations as temporary drainage ditches.
 3. Dewatering for the structures and pipelines shall commence when groundwater is first encountered and shall be continued until such time as backfill has been completed. No concrete or pipes shall be laid in water nor shall water be allowed to rise over them until the concrete or mortar has set at least eight (8) hours. Groundwater shall not be allowed to rise around the pipe until the trench is backfilled.
 4. The Contractor shall dispose of the water from the work in a suitable manner without damage to adjacent property. No water shall be drained into work built or under construction without prior consent of the Engineer. Water shall be disposed of in such a manner as not to be a menace to the Public Health. Water shall be piped to the nearest point of the municipal storm drainage system as directed by the Engineer. Contractor to provide necessary traffic control to
maintain temporary piping. No discharge to the sanitary sewer system shall be allowed.

5. In the event the Contractor’s dewatering operations affect any water supplies within the project area, the Contractor shall take whatever steps that are required to provide uninterrupted water service.

6. The Contractor shall remove any siltation deposits in storm sewer systems, resulting from his dewatering or construction operations. He shall also be responsible for conveyance of dewatering flows and for erosion and sediment control.

G. Material Storage: Stockpile satisfactory excavated materials where directed, until required for backfill or fill. Place, grade and shape stockpiles for proper drainage.
 1. Locate and retain soil materials away from edge of excavations.
 2. Dispose of excess and/or unsatisfactory soil material and waste materials as specified hereinafter.

H. Excavation for Structures: Conform to elevations and dimensions shown within a tolerance of plus or minus 0.10", and extending a sufficient distance from footings and foundations to permit placing and removal of concrete form work, installation of services, other construction required, and for inspection. In excavating for footings and foundations, take care not to disturb bottom of excavation.
 Excavate by hand to final grade just before concrete is placed. Trim bottoms to required lines and grades to leave solid base to receive concrete.

I. Excavation for Pavements: Cut surface under pavements to comply with cross sections, elevations and grades as shown.

J. Removal of Unsatisfactory Soil Materials: Excavate unsatisfactory soil materials encountered that extend below required elevations, to additional depth directed by the Engineer. Unsatisfactory material is defined as clay, silt, etc. which would not, in the Engineer's opinion, provide adequate strength and would not compact properly. Unsatisfactory material shall be removed from the site.

3.3 COMPACTION

A. General: Control soil compaction during construction providing minimum percentage of density specified for each area classification.

B. Percentage of Maximum Density Requirements: Provide not less than the following percentages of maximum density of soil material compacted at -2 to +2 percent of optimum moisture content, as determined by ASTM D1557, for the actual density of each layer of soil material-in-place.
 1. Building Slabs and Steps: Compact top 12" of subgrade, place material in 8" loose layers and compact each layer of backfill or fill material to 95% maximum density.
 2. Lawn or Unpaved Areas: Compact top 6" of subgrade, place and compact each layer of backfill or fill material to 90% maximum density.
 3. Walkways: Compact top 6" of subgrade. Place material in 8" loose layers and compact each layer of backfill or fill material at 95% maximum density.
 4. Pavements: Compact top 12" of subgrade, place material in 8" loose layers and compact each layer of backfill or fill material to 95% maximum density.
3.4 BACKFILL AND FILL

A. General: Place satisfactory excavated, borrow or stockpiled material in layers to required subgrade elevations.

B. Backfill excavations promptly as work permits, but not until completion of the following:
1. Acceptance by Engineer of construction below finish grade including, where applicable, dampproofing, and perimeter insulation.
2. Inspection, testing, approval, and recording locations of underground utilities.
4. Removal of shoring and bracing, and backfilling of voids with satisfactory materials.
5. Removal of trash and debris.

C. Ground Surface Preparation: Remove vegetation, debris, unsatisfactory soil materials, obstructions, and deleterious materials from ground surface prior to placement of fills. Plow, strip or break-up slopes surfaces steeper than 1 vertical to 4 horizontal so that fill material will bond with existing surface.
1. When existing ground surface has a density less than that specified under "Compaction" for the particular area classification, break up the ground surface, pulverize, moisture-condition to the optimum moisture content and compact to required depth and percentage of maximum density.

D. Placement and Compaction: Place backfill and fill materials in layers not more than 8" in loose depth. Before compaction, moisten or aerate each layer as necessary to provide the optimum moisture content. Compact each layer to required percentage of maximum density for each area classification. Do not place backfill or fill material on surfaces that are muddy, frozen, or contain frost or ice.
1. Place backfill and fill materials evenly adjacent to structures, to required elevations. Take care to prevent wedging action of backfill against structures by carrying the material uniformly around structure to approximately same elevation in each lift.

3.5 GRADING

A. General: Uniformly grade areas within limits of grading under this section, including adjacent transition areas. Smooth finished surface within specified tolerances, compact with uniform levels or slopes between points where elevations are shown, or between such points and existing grades.
B. Grading Outside Structures: Grade areas adjacent to structures to drain away from structures and to prevent ponding. Finish surfaces free from irregular surface changes, and as follows:
 1. Grassed Areas: Finish areas to receive topsoil to within not more than 0.10' above or below the required subgrade elevations.
 2. Walks: Shape surface of areas under walks to line, grade and cross-section, with finish surface not more than 0.10' above or below the required subgrade elevations.
 3. Pavements: Shape surface of areas under pavement to line, grade and cross-section, with finish surface not more than 0.10' above or below the required subgrade elevation.

C. Grading Surface of Fill Under Building Slabs: Grade smooth and even, free of voids, compacted as specified, and to required elevation. Provide final grade within a tolerance of 0.2'.

D. Compaction: After grading, compact subgrade surfaces to the depth and percentage of maximum density for each area classification.

3.6 MAINTENANCE

A. Protection of Graded Areas: Protect newly graded areas from traffic and erosion, and keep free of trash and debris.
 1. Repair and re-establish grades in settled, eroded, and rutted areas to specified tolerances.

B. Reconditioning Compacted Areas: Where completed compacted areas are disturbed by subsequent construction operations or adverse weather, scarify surface, re-shape, and compact to required density prior to further construction.

END OF SECTION
PART 1 - GENERAL

1.1 USE OF EXPLOSIVES
 A. The use of explosives will not be permitted.

1.2 PROTECTION OF PERSONS AND PROPERTY
 A. Clearing and grubbing operations shall be conducted in a manner that will ensure safety of persons and prevent damage to existing structures and utilities, construction in progress, trees, vegetation designated to remain standing including root damage, and other property.

PART 2 - PRODUCTS

2.1 FILL MATERIAL
 A. Fill material needed for filling depressions shall be Delaware Department of Transportation Type B borrow material, in accordance with Section 209 or approved excavated material.

PART 3 - EXECUTION

3.1 CLEARING OPERATIONS
 A. Clearing shall consist of the vegetation designated for removal, including rubbish occurring within the areas to be cleared. Clearing shall also include the complete removal and disposal of the tennis courts that obtrude, encroach upon, or otherwise obstruct the work.

3.2 GRUBBING OPERATIONS
 A. The Contractor shall completely remove all debris protruding through the ground surface. This material shall be excavated and remove to a depth of not less than 12 inches below the surface level of the original ground.

3.3 FILLING DEPRESSIONS
 A. Depressions resulting from grubbing operations shall be completely filled with fill material, unless further excavation or earthwork is indicated.

 B. Prior to filling, subgrade surfaces of depressions shall be free of standing water, frost, or frozen material.

 C. The Contractor shall place fill material in horizontal layers not to exceed 8 inches in loose depth. Each layer shall be compacted between -2 to +2 percent of the optimum moisture content and to 90% of maximum dry density outside of paving and 95% in areas of proposed paving, as determined by ASTM D1557. The density of soil-in-place shall be
determined in accordance with ASTM D1556, Sand Cone Method or ASTM D2922, Nuclear Method. The surface of filled depressions shall be graded to meet adjacent proposed contours and to provide surface water drainage.

3.4 DISPOSAL OF CLEARED AND GRUBBED MATERIAL

A. Burning of materials on site will not be permitted.

B. Refuse from the clearing and grubbing operations shall be removed for disposal at no additional cost to the Owner. Costs of permits and fees for disposal shall be paid by the Contractor. The Contractor shall be responsible for compliance with federal, state, and local laws and regulations pertaining to the control of environmental pollution, building of fires, and other regulated practices in the disposal of cleared and grubbed materials.

END OF SECTION
SECTION 31 11 00
CLEARING AND GRUBBING

PART 1 - GENERAL

1.1 USE OF EXPLOSIVES
A. The use of explosives will not be permitted.

1.2 PROTECTION OF PERSONS AND PROPERTY
A. Clearing and grubbing operations shall be conducted in a manner that will ensure safety of persons and prevent damage to existing structures and utilities, construction in progress, trees, vegetation designated to remain standing including root damage, and other property.

PART 2 - PRODUCTS

2.1 FILL MATERIAL
A. Fill material needed for filling depressions shall be Delaware Department of Transportation Type B borrow material, in accordance with Section 209 or approved excavated material.

PART 3 - EXECUTION

3.1 CLEARING OPERATIONS
A. Clearing shall consist of the vegetation designated for removal, including rubbish occurring within the area to be cleared. Clearing shall also include the complete removal and disposal of the tennis courts that obtrude, encroach upon, or otherwise obstruct the work.

3.2 GRUBBING OPERATIONS
A. The Contractor shall completely remove all debris protruding through the ground surface. This material shall be excavated and remove to a depth of not less than 12 inches below the surface level of the original ground.

3.3 FILLING DEPRESSIONS
A. Depressions resulting from grubbing operations shall be completely filled with fill material, unless further excavation or earthwork is indicated.

B. Prior to filling, subgrade surfaces of depressions shall be free of standing water, frost, or frozen material.

C. The Contractor shall place fill material in horizontal layers not to exceed 8 inches in loose depth. Each layer shall be compacted between -2 to +2 percent of the optimum moisture.
content and to 90% of maximum dry density outside of paving and 95% in areas of proposed paving, as determined by ASTM D1557. The density of soil-in-place shall be determined in accordance with ASTM D1556, Sand Cone Method or ASTM D2922, Nuclear Method. The surface of filled depressions shall be graded to meet adjacent proposed contours and to provide surface water drainage.

3.4 DISPOSAL OF CLEARED AND GRUBBED MATERIAL

A. Burning of materials on site will not be permitted.

B. Refuse from the clearing and grubbing operations shall be removed for disposal at no additional cost to the Owner. Costs of permits and fees for disposal shall be paid by the Contractor. The Contractor shall be responsible for compliance with federal, state, and local laws and regulations pertaining to the control of environmental pollution, building of fires, and other regulated practices in the disposal of cleared and grubbed materials.

END OF SECTION
SECTION 31 23 00

EXCAVATION AND BACKFILL FOR PIPELINES AND STRUCTURES

PART 1 - GENERAL

1.1 DESCRIPTION

A. The Contractor shall perform all excavation, backfilling grubbing and grading required for construction and installation of pipelines, structures and appurtenances. Excavation shall include removal of pavement, concrete, rock, earth and debris, regardless of character. Trenches and excavations shall be sheeted, shored and braced by the Contractor, as necessary to allow construction and provide safe working conditions. Additionally, the Contractor shall be responsible for maintaining a dry excavation by dewatering. He shall also locate, support and protect existing utilities and structures encountered in the work, provide traffic control, dispose of surplus and unsuitable excavated materials and restore backfilled areas to original condition or as required by the drawings and specifications. All backfilled and restored areas shall be maintained by the Contractor, in a proper condition, for the duration of the project.

B. The Contractor is responsible for direct or indirect damage to existing structures, pipelines, conduits, poles, wires and utilities of every description in the vicinity of his work whether above or below ground, or that may be encountered in trench or structure excavation. This responsibility shall include the cost of protection by sheeting, bracing, hand excavation, when warranted, and the expense to repair or replace any existing facility damaged directly or indirectly by construction activities under this contract, whether such facility is or is not shown on the drawings.

C. The Contractor shall verify the location, size and elevation of all existing utilities at the various points of connection and/or crossings prior to starting any work. Any discrepancies in locations or elevations shall be brought to the attention of the Engineer in order that the designs may be adjusted accordingly. Damages suffered or additional costs incurred by the Contractor as a result of his failure to conform to the requirements of this paragraph shall be the sole responsibility of the Contractor. Connections to existing utilities shall be made by the Contractor at such a time and in such a manner as the Engineer may direct, and the cost shall be included in the price bid for pipeline and structures, unless otherwise defined in the proposal.

D. Excavation and backfill, within an area where a State agency has jurisdiction, shall be done in accordance with requirements and provisions of the permits issued by the agencies for the construction within their respective rights-of-way. Such requirements and provisions, where applicable, shall take precedence and supersede the provisions of these specifications.
PART 2 - PRODUCTS

2.1 MATERIALS

No classification of excavated materials will be made. Excavation and trenching work shall include the removal and subsequent handling of all materials excavated or otherwise removed in performance of the contract work, regardless of the type, character, composition, or condition thereof.

PART 3 - EXECUTION

3.1 PIPELINE TRENCH EXCAVATION

A. The Contractor shall excavate, maintain and backfill all excavation necessary for completing the work under the contract. Unless otherwise specified or approved, excavation shall be open cut. No extra compensation will be allowed for hand excavation and backfill necessary to complete the work or required by the Engineer.

B. Trenches shall be excavated to the necessary width and depth, as shown on the drawings and as required for the protective sheeting, pull boxes, etc. No extra compensation will be allowed for trenches wider than that detailed on the drawings.

C. The sides of the trenches shall be practically plumb and shall not be sloped unless approved in writing by the Engineer. Trench sides shall be supported or sheeted as required to protect pavement surfaces, curbing, utilities, etc., and required for safety. Safety regulations shall be as required by State safety codes and OSHA.

D. In paved areas, the Contractor shall remove the paving only as necessary for the excavation of the trench or as detailed. Pavement edges at the trench shall be saw cut neat and straight prior to the start of any excavation. Should the Contractor disturb or damage pavement for a greater width than detailed on the drawings or should pavement damage result from cave-ins, settlement, etc., Contractor shall replace such paving at his own expense. Saw cuts shall be carried out to the full depth of existing bituminous or concrete paving or combination thereof.

E. In non-paved areas strip surface vegetation and topsoil and place in stock piles which are separated from the trench excavated materials. Topsoil shall not be used for general trench refill.

F. The excavation of all trenches shall be fully completed at least twenty (20) feet in advance of pipe laying, unless otherwise authorized or directed. The Engineer may require the backfilling of open trench, over completed pipelines, or ahead of the pipe laying operation, if in his judgment such action is necessary, and the Contractor shall have no claim for extra compensation.

G. Should work be stopped for any reason and any excavation is left open for an unreasonable length of time, the Contractor shall refill the excavation at his own expense if so directed, by the Engineer or the Town Inspector. He shall not reopen the excavation.
until he is ready to complete the facility. Should the Contractor refuse or fail to refill any excavation completely within forty-eight (48) hours or immediately if it poses a safety hazard after a proper notice has been given by the Engineer or Town Inspector the Owner shall be authorized to do the work. The resulting expenses shall be deducted from monies due the Contractor.

H. The Contractor shall complete excavation as nearly as practicable to the lines of the pipeline to be installed as detailed. All cavities in the bottom of the trench shall be filled to the required level with compacted crushed stone or gravel. Unless the cavities have been made on direction of the Engineer and classified as "Excavation Below Subgrade" for unsuitable material, no extra compensation shall be due the Contractor.

I. Excavated materials shall be graded, hauled, stored and protected as such material found suitable will be required for backfilling, repaving or other purposes. Material classified as unsuitable shall be disposed of by the Contractor at a location approved by the Engineer. Hauling of excavated materials for any purpose shall not entitle the Contractor to additional compensation. Only those excavated materials designated by the Owner shall become property of the Contractor.

J. All stockpiled materials shall be placed in such a way to prevent damage to the trench, structures, drainage areas or private property. Excavated materials shall not be placed on private property, unless written permission is obtained from the property Owner by the Contractor.

K. The Contractor shall remove, relocate, change or protect all structures including but not limited to signs, mailboxes, overhead and buried utilities as required for construction whether shown on drawings or not. No extra compensation will be allowed for property damage, injury or loss of time due to obstructions encountered not shown on plans.

L. The Contractor shall be responsible for any damage to curb, gutter, sidewalk, traffic control devices, pavement material and lawns. Any damage resulting directly or indirectly during construction shall be replaced in kind by the Contractor without additional compensation. The reuse of disturbed curb, gutter or sidewalk is prohibited. New sections shall be installed to the nearest undisturbed control joint. Cost for replacement shall be included in the linear foot cost for pipe.

3.2 PIPELINE TRENCH BACKFILL

A. Materials excavated from the trench except topsoil shall be used for trench backfill, provided that, in the opinion of the Engineer, the excavated material is suitable for this purpose. Backfill material shall be free from large lumps, pavement, pieces of concrete and stones.

B. Suitable material, as approved by the Engineer, shall be carefully deposited in the trench by methods which will not damage or disturb the pipeline or structure, and shall be solidly tamped around the pipe or structure. Backfill material shall be placed in 8-inch layers. Compaction shall be accomplished by mechanical tampers. Care shall be taken in the use of mechanical tampers not to injure or move the pipe or to cause the pipe to be
supported unevenly. Each layer shall be mechanically tamped for the full trench width unless an alternative method is approved in writing by the Engineer.

C. Every backfill layer shall be compacted to 95% of maximum density at optimum moisture content as determined by the Modified Proctor Test, ASTM D1557 Method C. Materials containing an excess of moisture shall be permitted to dry until the moisture content is within the specified range. Materials too dry shall be wetted uniformly until the moisture content is in the specified range.

D. No compacting shall be done when the material is too wet to be compacted properly. At such times the work shall be suspended until the backfill materials have dried sufficiently to permit proper compaction or such other precautions shall be taken as may be necessary to obtain proper compaction. The Contractor is responsible for hauling, storing and drying of excavated material to be used in backfill operations within the prices bid.

E. The Engineer may request compaction tests of the backfilled trenches at any time during construction or upon completion of the backfill operations. As a minimum field density testing shall be performed at a rate of 1 test per 100 lineal feet of trench, at a depth and location specified by the Engineer or his representative. Such testing shall be arranged by the Contractor and performed by an independent testing agency approved by the Engineer. The Contractor shall pay the testing laboratory for all tests performed inclusive of sample collection, preparation and transportation. The Contractor will be paid, at the unit price bid, for all Proctor tests. For those field density tests which indicate that compaction satisfies specification requirements, the Contractor will be paid for testing at the unit price bid. For those tests which indicate that compaction does not satisfy specification requirements, the Contractor will not be paid. Whenever test results indicate compaction densities less than specified, the Contractor shall, at his own expense, secure the specified compaction using methods approved by the Engineer. The testing agency, so employed by the Contractor, shall submit a copy of all testing reports directly to the Engineer. Each report shall contain the project identification name and number, name of Contractor, name of testing agency, and location of sample tested by station, street and depth, as a minimum.

F. The Contractor shall, at his own expense, maintain all refilled excavations in proper condition. Trench surfaces shall be reshaped when necessary. If the Contractor fails to make repairs within forty eight (48) hours after receipt of written notice from the Owner, the Owner may refill said depression wherever necessary and the cost of so doing will be retained from any monies due or to become due the Contractor under the Contract. The Contractor shall be fully responsible for any injury or damage that may result from lack of maintenance of any refilled excavation at any time prior to final acceptance.

G. All unauthorized excavations made by the Contractor shall be immediately backfilled in accordance with the requirements of the specifications for trench backfill at the Contractor's expense.

H. After completion of backfilling, all material not used shall be disposed of as approved by the Engineer, and all places on the line of the work shall be left clean and in good condition. This cleaning up shall be done by the Contractor without extra compensation. If he fails to do this work within a reasonable time after receipt of notice, it will be
performed by the Owner, and the cost will be retained from the monies due the Contractor under the contract.

I. No backfilling of pipelines will be allowed until measurements of pipe and an inspection has been performed by the Owner's representative, and until the Engineer has authorized the backfill. Any unauthorized backfill of pipelines shall be uncovered by the Contractor at his expense if required by the Engineer.

3.3 EXCAVATION FOR STRUCTURES

A. Excavate for structures, walls, foundations, footings, etc., to the depth and width required for construction and stripping of forms. Structural excavation shall consist of the excavation of all earth, rock boulders existing concrete and masonry foundations and walls, and all other materials encountered regardless of type, which the Contractor may encounter.

B. Excavated materials shall be segregated as they are excavated, with the suitable and unsuitable material and topsoil being piled separately. All suitable material shall be used for backfill. All unsuitable material shall be removed, at the Contractor's expense, and disposed of at an approved off-site location. No excavated material shall be deposited at any time so as to endanger partly finished structures either by direct pressure, or indirectly by overloading banks contiguous to the operation.

C. The Contractor shall be responsible for the condition of all excavations made by him. All slides and cave-ins shall be removed without extra compensation, at whatever time and under whatever circumstances they may occur.

3.4 BACKFILL FOR STRUCTURES

A. Backfill around structures with suitable material from the excavation to the original surface grades or the finished grades shown on the plans or defined by the Engineer. If additional material is needed to fill around the structure, Special Backfill shall be furnished and placed by the Contractor at the price bid in the proposal.

B. No backfill shall be placed against new concrete or masonry structures until properly cured.

C. Backfill shall be placed in eight (8) inch loose layers and compacted by mechanical tampers. Compaction shall conform with the requirements for compaction already set forth in this specification.

D. The Contractor shall exercise caution in backfill and compaction to prevent damage to structures.

3.5 MISCELLANEOUS EXCAVATION AND BACKFILL

A. The Contractor shall do such miscellaneous excavation as may be necessary or directed. Such excavation shall be subject to the same conditions and requirements as specified for trench excavation but will be paid for as "Miscellaneous Excavation and Backfill".
B. Miscellaneous Excavation shall include the digging of test pits in the areas not called out on the project plans, extra width of trench made necessary by change in its location, or excavation for any special structures outside the trench that may not be shown on the drawings or described in the specifications, where such excavation is done at the direction of the Engineer.

C. Test pits shall be dug by the Contractor whenever directed or as necessary to determine location, depth or materials of existing utilities. The depth and size shall be such as required by the Engineer. Test pits shall be dug by the Contractor, without being directed to do so, along the lines of the trenches as shown on the drawings in advance of the excavation, or prior to use of mechanical moles, for the purpose of satisfying himself as to the location and elevation of underground obstructions or conditions.

3.6 EXCAVATION BELOW SUBGRADE AND GRAVEL REFILL

A. Materials below the excavation limit for pipelines and structures (below subgrade), which in the judgment of the Engineer should be removed, shall be removed as directed. All spaces created by the removal of unsuitable material below subgrade shall be refilled and compacted with crushed stone or gravel. Payment for Excavation Below Subgrade and Gravel Refill shall be made at the unit price bid.

B. Should the Contractor elect to excavate suitable material below subgrade and install stone for the purpose of securing a dry trench bottom, in lieu of dewatering by mechanical methods, no payment will be made for Excavation Below Subgrade and Gravel Refill.

3.7 DEWATERING

A. All excavations must be kept free of water below the subgrade of the work while work is in progress. This may be accomplished by ordinary pumping methods or by well points, whichever will produce the required results. Upon removal of dewatering equipment, the Contractor shall backfill all holes and restore disturbed areas to their original condition.

B. Dewatering for the structures and pipelines shall commence when groundwater is first encountered and shall be continued until such time as backfill has been completed. No concrete or pipe shall be laid in water nor shall water be allowed to rise over them until the concrete or mortar has set at least eight (8) hours. Groundwater shall not be allowed to rise around the pipe until the trench is backfilled.

C. The Contractor shall dispose of the water from the work in a suitable manner without damage to adjacent property. No water shall be drained into work built or under construction without prior consent of the Engineer. Water shall be disposed of in such a manner as not to be a menace to the Public Health.

D. In the event the Contractor's dewatering operations affect any water supplies within the project area, the Contractor shall take whatever steps that are required to provide uninterrupted water service.
E. The Contractor shall remove any siltation deposits in storm sewer systems, resulting from his dewatering or construction operations. He shall also be responsible for conveyance of dewatering flows and for erosion and sediment control.

3.8 SHEETING, SHORING AND BRACING

A. The Contractor shall furnish and install all sheeting, shoring and bracing necessary to insure safe working conditions and to prevent damage to public and private property and structures. If, in the opinion of the Engineer, the sheeting, shoring, or bracing is not of proper quality or is not properly placed to insure safe working conditions and to prevent property damage, the Contractor shall remedy such inadequacy at his own expense as may be directed by the Engineer. Sheet, shoring, and bracing shall be removed as backfilling progresses, except at such locations as the Engineer may direct or approve it to be left in place.

B. The condition of all excavations made by the Contractor shall be the responsibility of the Contractor. No extra compensation will be allowed for property damage, injury or loss of time, due to excavation slides or cave-ins at any time under any circumstances.

C. The Contractor shall cut off any sheeting left in place, at least eighteen (18) inches below finished grade, and shall remove the material cut off without compensation.

D. Where necessary, in quicksand, soft ground, or for the protection of any structure or property, sheeting shall be driven to such depth below the bottom of the trench as may be required to protect all existing and/or proposed work.

E. The cost for furnishing, placing and removal of sheeting, shoring or bracing shall be included in the prices bid.

F. A trench box is an acceptable alternative to sheeting, shoring or bracing providing such boxes conform to safety codes.

3.9 SELECT BACKFILL

A. Should the Contractor encounter unsuitable material during excavation, he shall remove and dispose of such material at a location approved by the Engineer. The cost of such disposal shall be included in the prices bid for pipe and structures.

B. Should sufficient suitable material from excavations on the project not be available for backfill, the Contractor shall furnish Select Backfill upon approval of the Engineer. Special backfill shall conform to Delaware DOT. Type G.

C. Payment for authorized Select backfill will be made at the price bid for the material placed within the trench width detailed and for the length and depth approved.
3.10 GRAVEL BEDDING

Gravel bedding for installation of under structures shall meet the requirements of #57 stone per Section 813 of the Delaware Standard Specifications.

END OF SECTION
SECTION 31 25 00
EROSION & SEDIMENT CONTROL

PART 1 - GENERAL

1.1 DESCRIPTION

Provide necessary equipment, labor and supplies for erosion and sediment control throughout project. Work consists of grading of site, providing silt fence, inlet protection, and straw bale dikes and other necessary measures required for effective control. Sediment and erosion control work shall comply with the requirements of the State of Delaware Erosion and Sediment Control Handbook, 2005 Addition, and the Delaware Sediment and Stormwater Regulations, issued January 2014. The receipt of a proposal by a bona fide bidder shall be interpreted to mean the Contractor has familiarized himself with these Regulations and Rules of Procedure and is fully cognizant of exactly what is required.

1.2 SUBMITTALS

A. Erosion and Sediment Control Schedule.

At pre-construction conference or prior to start of actual construction, submit for acceptance, schedules for accomplishment of temporary and permanent erosion control work. Submit schedule for each of the following procedures: Grading, construction and paving. No work shall be started until erosion control schedules and methods of operation have been approved.

1.3 EXECUTION

A. Throughout the duration of the project, control erosion and minimize siltation to rivers, streams and impoundments. Control shall include, but is not limited to the use of berms, dikes, dams, sediment basins, sediment traps, filters, fiber mats, netting, gravel or crushed stone, mulch, grasses, slope drains, and other methods. Erosion and sediment control measures as described herein and on the drawings shall be applied to erodible materials exposed by any project activity.

B. Coordinate erosion and sediment control measures with the construction of the permanent drainage facilities which shall be constructed prior to the grading operation to assure economical, effective and continuous erosion and siltation control.

C. Dress, prepare, and seed slopes immediately following the completion of each portion of work and immediately following suspension of grading operations.

D. Fill slopes shall be dressed, prepared and seeded as the embankment proceeds to the extent needed to stop erosion and sedimentation.

E. The Contractor shall incorporate permanent erosion control features into the project at the earliest practicable time. Temporary erosion control measures shall be used to correct
conditions that develop during construction that were not foreseen during the design stage, that are needed prior to installation of permanent erosion control features, or that are needed temporarily to control erosion that develops during normal construction practices that are not associated with permanent control features of the project.

END OF SECTION
SECTION 31 31 16
TERMITE CONTROL

PART 1 - GENERAL

1.01 SUMMARY
A. Provide soil treatment for termite control.

1.02 SUBMITTALS
A. Product Data: Submit manufacturer's product data and installation instructions for each material and product used.
B. Warranty: Submit manufacturer’s standard warranty. Include labor and materials to repair or replace defective materials.
 1. Warranty Period: 5 years.

1.03 QUALITY ASSURANCE
A. Comply with governing codes and regulations. Provide products of acceptable manufacturers which have been in satisfactory use in similar service for three years. Use experienced installers. Deliver, handle, and store materials in accordance with manufacturer's instructions.

PART 2 - PRODUCTS

2.01 MATERIALS
A. Soil Treatment Materials: Soil treatment materials shall bear Federal registration number of U.S. Environmental Protection Agency and acceptable to authorities having jurisdiction. If acceptable, products may include chloropyrifos, permethrin, cypermethrine, fenvalerate, isofenphos.

PART 3 - EXECUTION

3.01 INSTALLATION
A. Treat soil in strict compliance with National Pest Control Association standards and with manufacturer's printed instructions and recommendations.
B. Treat areas under floor slabs prior to placement of concrete if possible to avoid drilling. Treat areas outside foundation walls after excavation, filling and grading are complete. Do not apply treatment to frozen or excessively wet soils.
C. Post signs and other warnings indicating that soil poisoning has been applied. Protect persons and property from injury or damage from soil treatment work.

END OF SECTION
SECTION 31 32 00
SOIL STABILIZATION

PART 1 - GENERAL

1.1 Includes topsoil, fertilizers and lime for unpaved disturbed areas as shown on the Drawing.

1.2 SUBGRADE
 A. To be neutralized with lime if highly acid or composed of heavy clay.

1.3 SUBMITTALS
 A. Laboratory test results of topsoil for PH, soluble salts and application requirements for lime and fertilizer.

1.4 Related work specified elsewhere: Turf and Grass 32 92 00.

PART 2 - PRODUCTS

2.1 TOPSOIL
 A. Sandy loam, silt loam, or other soil approved by the Owner.
 B. Shall not contain subsoil, slag, cinders, stones, lumps of soil, sticks, roots, trash or other extraneous materials larger than 1" in diameter or length.
 C. Must be free of plants or plant parts of bermuda grass, quackgrass, Johnson grass, nutsedge, poison ivy, Canadian thistle, or others as specified.
 D. A pH of 5.0 to 7.0 is required.
 E. Soluble salts shall not be higher than 500 parts per million.

2.2 FERTILIZERS
 A. Uniform in composition, free flowing and suitable for application with approved equipment.
 B. Delivered to the site fully labeled according to applicable State Fertilizer Laws and shall bear the name, trade name or trade-mark and warranty of the producer.
 C. Fertilizer application rates shall be determined by soil tests per the approved sediment & erosion control plan.
 D. Fertilizer shall be distributed evenly over the area to be seeded.
2.3 LIME

A. Shall be ground limestone (hydrated or burnt lime may be substituted) which contains at least 50% total oxides (calcium oxide plus magnesium oxide).

B. Ground limestone shall be ground to such fineness that at least 50% will pass through a 100-mesh sieve and 98 to 100% will pass through a 20-mesh sieve.

C. Application rates of liming materials shall be per the approved sediment & erosion control plan.

D. Lime shall be distributed uniformly over the entire areas to be seeded.

PART 3 - EXECUTION

3.1 SUBSOIL

A. Test for PH. If highly acid apply ground limestone at the rate of 100 pounds per 1,000 sq. ft.

B. Immediately prior to placing topsoil, loosen subsoil by disking or scarifying to a depth of at least two inches.

3.2 TOPSOIL

A. Topsoil shall be uniformly distributed on the designated areas and it shall be a minimum depth of 4 inches after firming.

B. Spreading shall be performed in such a manner that seeding can proceed with a minimum of additional soil preparation and tillage.

C. Any irregularities in the surface resulting from topsoiling or other operations shall be corrected in order to prevent the formation of depressions or water pockets.

D. Topsoil shall not be placed while in a frozen or muddy condition, when the subgrade is excessively wet, or in a condition that may otherwise be detrimental to proper grading or proposed seeding.

E. After the topsoiling has been spread and the final grades approved, it shall be cleared of all grade stakes, surface trash and other objects that would hinder maintenance of seeded and planted areas.

F. Paved areas over which hauling operations are conducted shall be kept clean, and any soil which may be brought upon the surfacing shall be promptly removed.

G. The wheels of all vehicles shall be kept clean to avoid tracking soil on the surfacing of roads, walks or other paved areas.
H. Lime and fertilizer shall be uniformly mixed into the top 4 inches of soil by disk ing, harrowing or other approved methods.

I. Any undulations or irregularities in the surface resulting from fertilizing, liming, tilling or other causes shall be leveled prior to seeding.

J. Flooded, washed out or areas otherwise damaged shall be reconstructed and all grades re-established by the landscape contractor in accordance with the drawings and/or other applicable specifications.

END OF SECTION
SECTION 31 50 00
EXCAVATION SUPPORT AND PROTECTION

PART 1 - GENERAL

1.01 SUMMARY

A. Provide shoring and bracing for sidewalls in deep excavations with steel sheet, soldier piles or timber lagging to protect existing buildings, utilities, roadways, and improvements.

1.02 SUBMITTALS

A. Shop Drawings: Layout of shoring and bracing and other data, acceptable to local authorities having jurisdiction, prepared by a qualified professional engineer.

1.03 QUALITY ASSURANCE

A. Survey of Adjacent Structures and Levels: Registered land surveyor prior to excavation.
B. Engineer: A professional engineer licensed in the jurisdiction of the project.
C. System Design: Prevent cave-ins, loss of ground, or damage to people and property. Maintain shoring and bracing during construction activities and remove shoring and bracing if practical when construction and filling is complete.
D. Comply with codes and ordinances of governing authorities having jurisdiction. Use experienced installers. Deliver, handle, and store materials in accordance with manufacturer's instructions.

PART 2 - PRODUCTS

2.01 MATERIALS

A. Sheet steel: Heavy-gauge steel sheet suitable for service.
B. Soldier piles: Steel H-beams in serviceable condition.
C. Timber lagging: Heavy timber pressure treated with wood preservative.

PART 3 - EXECUTION

3.01 INSTALLATION

A. Install in proper relation with adjacent construction to permit forming and finishing of concrete surfaces. Coordinate with work of other sections.
B. Locate shoring and bracing to avoid permanent construction. Anchor and brace to prevent collapse.

END OF SECTION
SECTION 32 11 26

BITUMINOUS STABILIZED BASE COURSES

PART 1 – GENERAL

1.01 SUMMARY

A. Provide hot-mixed asphalt paving over prepared subbase and roadway markings.

1.02 SUBMITTALS

A. Product Data: Submit manufacturer's product data and installation instructions for each material and product used.

B. Test Reports: Submit for approval test reports.

1.03 QUALITY ASSURANCE

A. Comply with governing codes and regulations. Provide products of acceptable manufacturers which have been in satisfactory use in similar service for three years. Use experienced installers. Deliver, handle, and store materials in accordance with manufacturer's instructions.

B. Construction Tolerances:
 1. Surface Course Thickness: Within 1/4 inch.
 2. Base Course Surface Smoothness: Within 1/4 inch.

PART 2 - PRODUCTS

2.01 MATERIALS

A. Asphalt-Aggregate Mixture: Plant-mixed, hot-laid asphalt-aggregate mixture, ASTM D 3515, complying with local DOT and DPW regulations.

B. Prime Coat: Cut-back asphalt, ASTM D 2027.

C. Tack Coat: Emulsified asphalt, ASTM D 977.

D. Herbicide Treatment: Commercial chemical for weed control registered by Environmental Protection Agency and acceptable to authorities having jurisdiction.

E. Lane and Parking Area Marking Paint, Yellow Color: Alkyd-resin type, ready-mixed, AASHTO M 248, Type I.

F. Lane and Parking Area Marking Paint, White Color: Alkyd-resin type, ready-mixed, AASHTO M 248, Type I.
PART 3 - EXECUTION

3.01 INSTALLATION

A. Asphalt/Aggregate Mixture: Comply with local DOT or DPW Standard Specifications for Highways and Bridges. Class as required by loading and use.

C. Apply prime coat to prepared subbase. Apply tack coat to previous laid work and adjacent in-place concrete surfaces.

D. Place asphalt concrete at minimum temperature of 225 degrees F in strips not less than 10' wide overlapping previous strips. Complete entire base course before beginning surface course.

E. Construct curbs to dimensions indicated or if not indicated to standard shapes. Provide tack coat between curb and pavement.

F. Begin rolling when pavement can withstand weight of roller. Roll while still hot to obtain maximum density and to eliminate roller marks.

G. Provide 4" lane and striping paint in uniform, straight lines. Provide wheelstops where indicated and securely dowel into pavement. Protect work from traffic and damage.

H. Test in-place asphalt work for thickness and smoothness. Remove and replace defective work and patch to eliminate evidence of patching.

END OF SECTION
SECTION 32 11 36
CONCRETE BASE COURSES

PART 1 - GENERAL

1.01 SUMMARY
 A. Provide cast-in-place concrete paving over prepared subbase.

1.02 SUBMITTALS
 A. Product Data: Submit manufacturer's product data and installation instructions for each material and product used.
 B. Design Mixes: Submit for approval design mixes, including adjustments for variations in project conditions.
 C. Test Reports: Submit for approval test reports.

1.03 QUALITY ASSURANCE
 A. Comply with governing codes and regulations. Provide products of acceptable manufacturers which have been in satisfactory use in similar service for three years. Use experienced installers. Deliver, handle, and store materials in accordance with manufacturer's instructions.
 B. Construction Tolerance: 1/8" in 10' for grade and alignment of top of forms; 1/4" in 10' for vertical face on longitudinal axis.
 C. Testing: Independent testing laboratory.
 D. Mock-Ups: Provide mock-up as required to demonstrate quality of workmanship.

PART 2 - PRODUCTS

2.01 MATERIALS
 A. Concrete: ASTM C 150, Type I, Portland cement; ASTM C 33, normal weight aggregates; potable water.
 1. Design Mix: ASTM C 94, 3000 psi, 28 day minimum compressive strength.
 2. Slump Limits: 8 inches minimum with superplasticizer, 3 inches otherwise.
 3. Air Content: 5 to 8 percent.
 4. Finish: Broom finish, perpendicular to direction of travel.
 C. Reinforcing Bars: Deformed steel bars, ASTM A 615, Grade 60.
 D. Fabricated Bar Mats: Steel bar or rod mats, ASTM A 184, using ASTM A 615, Grade 60 steel bars.
 E. Joint Dowel Bars: Plain steel bars, ASTM A 615, Grade 60.

G. Liquid-Membrane Forming and Sealing Curing Compound: ASTM C 309, Type I, Class A.

H. Bonding Compound: Polyvinyl acetate or acrylic base.

PART 3 - EXECUTION

3.01 INSTALLATION

B. Comply with concrete section for concrete mix, testing placement, joints, tolerances, curing, repairs and protection.

C. Dispose of over-mixed concrete off-site in a legal manner.

D. Protect concrete paving until weight of a person will not leave any impression. Remove and replace concrete paving which shows impressions or other defects. Skim coating defects is not acceptable.

END OF SECTION
SECTION 32 12 16

ASPHALT PAVING

PART 1 - GENERAL

1.1 DESCRIPTION

A. The Contractor shall restore all surfaces damaged by his operations and install all new asphalt paving to the width and extent detailed, noted on the plans or specified herein.

B. Surface restoration in streets and roads maintained by the State Department of Highways shall be accomplished in accordance with applicable utility construction permits.

PART 2 - PRODUCTS

Not Used

PART 3 - EXECUTION

3.1 GENERAL

A. Various conditions and types of surface restoration are shown on the drawings. Materials and construction methods to be in accordance with the following specification and the Delaware DOT Standard Specifications dated July 1985.

B. Existing pavement not subject to complete repavement shall be trimmed to secure a straight clean edge for repaving. Saw cut bituminous pavement as shown on the drawings and as directed to obtain a clean pavement edge.

C. No staggered or irregular longitudinal trench repair widths shall be allowed in each block of work. Repairs shall be of a uniform width and in a straight line.

D. Minimum pavement restoration width is five (5) feet including edge of roads. Actual width shall be as detailed or noted on the plans. Should the Contractor damage or disturb larger areas, he shall replace the additional area at his cost.

E. Undermined areas shall be grout filled or cut back.

F. A 2” inch layer of cold patch shall be placed on all lateral and main utility trenches for temporary paving at the end of every workday.

G. Catch basins, inlets, curbs and all other appurtenances shall be adequately covered and protected prior to application of bituminous materials. No earth or bituminous materials shall be allowed to enter any storm drainage system and suitable containment provisions shall be employed to prevent surface runoff of bituminous materials.

H. Unless otherwise noted the final surface shall match grades existing prior to construction and shall be such that a smooth transition free of abrupt changes in grade is made with
adjacent pavements and/or sidewalks. No depressions or other misalignment shall obstruct, trap or otherwise misdirect the flow of surface water drainage.

3.2 MAINTENANCE OF REFILLED EXCAVATIONS

A. The Contractor shall maintain, at his own expense, all refilled excavations and surfacing in proper condition as specified herein. All depressions appearing in the refilled excavation, stabilized base and temporary paving shall be properly refilled. If the Contractor fails to make repairs within 48 hours after receipt of written notice from the Engineer, the Owner may refill said depressions and the cost thereof shall be deducted from any monies due the Contractor. In case of emergency the Owner may refill any depressions to protect with barricades without giving previous notice to the Contractor, and the cost of so doing shall be retained from any monies due or to become due the Contractor.

B. The Contractor shall be responsible for any injury or damage that may result from lack of maintenance of any refilled excavation at any time.

3.3 CRUSHER RUN BASE COURSE

A. Crusher run base course (Type "B") shall be spread on prepared and compacted refilled excavations to the compacted depth shown on the drawing details.

B. Materials and methods of construction shall meet the provisions of Section 821 of referenced standard specification.

3.4 BITUMINOUS CONCRETE PAVEMENT

A. Hot mix, hot laid bituminous concrete shall consist of placing bituminous concrete base and or wearing courses on a prepared base to the minimum compacted thickness shown on the drawings.

B. The hot-mix bituminous concrete surface and base courses shall conform to the Delaware DOT Standard Specifications for Type C & B, respectively and shall be constructed in accordance with the applicable Articles of Section 401 "Hot-Mix, Hot Laid Bituminous Concrete Pavement".

C. The subgrade shall be properly prepared, graded and compacted in accordance with Section 02200 of these specifications.

D. Materials and methods of construction shall meet the provisions of Section 401 of referenced standard specification. All thicknesses detailed shall be compacted thicknesses.

E. Cold mix temporary roadway material shall be furnished and placed as shown on the drawings and or directed by the Engineer. Cold mix shall meet the provisions of Section 402 of referenced standard specification. Separate payment shall not be made for temporary paving. The cost therefore shall be included in the price bid for pipe and fittings.
3.5 BITUMINOUS CONCRETE DRIVEWAY AND PARKING AREAS

Bituminous driveways and parking areas disturbed through the Contractor's construction operations shall be restored by means of 3-inches of hot-mix bituminous concrete pavement placed in a single lift onto a base course consisting of 4-inches of properly prepared and compacted crushed stone or quarry waste. Commercial and residential entrances on State maintained streets shall be in accordance with the plan details.

3.6 CONCRETE CURBS, SIDEWALKS AND DRIVEWAYS

A. General

1. The Contractor shall permanently repair or relay all curbs, sidewalks and driveways that have been removed, broken, or otherwise injured in executing any of the work under the contract or injured by settlement of any backfilled excavation at any time prior to termination of the contract and guarantee period.

2. Curb and sidewalk removed or damaged during construction shall be replaced in accordance with State of Delaware Department of Transportation standards. Install wheelchair curb ramps at all street corners reconstructed.

3. All concrete shall be according to Section 03300 of this Specification.

4. Separate payment for reconstruction of curbs, sidewalks and concrete driveways damaged by the Contractor will not be made. However, cost shall be included within the appropriate unit and/or lump sum prices bid for furnishing and laying pipe and appurtenances.

B. Curbs

1. Concrete curbs, normal and depressed, and curb and gutter shall be replaced in accordance with Delaware D.O.T. Standard Specifications Section 701, 702 and 704 and as detailed on the drawings.

2. Curbs shall be depressed at all existing driveway locations in accordance with Delaware State Standard Details, including proper preparation of subgrade and proper placing and spacing of joints and joint materials.

3. Partial replacement, when so directed, shall extend to the nearest existing joint in each direction.

C. Sidewalks

1. Concrete sidewalks shall be replaced as required, or as directed, in accordance with Section 705 of the Delaware D.O.T. Standard Specifications. Handicapped ramps shall be installed in all areas defined herein.

2. Sidewalks in areas not subject to vehicular loading shall have a minimum thickness of 4 inches placed upon a properly prepared, graded and compacted subgrade.
3. Sidewalks in vehicular loading areas shall be a minimum thickness of 6 inches reinforced with 6-inch by 6-inch wire mesh of 10-10 gauge. Subgrade shall be prepared as stated on the project plans.

4. Replacement of partial sections of concrete sidewalk, where so directed, shall be extended to the nearest existing joint in each direction.

5. Sidewalks shall be replaced to a width equal to that existing prior to start of construction and such width shall be maintained throughout the entire length of the block. In no instance shall the constructed width be less than 4 feet.

6. A broom finish shall be applied perpendicular to the direction of traffic.

3.7 FIELD QUALITY CONTROL

A. General: Test in-place bituminous concrete courses for compliance with requirements for thickness and surface smoothness. Repair or remove and replace unacceptable paving as directed by the Owner.

B. Thickness: In-place compacted thickness will not be acceptable if exceeding following allowable variation from required thicknesses:

1. Binder Course: 1/2" plus or minus.
2. Surface Course: 1/4" plus or minus.

C. Surface Smoothness: Test finish surface of each asphalt concrete course for smoothness, using 10' straightedge applied parallel with, and at right angles to centerline of paved area. Surfaces will not be acceptable if exceeding the following tolerances for smoothness:

1. Base Course Surface: 1/4".
2. Wearing Course Surfaces: 3/16".

3.8 PARKING AND LANE MARKERS

A. All pavement markings, temporary and permanent, shall be installed in accordance with Section 748 of the Delaware Standard Specifications, Latest Edition.

B. Apply paint with mechanical equipment to produce uniform straight edges.

C. All markings destroyed during construction operations to be replaced in kind.

END OF SECTION
SECTION 32 13 13
CONCRETE PAVING (SIDEWALKS)

PART 1 - GENERAL

1.1 DESCRIPTION

A. The work consists of construction of all concrete walks. Complete in place including sub-grade preparation, forms, reinforcements, finishing, curbing, etc., in strict accordance with the Drawings and as specified herein.

B. Related work not included in this section includes Section 31 00 00 - Earthwork.

PART 2 - PRODUCTS

2.1 SUB-GRADE PREPARATION

A. The sub-grade shall have a uniform compaction density throughout its entire depth and width and shall be approved by the Engineer prior to pouring any concrete.

2.2 FORMS

A. The contractor shall furnish forms that result in completely aligned concrete. Forms shall be fitted tightly and securely braced to maintain proper grade and alignment. Forms shall be cleaned and oiled with a non-staining lubricant immediately prior to placing concrete.

B. Forms shall not be removed until concrete has properly set.

2.3 MATERIALS, MIX

A. All materials (including cement, aggregate, reinforcing, joint filler and seal, curing materials, etc.) shall comply with the applicable provisions of the Standard Specifications of the governing jurisdiction: Delaware Standard Specifications for Road & Bridge Construction, July 1985, Delaware DOT and all subsequent amendments.

B. All concrete for walks, curbs, steps, etc., shall be 3000 psi at the end of 28 days. All concrete shall be in accordance with DELDOT Specifications Section 812, Class B.

2.4 JOINTS

A. Expansion joints shall be placed where slabs meet walls, steps or other rigid objects, and at approximately 20’ intervals in walks. Joints shall be straight and true, perpendicular to the surface. Both edges of the joints shall be tooled to a 1/4” radius. Particular care shall be exercised to keep the surface of concrete in exactly the same plane on both sides of the joint.
B. Expansion joints shall be filled with an approved non-extruding preformed filler, 1/2" thick. Expansion filler shall extend the full depth and width of the concrete, flush with the surface and 1/2" below top surface.

C. Seal - A hot poured rubber type compound shall be used. Seal shall be flush with concrete surface and shall not extend more than 1/4" beyond each edge of joint.

D. Contraction joints shall be similar to expansion joints, except that preformed filler will be omitted and joints need not be more than 2" deep, nor less than 1/4" in section thickness. Joints shall be at 5' intervals or as shown on scoring details on the drawing.

E. Edging - all exposed edges shall be straight and true and unless otherwise shown shall be tooled to a smooth 1/4" radius.

2.5 WALKS

A. Walks shall be 4" thick in areas not subject to vehicular loading, and 6" in traffic areas. It shall be reinforced with 6" wire mesh of 10-10 gauge to yield a true and even surface, and finished with a broom finish perpendicular to the direction of traffic.

PART 3 - EXECUTION

3.1 METHODS OF CONSTRUCTION

A. Methods of construction shall conform with Section 705 of the DELDOT Specifications.
SECTION 32 16 00
CURBS AND GUTTERS

PART 1 - GENERAL

1.01 SUMMARY
A. Provide curbs along edges of roadways over compacted gravel base.

1.02 SUBMITTALS
A. Product Data: Submit manufacturer's product data and installation instructions for each material and product used.
B. Test Reports: Submit for approval test reports.

1.03 QUALITY ASSURANCE
A. Comply with governing codes and regulations. Provide products of acceptable manufacturers which have been in satisfactory use in similar service for three years. Use experienced installers. Deliver, handle, and store materials in accordance with manufacturer's instructions.
B. Construction Tolerance: 1/8" in 10' for grade and alignment; 1/4" in 10' for vertical or sloped face on longitudinal axis.
C. Mock-Ups: Provide mock-up as required to demonstrate quality of workmanship.

PART 2 - PRODUCTS

2.01 MATERIALS
A. Precast Concrete:
 1. Concrete: ASTM C 150, Type I, Portland Cement; ASTM C 33, normal weight aggregates; potable water.
 2. Design Mix: ASTM C 94, 3000 psi, 28 day minimum compressive strength.
 4. Reinforcing Bars: Deformed steel bars, ASTM A 615, Grade 60.
 5. Joint Dowel Bars: Plain steel bars, ASTM A 615, Grade 60.

PART 3 - EXECUTION

3.01 INSTALLATION
A. Provide acceptable materials and install curbing in strict compliance with local DOT and DPW Standard Specifications for Highways and Bridges.
B. Set curbs on compacted gravel subbase with joints between curb pieces from 1/8" to 3/4" wide. Point joints with mortar and tool concave; remove surplus mortar and clean curbs.

END OF SECTION
SECTION 32 30 00
SITE IMPROVEMENTS AND AMENITIES

PART 1 - GENERAL

1.01 SUMMARY
A. Provide site improvements and furnishings.

1.02 SUBMITTALS
A. Product Data: Submit manufacturer's product data and installation instructions for each material and product used.
B. Shop Drawings: Submit shop drawings indicating material characteristics, details of construction, connections, and relationship with adjacent construction.

1.03 QUALITY ASSURANCE
A. Comply with governing codes and regulations. Provide products of acceptable manufacturers which have been in satisfactory use in similar service for three years. Use experienced installers. Deliver, handle, and store materials in accordance with manufacturer's instructions.

PART 2 - PRODUCTS

2.01 MATERIALS
A. Provide units specifically designed for exterior exposure and intended use:
 1. Fencing:
 a. Chain link type
 2. Benches:
 a. Cast-iron type
 3. Trash Receptacles:
 a. Metal type
 4. Bicycle Racks: Galvanized steel
 5. Bollards:
 a. Concrete filled steel bollards
 6. Site Lighting: Pole mounted fixtures
 7. Sports Fixtures: Baseball backstop
 8. Site Walls:
 a. Masonry type
 9. Steel Beam Guardrails: Galvanized steel and anchorage; DOT requirements
 10. Walkway, Roadway, and Parking Appurtenances: Custom design
 11. Site Signage: Directional or informational signage; multilingual as applicable to area

NOT FOR BIDDING PURPOSES
PART 3 - EXECUTION

3.01 INSTALLATION

A. Install materials and systems in accordance with manufacturer's instructions and approved submittals. Install materials and systems in proper relation with adjacent construction and with uniform appearance. Coordinate with work of other sections.

B. Restore damaged finishes and test for proper function. Clean and protect work from damage.

END OF SECTION
SECTION 32 31 00
FENCES AND GATES

PART 1 - GENERAL

1.01 SUMMARY

A. Provide chain link fencing and gates for areas requiring separation.

1.02 SUBMITTALS

A. Product Data: Submit manufacturer's product data and installation instructions for each material and product used.

B. Samples: Submit two representative samples of each material specified indicating visual characteristics and finish. Include range samples if variation of finish is anticipated.

1.03 QUALITY ASSURANCE

A. Comply with governing codes and regulations. Provide products of acceptable manufacturers which have been in satisfactory use in similar service for three years. Use experienced installers. Deliver, handle, and store materials in accordance with manufacturer's instructions.

PART 2 - PRODUCTS

2.01 MATERIALS

A. Steel Chain-Link Fence Fabric:
 1. Mesh and Wire Size: 2 inch mesh, 0.148 inch diameter (9 gauge).
 2. Coating: ASTM A 817, Type 2, Class 1, zinc-coated (galvanized) applied after weaving.

B. Framework:

C. Gates:
 1. Swinging type.

D. Framing and Fittings:
 1. End, corner, and pull posts.
 2. Line and intermediate posts.
 3. Gate posts.
 4. Top rail.
 5. Tension wire.
 6. Tie wires.
 7. Post and line caps.
PART 3 - EXECUTION

3.01 INSTALLATION

A. Install materials in accordance with manufacturer's instructions and approved submittals. Comply with ASTM F 567. Install materials in proper relation with adjacent construction and with uniform appearance. Coordinate with work of other sections. Install posts to depth to avoid frost heave.

B. Cut pipe with pipe-cutters only. Cutting with backsaws is not acceptable. Tack weld gates for strength. Use spring loaded latches, not yokes.

C. Restore or replace damaged components. Clean and protect work from damage.

END OF SECTION
SECTION 32 90 00
PLANTING

PART 1 - GENERAL

1.01 SUMMARY

A. Provide landscape work:
1. Trees, shrubs, plants, and ground cover.
2. Finish grading and lawns.
3. Topsoil and soil amendments.
4. Initial maintenance of landscape materials.
5. Pruning and relocation of existing plant materials.

1.02 SUBMITTALS

A. Product Data: Submit manufacturer's product data and installation instructions for each material and product used.

B. Shop Drawings: Submit shop drawings indicating material characteristics, details of construction, connections, and relationship with adjacent construction.

C. Maintenance Data: Submit maintenance data, including maintenance schedule.

D. Notices: Submit 48-hour written notice prior to turnover to Owner for watering and maintenance.

E. Warranty: Warrant trees and shrubs for a period of one year after date of Substantial Completion, against defects including death and unsatisfactory growth and except for defects resulting from neglect by Owner, abuse by others, or natural phenomena. Replace unsatisfactory plant material at end of warranty period at no additional expense to the Owner. One replacement is required.

1.03 QUALITY ASSURANCE

A. Comply with governing codes and regulations. Provide products of acceptable manufacturers which have been in satisfactory use in similar service for three years. Use experienced installers. Deliver, handle, and store materials in accordance with manufacturer's instructions.

B. Balled and Burlapped Plants and Trees: Graded to American Standard for Nursery Stock, ANSI Z60.1.

C. Testing: Laboratory testing for suitable soil amendments and fertilizer.

PART 2 - PRODUCTS

2.01 MATERIALS

A. Plant Materials:
1. Deciduous trees.
2. Deciduous shrubs.
3. Coniferous and broadleaf evergreen trees and shrubs.
4. Ground cover.
5. Plants.

B. Lawns: Seed, new crop seed mixture.

C. Topsoil: From site stockpile with additional fertile, friable topsoil from local source.

D. Soil Amendments:
 1. Lime: Dolomitic limestone.
 2. Aluminum Sulfate: Commercial grade.
 4. Superphosphate: 20 percent available phosphoric acid.
 5. Sand: Clean, washed sand.
 7. Sawdust: Rotted sawdust free of chips and stones.
 10. Mulch: Ground or shredded pine bark mulch.

E. Landscape Materials:
 2. Anti-Erosion Mulch: Seed-free salt hay or threshed straw.
 4. Plastic Sheet: Black polyethylene, 8 mils.
 7. Stakes and Guys: New hardwood, treated softwood, or redwood.

PART 3 - EXECUTION

3.01 INSTALLATION

A. Install materials in accordance with approved submittals. Install landscape work in proper relation with adjacent construction and with uniform appearance. Coordinate with work of other sections.

B. Prepare topsoil by mixing fertilizer with loam. Apply fertilizer at a rate of 2 pounds of actual nitrogen per 1000 sq. ft. for plant beds and 2 pounds per inch of trunk for tree pits.

C. Install soil mix to a depth of 18" in plant beds.

D. For seeded lawns, apply seed at rate of 5 pounds per 1000 square feet.

E. Excavate as required for trees and shrubs.

F. Install plant material and backfill with soil mix. Stake and guy trees. Water thoroughly. Allow for soil settlement.
G. Provide maintenance and watering until turnover to Owner’s for maintenance and watering. Replace damaged materials and dead or unhealthy plants prior to turnover to Owner.

END OF SECTION
SECTION 32 91 00
SOIL PREPARATION AND SOIL MIXES

PART 1 - GENERAL

1.1 Includes topsoil, fertilizers and lime for unpaved disturbed areas as shown on the Drawing.

1.2 SUBGRADE
A. To be neutralized with lime if highly acid or composed of heavy clay.

1.3 SUBMITTALS
A. Laboratory test results of topsoil for PH, soluble salts and application requirements for lime and fertilizer.

1.4 Related work specified elsewhere: Turf and Grass 32 92 00.

PART 2 - PRODUCTS

2.1 TOPSOIL
A. Sandy loam, silt loam, or other soil approved by the Owner.
B. Shall not contain subsoil, slag, cinders, stones, lumps of soil, sticks, roots, trash or other extraneous materials larger than 1" in diameter or length.
C. Must be free of plants or plant parts of bermuda grass, quackgrass, Johnson grass, nutsedge, poison ivy, Canadian thistle, or others as specified.
D. A pH of 5.0 to 7.0 is required.
E. Soluble salts shall not be higher than 500 parts per million.

2.2 FERTILIZERS
A. Uniform in composition, free flowing and suitable for application with approved equipment.
B. Delivered to the site fully labeled according to applicable State Fertilizer Laws and shall bear the name, trade name or trade-mark and warranty of the producer.
C. Fertilizer application rates shall be determined by soil tests per the approved sediment & erosion control plan.
D. Fertilizer shall be distributed evenly over the area to be seeded.
2.3 LIME
A. Shall be ground limestone (hydrated or burnt lime may be substituted) which contains at least 50% total oxides (calcium oxide plus magnesium oxide).
B. Ground limestone shall be ground to such fineness that at least 50% will pass through a 100-mesh sieve and 98 to 100% will pass through a 20-mesh sieve.
C. Application rates of liming materials shall be per the approved sediment & erosion control plan.
D. Lime shall be distributed uniformly over the entire areas to be seeded.

PART 3 - EXECUTION

3.1 SUBSOIL
A. Test for PH. If highly acid apply ground limestone at the rate of 100 pounds per 1,000 sq. ft.
B. Immediately prior to placing topsoil, loosen subsoil by disking or scarifying to a depth of at least two inches.

3.2 TOPSOIL
A. Topsoil shall be uniformly distributed on the designated areas and it shall be a minimum depth of 4 inches after firming.
B. Spreading shall be performed in such a manner that seeding can proceed with a minimum of additional soil preparation and tillage.
C. Any irregularities in the surface resulting from topsoiling or other operations shall be corrected in order to prevent the formation of depressions or water pockets.
D. Topsoil shall not be placed while in a frozen or muddy condition, when the subgrade is excessively wet, or in a condition that may otherwise be detrimental to proper grading or proposed seeding.
E. After the topsoiling has been spread and the final grades approved, it shall be cleared of all grade stakes, surface trash and other objects that would hinder maintenance of seeded and planted areas.
F. Paved areas over which hauling operations are conducted shall be kept clean, and any soil which may be brought upon the surfacing shall be promptly removed.
G. The wheels of all vehicles shall be kept clean to avoid tracking soil on the surfacing of roads, walks or other paved areas.
H. Lime and fertilizer shall be uniformly mixed into the top 4 inches of soil by disk ing, harrowing or other approved methods.

I. Any undulations or irregularities in the surface resulting from fertilizing, liming, tilling or other causes shall be leveled prior to seeding.

J. Flooded, washed out or areas otherwise damaged shall be reconstructed and all grades re-established by the landscape contractor in accordance with the drawings and/or other applicable specifications.

END OF SECTION
SECTION 32 92 00
TURF AND GRASSES

PART 1 - GENERAL

1.1 Includes fine grading, seeding and mulching of all disturbed areas.

1.2 QUALITY ASSURANCE
A. Deliver packaged materials in containers showing weight, analysis and name of manufacturer.
B. Protect materials from deterioration during delivery and while stored at site.

1.3 MAINTENANCE
A. Maintain grassed areas for not less than 60 days after acceptance of project.
B. Include watering, fertilizing, weeding, mowing, trimming and other operations required to establish a smooth, acceptable lawn, free of eroded or bare areas.
C. Reseed or replace areas damaged by construction processes or personnel.

1.4 GUARANTEE
A. All seeded areas to produce a dense, well-established and uniform turf. Contractor to be responsible for repair of any eroded, dead or bare areas until acceptance by Owner. Repair work to be accomplished as in original work.

1.5 RELATED WORK SPECIFIED ELSEWHERE
A. Soil Stabilization - Section 31 32 00
B. Earthwork - Section 31 00 00.

PART 2 - PRODUCTS

2.1 MATERIALS
A. All materials to conform to those stipulated below, unless otherwise approved.
B. Specified materials to be applied in amounts and methods herein stipulated.
C. Delivery tickets, indicating date, weight, analysis and vendor's name to be submitted to Project Engineer upon request.
D. Grass seed to be fresh new-crop seed complying with purity and germination requirements stipulated herein.

E. All seed shall be Maryland State Board of Agriculture certified and shall carry certified labels which shall be furnished by the Landscape Contractor to Owner. Seed shall be free of noxious grasses.

<table>
<thead>
<tr>
<th>Type</th>
<th>Min. Purity %</th>
<th>Min. Germination %</th>
<th>Max. Weed Seed %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kentucky 31 Fescue</td>
<td>98</td>
<td>85</td>
<td>0.5</td>
</tr>
<tr>
<td>Crownvetch</td>
<td>99</td>
<td>70</td>
<td>0.15</td>
</tr>
</tbody>
</table>

F. Mulch:

1. All mulch shall be straw tacked with asphalt emulsion, in accordance with DELDOT requirements
2. Mulch applied by spray equipment (hydro-seeded) to be equipped with an agitation system capable of keeping all solid in the mixture in complete suspension at all times until used.

PART 3 - EXECUTION

3.1 INSTALLATION

A. All disturbed areas within project limits that are not shown for paving or special treatment are to be prepared for seeding.

B. Prior to seeding, all surface areas shall be fine graded, free from debris, lumps, depressions, etc. Swales shall be correct and true and ready for seeding. Maximum tolerance is 0.1 foot.

C. Seeding:

1. All areas within project limits that are not shown as paving, are to be seeded with specified seed mix. Slopes 3:1 or flatter shall be seeded with Kentucky Fescue 31 per the approved sediment and erosion control plan. Slopes steeper than 3:1 shall be seeded with Crownvetch per the approved sediment and erosion control plan.
2. Seed on flat areas are to be uniformly distributed with an approved culti-packer and attached seed-hopper to insure a covering of 1/8" or less. Sow 1/2 seed in one direction and balance at right angles. If so directed, additional firming by light rollers to be accomplished.
3. At Contractor's option, seed on flat areas are to be applied by spray method provided all provisions of Section 734.06, DELDOT Specifications are met. Slopes steeper than 3:1 shall be applied by spray in accordance with DELDOT specification 734.07.
4. No seeding to be done during windy weather, or when ground is wet or otherwise non-tillable.
5. Seed mix to be sown between August 15th and October 31st or between February 1st, and April 30th unless otherwise approved.

D. Temporary Seeding

1. An annual rye grass shall be mixed with the specified seed mix to insure a quick stand of grass. The rye grass is to be applied at a rate of 150 lbs. per acre.

E. Mulching

1. All seeded areas to be mulched immediately following seeding. Mulching shall conform with the approved sediment and erosion control plan. Mulch and binder shall be per DELDOT specification 735.02.
SECTION 33 10 00
WATER UTILITIES

PART 1 - GENERAL

1.01 SUMMARY
A. Provide an operating underground, exterior water service piping system. Include piping, control valves, and steel and concrete anchorages. Include water service system and piping, accessories, and appurtenances for potable water and fire service outside the building.

1.02 SUBMITTALS
A. Product Data: Submit manufacturer's product data and installation instructions for each material and product used.
B. Shop Drawings: Submit shop drawings indicating material characteristics, details of construction, connections, and relationship with adjacent construction.

1.03 QUALITY ASSURANCE
A. Comply with governing codes and regulations. Provide products of acceptable manufacturers which have been in satisfactory use in similar service for three years. Use experienced installers. Deliver, handle, and store materials in accordance with manufacturer's instructions.
B. Testing: Hydrostatic tests at minimum 1 1/2 times working pressure for 2 hours.

PART 2 - PRODUCTS

2.01 MATERIALS
 1. Lining: AWWA C104, cement mortar, seal coated.
 2. Gaskets: AWWA C111.
 3. Ductile Iron and Cast Iron Fittings, AWWA C110 or AWWA C153, 250 psi minimum pressure rating; AWWA C104 cement mortar lining; AWWA C111 rubber gaskets.
B. PVC Pipe 4 Inches and Larger: AWWA C900, Class 150.
 2. PVC Couplings and Fittings: AWWA C900 with ASTM F 477 elastomeric seal gaskets.
C. Fiberglass Pressure Pipe 2 Inches and Larger: AWWA C950, Type I filament wound or Type II centrifugally cast; Grade 1 or 2; fiberglass fittings, AWWA C950, RTRP, 200 psi minimum pressure rating.
D. Copper Water Tube 2 Inches and Smaller: ASTM B 88, Type K seamless, annealed temper; ANSI B16.22 wrought-copper solder-joint copper fittings.
E. Copper Water Tube 2 Inches and Smaller: ASTM B 88, Type L seamless, annealed temper; ANSI B16.22 wrought-copper solder-joint copper fittings.

F. PVC Pipe 3 Inches and Smaller: ASTM D 1785, Schedule 40; Schedule 40 socket-type PVC fittings or elastomeric gasketed joint.

G. Polybutylene Pipe 3 Inches and Smaller: AWWA C902, DR 17 barbed insert type brass or bronze fittings.

H. Polybutylene Pipe 3 Inches and Smaller: ASTM D 2662, SIDR15 barbed insert type brass or bronze fittings.

I. Polybutylene Tubing 3 Inches and Smaller: ASTM D 2666, SIDR13.5 brass or bronze fittings.

J. Polyethylene Pipe and Tubing 3 Inches and Smaller: ASTM D 2666, SIDR13.5 brass or nylon fittings.

K. Couplings: ASTM A 126, gray iron sleeve assembly with follow-up, rubber gaskets, bolts, nuts, and enamel paint finish.

L. Valves:
 1. Nonrising stem gate valves 3 Inches and larger, AWWA C500.
 2. Rising stem gate valves 3 Inches and larger, AWWA C500 or AWWA C509.
 3. Nonrising stem gate valves 2 inches and smaller, MSS SP-80.
 4. Valve Accessories: Cast-iron valve boxes, curb stops, and service boxes for curb stops.
 5. Tapping sleeve and tapping valve for new connections larger than 2 inches.

M. Anchorages:
 3. Rod Couplings: ASTM A 197, malleable iron.
 6. Concrete Reaction Backing: ASTM C 150, Type I Portland cement for 3000 psi, 28 day minimum compressive strength.

N. Yard Hydrants: Post type.

O. Valve Pits and Meter Pits: Reinforced concrete with ladder and cast-iron manhole frame and cover.

P. Water Meter: Utility company water meter.

Q. Meter Box: Cast-iron body and cover with lettering.

R. Identification: Metallic-lined plastic underground warning tapes.

S. Fire Service Main Accessories:
 1. Hose House: 16 gauge (.0598 inches) steel with red baked enamel finish, hoses, and nozzles.
2. Alarm Devices: UL 753 and FM approved including water flow indicators, supervisory switches, and pressure switches.

PART 3 - EXECUTION

3.01 INSTALLATION

A. Install materials and systems in accordance with manufacturer's instructions and approved submittals. Install materials and systems in proper relation with adjacent construction. Coordinate with work of other sections.

B. Clean and disinfect system. Test for proper operation. Backfill and protect work from damage.

END OF SECTION
SECTION 33 30 00
SANITARY SEWERAGE SYSTEM

PART 1 - GENERAL

1.01 SUMMARY
A. Provide sanitary sewerage system.

1.02 SUBMITTALS
A. Product Data: Submit manufacturer's product data and installation instructions for each material and product used.
B. Shop Drawings: Submit shop drawings indicating material characteristics, details of construction, connections, and relationship with adjacent construction.

1.03 QUALITY ASSURANCE
A. Comply with governing codes and regulations. Provide products of acceptable manufacturers which have been in satisfactory use in similar service for three years. Use experienced installers. Deliver, handle, and store materials in accordance with manufacturer's instructions.

PART 2 - PRODUCTS

2.01 MATERIALS
A. Pipe and Fittings:
 1. Hub and Spigot Cast-Iron Soil Pipe and Fittings: ASTM A 74, grey cast iron for compression gasket joints, class of service as required.
 3. Ductile Iron Pressure Pipe: AWWA C151, Class 150 for push-on joints.
 5. Corrugated Steel Pipe: ASTM A 760, Type 1, made from ASTM A 444 zinc-coated steel sheet for banded joints.
 8. Corrugated Polyethylene (PE) Drainage Tubing and Fittings: AASHTO M 252 Interim, Type S, with smooth waterway for coupling joints.
 11. Polyvinyl Chloride (PVC), Cellular-Core Plastic Pipe: ASTM F 891, Sewer and Drain Series, PS 50 minimum stiffness, for solvent-cemented joints.
12. Polyvinyl Chloride (PVC), Sewer Pipe and Fittings: ASTM D 3034, SDR 35, for solvent-cemented or gasketed joints.
13. Polyvinyl Chloride (PVC), Sewer Pipe and Fittings: ASTM F 679, T-1 wall thickness, bell and spigot for gasketed joints.
14. Polyvinyl Chloride (PVC), Profile, Gravity Sewer Pipe and Fittings: ASTM F 794, open and closed profile, bell and spigot for gasketed joints.
15. Polyvinyl Chloride (PVC), Ribbed Drain Pipe: AASHTO M 304M, bell and spigot, with smooth waterway for bell-gasketed joints.
16. Nonreinforced-Concrete Sewer Pipe and Fittings: ASTM C 14, Class 2, for gasketed joints.
17. Reinforced-Concrete Sewer Pipe and Fittings: ASTM C 76, Class III, Wall B, for gasketed joints.
18. Reinforced-Concrete Arch Pipe: ASTM C 506, Class IV, for banded joints.
21. Couplings: Rubber or elastomeric sleeve and stainless steel band.
22. Couplings: Rubber or elastomeric compression gasket.

B. Manholes:
1. Precast Concrete Manholes: ASTM C 478.
2. Manhole Steps: Ductile iron or cast aluminum.

C. Cleanouts:
1. Cast-iron.
2. PVC with cast-iron adapter.

D. Catch Basins for Storm Sewerage System:
1. Precast Concrete Catch Basins: ASTM C 478 or ASTM C 858.
2. Cast-In-Place Concrete Catch Basins: 3000 psi.
3. Catch Basin Steps: Ductile iron or cast aluminum.
5. Curb Inlets: Precast concrete, stone, or brick conforming to utility standards.

F. Trench Drains for Storm Sewerage System: Interlocking precast polymer concrete modular units with grates, channel caps, and related accessories.

G. Identification: Metallic-core plastic underground warning tapes.

PART 3 - EXECUTION

3.01 INSTALLATION

A. Install materials and systems in accordance with manufacturer's instructions and approved submittals. Install materials and systems in proper relation with adjacent construction. Coordinate with work of other sections.
B. Where connections are made to existing systems, rout out old drainage lines.
C. Test for proper operation. Clean and protect work from damage.

END OF SECTION
SECTION 33 40 00

STORM DRAINAGE UTILITIES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section covers storm drain pipe and appurtenances.

B. The Contractor shall furnish all labor, materials, and appurtenances necessary to complete all storm drain construction shown on the drawings.

PART 2 - PRODUCTS

2.1 REINFORCED CONCRETE PIPE

A. Reinforced concrete materials used for precast pipe shall conform to Section 32 11 36, "Concrete Base Courses" and shall have a minimum compressive strength of 4000 psi after 28 days of placement.

B. Reinforced concrete pipe shall be manufactured without lifting holes and shall be handled at all times by means of slings or other methods approved prior to start of construction.

C. Reinforced concrete pipe shall meet the applicable strength requirements contained in ASTM Designation: C-76, Reinforced Concrete Culvert, Storm Drain and Sewer Pipe, minimum circumferential reinforcement shall be as prescribed for Class IV.

2.2 MASONRY MATERIALS

A. Mortar for pipe joints and connections to other drainage structures shall be composed of 1 part by volume Portland cement and 2 parts sand. Portland cement shall conform to ASTM C150. Sand shall conform to ASTM C144. Hydrated lime may be added to the mixture of mortar in an amount of not more than 20 percent of the volume of cement. Hydrated lime shall conform to ASTM C141.

2.3 CONCRETE PIPE JOINTS

A. Concrete pipe joints shall be cement mortar bell-and-spigot-joints. The first pipe shall be bedded to the established gradeline, with the bell end placed upstream. The interior surface of the bell shall be cleaned with a wet brush and the lower portion of the bell filled with mortar to such a depth as to bring the inner surfaces of the abutting pipes flush and even. The spigot end of each subsequent pipe shall be cleaned and uniformly matched into the bell so the sections are closely fitted. After each section is laid, the remainder of the joint shall be filled with mortar and a bead formed around the outside of the joint with additional mortar. The cement mortar, finish, and protection of joints shall be as specified. If the mortar is not sufficiently stiff to prevent appreciable slump before setting, the outside of the joint shall be wrapped with cheesecloth to hold the mortar in place.
2.4 BACKFILL MATERIALS
 A. Backfill materials shall conform to Section 31 23 00, "Excavation for Pipelines and Structures".

2.5 CASTINGS
 A. Frames and covers for junction box shall be set by the Contractor as the work progresses. The frame shall be well bedded in mortar.
 B. Materials for frames and covers shall be in accordance with the standard specifications for gray iron castings ASTM Designation A-48 for Class No. 35.
 C. All frames and covers shall be of the sizes and types detailed on the plans.
 D. Inlet gratings shall conform with the detail shown on the plans and/or for the Delaware Department of Highways and Transportation Standard Specifications and Standard Details.

PART 3 - EXECUTION
3.1 EXCAVATION AND BACKFILL
 A. Excavation and backfill shall be in accordance with Section 31 23 00, "Excavation for Pipelines and Structures."

3.2 MATERIAL STORAGE
 A. Materials required in the work shall be located and retained a sufficient distance from the edge of excavations to prevent such material falling or sliding into the excavations and to prevent cave-ins.

3.3 PIPE INSTALLATION
 A. Installation of pipe materials shall conform to the written or published instructions of the manufacturer, except as otherwise specified. The manufacturer's written or published instructions shall supersede referenced national association or trade standard installation practices such as ASTM C12, for the specified material. Where the Contractor proposes to deviate from specified instructions, the proposed deviation shall be submitted for approval.
 B. Under no circumstances shall pipe be laid when trench conditions or weather are unsuitable for such work. Diversion of drainage or dewatering of trenches during construction shall be provided as necessary. Laid pipe shall be inspected before backfilling is initiated.
 C. Pipe shall be visually inspected for apparent defects and tapped with a hammer to audibly detect hidden defects, prior to being lowered into a trench.
D. Defective materials found shall be distinctly marked using a road-traffic-quality yellow paint and promptly removed from the site.

E. Pipe shall be laid beginning at a low point of a system and, when in final acceptance position, shall be true to the grades and alignment indicated, with unbroken continuity of invert.

F. Type RCP shall be installed in accordance with the applicable recommendations of ACPA, "Concrete Pipe Installation Manual," except as otherwise specified.

G. Pipe and fittings shall be clean and dry when laid.

H. Pipe, when ready for specified acceptance testing, shall be "broom clean.

I. Interior of line shall be cleared of dirt and superfluous matter as the work progresses. A swab or drag shall be kept in the line and pulled forward past each joint immediately upon completion of the joint. In lines where man entry is possible, brushes and brooms may be used for cleaning. Plugs shall be placed in the ends of completed work at the end of the day and whenever work stops. Plugs shall be commercially manufactured products, unless otherwise approved.

J. Pipe shall be checked to determine whether line displacement or other defects have occurred. Inspection shall take place when 2 feet of earth cover is in place and upon completion of project. A flashlight or a mirror-reflected sunlight shall be flashed between manholes. If the illuminated interior indicates poor alignment, debris, displaced pipe infiltration, or other defects, the defects designated shall be remedied by the Contractor.

3.4 BACKFILLING

Backfilling shall conform to Section 31 23 00, "Excavation and Backfill for Pipelines and Structures."

3.5 GRADING

Grading shall conform to Section 31 00 00, "Earthwork."

3.6 DISPOSAL OF EXCESS AND WASTE MATERIALS

Excess excavated material, trash, debris, and waste materials shall be removed from the project site and legally disposed at no additional cost to the Owner. Permits and fees for disposal shall be paid by the Contractor.

END OF SECTION